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Abstract

Chronic hepatitis B virus (HBV) infection remains the number one risk factor for hepatocellular carcinoma (HCC),
accounting for more than 600 000 deaths/year. Despite highly effective antiviral treatment options, chronic
hepatitis B (CHB), subsequent end-stage liver disease and HCC development remain a major challenge worldwide. In
CHB, liver damage is mainly caused by the influx of immune cells and destruction of infected hepatocytes, causing
necro-inflammation. Treatment with nucleoside/nucleotide analogues can effectively suppress HBV replication in
patients with CHB and thus decrease the risk for HCC development. Nevertheless, the risk of HCC in treated patients
showing sufficient suppression of HBV DNA replication is significantly higher than in patients with inactive CHB,
regardless of the presence of baseline liver cirrhosis, suggesting direct, long-lasting, predisposing effects of HBV.
Direct oncogenic effects of HBV include integration in the host genome, leading to deletions, cis/trans-activation,
translocations, the production of fusion transcripts and generalized genomic instability, as well as pleiotropic
effects of viral transcripts (HBsAg and HBx). Analysis of these viral factors in active surveillance may allow early
identification of high-risk patients, and their integration into a molecular classification of HCC subtypes might
help in the development of novel therapeutic approaches.
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Introduction

Chronic hepatitis B virus (HBV) infection accounts for
up to 54% of hepatocellular carcinoma (HCC) cases
worldwide [1]. This percentage is lower in developed
(23%) than in developing countries (59%), reflecting
the variable burden of chronic HBV infection in differ-
ent areas [2,3]. Worldwide, more than 240—350 million
individuals are estimated to be chronically infected with
HBY, facing a lifetime risk of 15-40% of developing
end-stage liver disease, including cirrhosis, liver fail-
ure and HCC [4—7], accounting for more than 600 000
deaths/year [8]. Synergistic effects increasing the risk
for hepatocarcinogenesis in CHB are demographic fac-
tors, such as Asian or African ancestry, male sex and age,
as well as environmental factors, such as alcohol abuse,
aflatoxin exposure or non-alcoholic fatty liver disease.
Furthermore, viral co-infections (hepatitis C, hepatitis D
or HIV co-infections), HBV genotype, viral DNA inte-
gration into the host genome or other direct effects of
viral proteins might increase the risk for HCC devel-
opment in CHB [9,10]. Patients chronically infected
with HBV risk developing HCC in the absence of in
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flammation, severe liver damage and cirrhosis, due to
direct oncogenic viral factors of HBV [3,9—13]. How-
ever, the direct role of HBV in HCC development
remains to be elucidated.

HBV virology

HBYV is a human blood-borne virus, infecting hepato-
cytes of humans or humanoid primates due to specific
binding of the preS1 domain of the large envelope
viral protein to hepatocytes via the bile salt trans-
porter sodium taurocholate co-transporting polypeptide
(NTCP) [14,15]. HBV can be transmitted by direct
blood contact or sexual contact (horizontal transmis-
sion) as well as before or during birth from mother to
child (vertical transmission) [16]. A very low number
of HBV particles (<10) was shown to be sufficient to
establish hepatocyte infection in vivo [17,18], demon-
strating extremely high infectivity. The individual age
at time of infection, as well as the implementation of
vaccination programmes, vary greatly between different
geographic regions, which at least partially accounts
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for the different prevalence of CHB and HCC world-
wide [1,3,19]. A 90% risk of developing chronic HBV
infection is found after vertical transmission, commonly
seen in Oceania, South and South East Asia [20-22]. In
cases of horizontal transmission, age at time of infection
remains the highest risk factor for CHB development.
In immune-competent adults the risk for CHB drops
below 1%, while young children face a risk of 20-30%
of chronic infection [23-25].

HBV, a member of the Hepadnaviridae family,
is an enveloped DNA virus replicating via an RNA
intermediate with a partially double-stranded relaxed
circular DNA (rcDNA) molecule of 3.2 kb [26,27] (see
Figure 1). Upon translocation to the nucleus, the rcDNA
genome is converted into a covalently closed circular
DNA (cccDNA), which serves as a template for viral
transcription and allows effective HBV persistence
[16,28,29]. The four overlapping open reading frames
(ORFs) of the HBV genome encode for preS/S, pre-
Core/Core, Pol and X (see Figure 1). The regulatory
elements (enhancer II/basal core promoter, preS1 pro-
moter, preS2/S promoter and enhancer I/X promoter)
are also coding sequences for viral proteins within the
OREFs [30]. Following transcription, all viral RNAs are
translated in the cytosol. The non-structural X-protein
(HBx) translated from a small 0.7 kb RNA is essential
for viral replication and undergoes multiple interactions
in host cells. The structural envelope proteins called
small (S) and medium (M; = pre-S2 + S) are translated
from a 2.1 kb RNA, and the large envelope protein (L; =
pre-S1 4+ pre-S2 + S) is derived from a 2.4 kb RNA, due
to multiple alternative start codons. Envelope protein
synthesis far exceeds the amount needed for virion
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assembly and these proteins are secreted as spherical or
subviral non-infectious particles [26,31,32]. The core
protein, which forms the nucleocapsid (HBc) and its
secreted counterpart HBe, arise from alterative trans-
lation initiation sites in the pregenomic RNA (pgRNA,
~3.5kb). The viral polymerase, which is also translated
from the pgRNA, has multiple functions, such as serving
as reverse-transcriptase, DNA-dependent DNA poly-
merase and RNase H. The pgRNA furthermore serves
as matrix for viral replication after being incorporated
into nucleocapsids and being reverse-transcribed by the
viral polymerase into new viral rcDNA [33]. rcDNA
is either redelivered into the nucleus for a cccDNA
pool or secreted with envelope proteins as infectious
virions [32].

CHB and necro-inflammation: key drivers for liver
fibrosis and HCC

HBV is a prototype, non-cytopathic virus [34] and
in CHB the main liver damage-mediating cells driv-
ing HCC are CD8" T cells [35-37]. The correlation
between the strength of HBV-specific T cell responses
and virus clearance after HBV infection has been well
established. Adaptive immune responses ultimately
mediate viral clearance and protective immunity, if
the acute HBV infection can be cleared. For efficient
control of HBV infection, an interplay between the
innate and the adaptive immune response is required.
Viral clearance is mediated by an effective adaptive
CD4" and CD8" T cell response, whereas protective
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Figure 1. Schematic drawing of the HBV genome. Hepatitis B virus (HBV) is a small, relaxed circular DNA (rcDNA) virus with a partially
double-stranded, 3.2 kb genome. The minus strand DNA encodes for four genes and, upon translocation to the nucleus, the rcDNA is
converted into a covalently closed circular DNA (cccDNA), which serves as template for viral transcription. (A) The four overlapping open
reading frames (ORFs) of the HBV genome encode for preS/S, preCore/Core, Pol and X proteins. Regulatory elements, enhancer Il/basal core
promoter, preS1 promoter, preS2/S promoter and enhancer I/X promoter [indicated by arrows in (B)] are also coding sequences for viral
proteins within the ORFs [24]. (B) The transcribed HBV RNAs [pregenomic (pg) RNA ~3.5kb, PreS1 RNA of 2.4 kb, PreS2 RNA of 2.1 kb and
the 0.7 kb X-RNA] encode for all viral proteins [hepatitis B core antigen (HBcAg), its secreted counterpart HBeAg, the viral polymerase
(Pol), the structural envelope proteins (HBsAg) called small (S), medium (M; = pre-S2 +S) and large (L; = pre-S1 + pre-S2 + S) proteins and
the non-structural protein HBx. Besides serving as template for HBcAg, HBeAg and Pol translation, the pgRNA serves as a matrix for viral
replication and is reverse-transcribed by the viral Pol into new viral rcDNA [25]
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immunity is mediated by a B cell response, generating
neutralizing antibodies [29,38]. Impaired virus control
during chronic infection is correlated with functionally
exhausted antiviral T cells. Nevertheless, they may still
amplify liver injury [35-37,39]. Factors responsible for
shifting the balance from immune tolerance to immune
clearance are poorly understood. The liver has a unique
immunoregulatory function to prevent inadvertent organ
damage, which renders the liver an attractive target site
for pathogens such as HBV [16]. The innate immune
response, early adaptive B and T cell responses, regu-
latory T cells, hepatocyte-intrinsic factors and the liver
microenvironment all seem to play a role in mediating
liver damage [39]. For example, modulation of the
cytokine response (up-regulation of IL-10 and TGFp)
and a putative role of regulatory T cells (Treg) have
been proposed [40-43]. Tregs, for example, mitigate
immune-mediated liver damage by down-regulating the
activity of effector T cells and limiting cytokine produc-
tion and cytotoxicity in acute HBV infection [44], yet
their actual role in CHB remains elusive. In addition,
viral factors of HBV, such as induction of regulatory
cytokines, hepatocyte-restricted viral gene expression
and high levels of circulating viral antigens, also allow
escape from the immune response [16]. After acute dam-
age, the liver has a unique capacity to regenerate via
proliferation of normally quiescent hepatocytes, which
ultimately restores liver function and size [45]. However,
in CHB, persistent viral infection and ineffective T cell
responses lead to chronic inflammatory liver damage
and repeated compensatory proliferation of hepatocytes
(necro-inflammation), which may subsequently lead
to liver fibrosis or cirrhosis and HCC [35-37,46—49]
(see Figure 2). This sequence was partially dissected
in several mouse models, underlining the high impor-
tance of compensatory proliferation and deregulated
hepatocyte apoptosis [50], chronic inflammation [37]
and altered cytokine networks, including NF-xB and
other signalling cascades [51,52], as tumour-promoters
in the pathophysiology of HCC development (reviewed
in [53]). Large-scale longitudinal epidemiological stud-
ies have revealed the strong correlation of high viral
loads and risk of progression to HCC, pointing to the
importance of subsequent inflammation in correlated
phases of high viral replication. In CHB, baseline HBV
DNA levels were even shown to be an independent
predictive factor for the development of HCC, even
after adjustment for epidemiological (sex, age, alcohol
consumption) and other known risk factors, such as
severity of liver damage (serum ALT level) [5,54,55].
Nucleoside/nucleotide analogues (NA) controlling
HBYV replication represent a successful treatment option
to overcome this underlying process of chronic inflam-
matory liver damage and compensatory proliferation.
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Figure 2. Different sequences from CHB to HCC. After HBV infec-
tion, a strong efficient immune response can clear the infec-
tion. However, due to pleiotropic effects with an inefficient T cell
response, a chronic HBV infection (CHB) might develop. The risk
for CHB depends on the route of infection (vertical versus hor-
izontal transmission) and age at time of infection (adults < 1%;
young children 20-30%). An inefficient immune response might
cause 'active’ chronic hepatitis, with severe necro-inflammation,
increasing fibrosis and the risk of cirrhosis and subsequent HCC
development. HBV DNA levels (>2000 IU/ml), ALT levels and fibro-
sis are typical findings in "active’ CHB. In chronic HBV infection, HCC
development also occurs in the absence of cirrhosis and severe pro-
longed liver damage. Such cases might be ‘inactive’, asymptomatic
carriers and even cases of 'occult’ CHB; this is due to direct onco-
genic viral factors of HBV, such as HBV DNA integration, the viral
surface proteins and the non-structural protein HBx

Treatment options for CHB: primary prophylaxis
for HCC?

Because cure can hardly be achieved, the current goal
of antiviral therapy for hepatitis B is to improve quality
of life and survival by preventing the progression of
chronic liver disease (CLD) to end-stage liver disease
(cirrhosis + decompensation) and HCC by sustained
suppression of HBV replication. Indications for treat-
ment vary between different countries, since therapy is
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expensive, usually long in duration and not widely avail-
able, particularly in many developing countries with the
highest prevalence [56]. Algorithms were proposed for
treatment stratification by, for example, the American
Association for the Study of Liver Diseases (AASLD)
[57], the European Association for the Study of the
Liver (EASL) [58,59], the Asian Pacific Association for
the Study of the Liver (APASL) [60] and several others.
According to EASL guidelines, the decision should
be based on serum HBV DNA levels (>2000IU/ml/10
000 copies/ml) and/or serum ALT levels (>upper limit
of normal) and histology (active necro-inflammation
and/or fibrosis; > Al F1 by METAVIR) [58,59]. During
interferon-a (IFN«) treatment, HBV DNA levels and
HBeAg become undetectable in 30—-40% of patients
and 10% of patients seroconvert to anti-HBs. However,
5-10% of patients relapse, with full-blown disease
after IFN therapy has ended [61,62]. While only a few
patients seroconvert to anti-HBs during IFNa therapy,
seroconversion rates increase to about 15-20% after
the end of treatment [7,27].

NAs block reverse transcription and thus effectively
suppress HBV replication. This seems sufficient to
decrease necro-inflammation and lower the risk of cir-
rhosis and HCC development [58,63—-65]. As cccDNA
remains in the nucleus of infected hepatocytes, however,
HBYV infection is not eliminated by NA [27]. Treatment
benefit with regard to HCC incidence depends on base-
line HCC risk, stage of fibrosis/cirrhosis and the type
of NA used (high genetic barrier) [57,58,63]. However,
antiviral therapy reduces, but does not eliminate, the
risk of HCC in chronic hepatitis B patients, regardless
of the presence of baseline liver cirrhosis [63,65-67].
The ultimate goal is to achieve a sustained virologi-
cal response and clearance of cccDNA in CHB. Just
recently, a distinct antiviral mechanism that interferes
with cccDNA stability driven by antiviral cytokines
(IFNo and lymphotoxin-f receptor activation) by
up-regulation of APOBEC3A and APOBEC3B cytidine
deaminases in hepatocytes was shown to effectively
result in cccDNA degradation [27,68]. This might serve
as a starting point for new therapeutic approaches that
hopefully will eventually be able to cure hepatitis B.

Direct oncogenic effects of HBV
in hepatocarcinogenesis

In addition to causing necro-inflammation, HBV has
direct oncogenic potential that contributes to the devel-
opment of HCC, independent of inflammatory liver
damage [3,9,11,12]. This is reflected best by the fact
that patients chronically infected with HBV face possi-
ble HCC development in the absence of inflammation,
severe liver damage and cirrhosis, due to direct onco-
genic viral factors [13]. The precise role of these direct
viral factors in HCC development, however, remains
controversial. The association between occult HBV
infection (persistence of viral DNA after integration, or
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as cccDNA in patients negative for HBsAg) and HCC
strongly supports the view of direct oncogenic factors
of HBV [13]. The current debate on the significance of
occult HBV infection in HCC development is ongoing.

There is compelling evidence for subgenotypes of
HBV being risk factors for early HCC development
in genotypes B2-5 [11], and patients bearing geno-
types Al, C, Ba and F1 more frequently progress to
HBV-related liver disease than genotypes A2 and Bj
[3,69—71]. However, further studies focusing on HBV
genotypes are needed to dissect direct effects from epi-
demiological risk factors. Another important risk factor
is HBV variants, selected for during the natural course
of chronic HBV infection or during treatment. The dou-
ble substitution A1762T and G1764A in the basal core
promoter (BCP) region of HBV and pre-core mutants
seems to be an independent risk factor for HCC devel-
opment associated with high viral titres and increased
liver damage, even in the presence of anti-HBe serocon-
version [6,9].

The role of HBV integration in HCC development

HBYV integration into the host hepatocyte genome is a
frequent event in HCC (86.4%) and is also found in adja-
cent liver tissues (30.7%) [72], which might lead to dele-
tions, cis/trans-activation, translocations, the production
of fusion transcripts and generalized genomic instability
[12]. Integration is detrimental for HBV replication, yet
it is a dynamic process and was reported over 30 years
ago to precede HCC development [73]. However, it is
unclear whether HBV integration initiates, or rather is a
consequence of, transformation [49]. Hence, the distinct
role of HBV DNA integration in hepatocarcinogenesis
and the attributed risk of occult HBV-infection in HCC
development remain controversial. Factors provoking
liver cell death and proliferation increase dynamic rates
of HBV DNA integration [74,75]. HBV integration was
initially proposed to be a random event [12,76,77].

More recent high-throughput, next-generation,
sequencing approaches identified recurrent sites for
integration. Genes reported to be frequently altered are
TERT, MLL4, CCNEI, NTRK2, IRAK?2 and p42MAPK1
[72,78,79]. Secondly, viral promoter-driven human
transcription and viral-human transcript fusion have
been reported [80]. A common effect, increasing with
rising numbers of integrations, seems to be increased
genomic instability, and a correlation was observed
between the number of chromosomal aberrations and
the status of tumour suppressor genes (TP53, RBI,
CDNK?2A and TP73) [81]. Lately, the identification of
insertion sites within or close to repetitive, non-coding
sequences, such as long interspersed nuclear elements
(LINES) or short interspersed nuclear elements (SINEs)
has garnered notice [82,83].

Using mathematic algorithms (ViralFusionSeq), the
detection of viral—human fusion transcripts was enabled
in an unbiased fashion [84] and helped to identify a
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novel fusion sequence of the human LINE(1) and HBV-
encoded HBx [HBx-LINE(1)] after insertion in chr.
8pl1. Interestingly, this non-coding fusion RNA (HBx—
LINEI) was detected in 23.3% of HBV-associated
human HCCs, was correlated with poor survival and
showed tumour-promoting properties affecting f-
catenin activity and epithelial —-mesenchymal transition
(EMT) [85]. However, integration and low frequencies
of fusion transcripts do not suffice to explain the mul-
titude of direct effects of HBV in HCC development.
Comparing HBV-associated HCC to other aetiologies
shows a significantly more frequently altered p53 path-
way (47%), up-regulation of other genes involved in
cell-cycle regulation and progenitor phenotypes, as well
as specific gene mutations (HBx, TP53, IRF2, AXINI
and CTNNBI) [86].

HBs antigen and pre-S/S mutants in HCC
development: link to UPR

A direct factor driving hepatocarcinogenesis could be
the expression level of HBsAg (see Figure 3). In a
small cohort of NA-treated patients, hepatocarcinogen-
esis was observed in patients with high HBsAg levels
[>2000 TU/ml], despite efficient suppression of HBV
viraemia as a result of long-term NA therapy [65]. Also,
patients from a big Taiwanese cohort, who maintained
a high HBsAg load (>1000IU/ml) showed an elevated
risk for HCC development [66]. Furthermore, a sub-
group of patients of the REVEAL HBV cohort with
HBsAg> 1000 IU/ml, despite spontaneous HBV DNA
clearance, still showed an HCC risk ratio of 3.86 above
baseline [67].

One possible direct carcinogenic effect is the accu-
mulation of HBV surface proteins in the endoplasmic
reticulum (ER), leading to the typical histological
finding of hepatocytes overloaded with virus protein
in HBV-infected livers, referred to as ’ground glass’
hepatocytes (GGHs), first described by Hadziyannis
and Popper in 1973 [87]. Many studies have shown
that GGHs correlate with the expression pattern of
HBV antigens and activity of CHB and appear in
preneoplastic lesions, harbouring HBsAg with specific
pre-S mutants [88]. Type I GGHs harbour mutants
with deletions within the pre-S1 region (mutated L
protein), whereas type II GGHs contain pre-S2 mutants
and are distributed in clusters, showing patterns of
proliferative nodules [89]. Over two decades ago, a
mouse model over-expressing the HBV large envelope
polypeptide (L), PreS1 and parts of HBx [90] was
shown to have liver cell injury, inflammation and com-
pensatory proliferation, finally progressing to HCC due
to apoptotic dysregulation [91]. This was also found
in HBV transgenic mouse models expressing mutated
preS2 [92]. Linking different types of GGHs to preS/S
mutants identified a direct oncogenic effect of HBV.
The emergence of HBV variants carrying mutations in
the preS/S genomic region is reportedly a quite frequent
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event, especially as a consequence of antiviral therapy.
Selected changes in the polymerase ORF of HBV in the
course of therapy with NA may also cause changes in
the structural proteins due to their overlapping ORFs.
Some major drug-resistant mutations against NA in
the HBV polymerase cause a premature stop codon
in the overlapping HBsAg (ie rtA181T — sW172stop,
rt184M — sL.176stop). These premature stop codons
at positions 172 or 181 of the S gene lead to secretory
defects and are significantly associated with cirrhosis
and HCC [93,94]. However, only alterations that do not
compromise viral fitness will be selected. For example,
the M surface protein (consisting of preS2 and S), which
overlaps a spacer domain of the Pol ORF, is not essen-
tial for formation and secretion of virions and tolerates
mutations and even large deletions without causing
loss of polymerase activity [31,32,95,96]. Of note, viral
mutants with antigenically modified surface antigen
(HBsAg ’a’ escape variants) are potentially infectious to
vaccinated patients and may be overlooked by common
HBsAg assays in the clinic, thus possibly accounting
for cases of occult’ hepatitis B infection [31].

Accumulation and imbalance of unfolded or
misfolded proteins activates intracellular signalling
pathways associated with ER stress. This is buffered by
the activation of the so-called unfolded protein response
(UPR), a homeostatic signalling network recovering
ER function, or, if this fails, triggering apoptosis [97].
Additional functions of the UPR described even include
a role in innate immunity, metabolism and cell differ-
entiation [98]. UPR has been shown to be an important
source of intracellular ROS [99], and oxidative stress
caused by increased ROS is known to have a high
oncogenic potential by inducing DNA damage and
changes in signalling cascades that control prolifera-
tion, cell survival and cell death [99,100]. The role of
such events in HCC development has been described in
many experimental studies [101-103].

Both experimental and human data support an
important role of preS/S mutants in the induction of
ER stress, with consequent oxidative DNA damage
and genomic instability. Pre-S mutants hence may
promote hepatocyte proliferation, up-regulate vas-
cular endothelial growth factor-A (VEGF-A), cyclin
A and activate Akt—mammalian target of rapamycin
(Akt—-mTOR) signalling by the induction of UPR
[31,35,104—106]. Furthermore, PreS2 mutants can
exert oncogenic functions directly by interacting with
intracellular signalling pathways [31,104]. A frequent
mutant is the C-terminally truncated M protein (see
above), also referred to as MHBs(t) [96,104], which can
frequently be found integrated in HCC [107]. MHBs(t)
may induce TRAIL-induced, caspase-3-dependent
apoptosis [108], increase hepatocyte proliferation, trig-
ger PKC-dependent activation of c-Raf-1-Erk2—Ap-1
and NF-kB activation and show trans-activation poten-
tial [104]. In a meta-analysis of 11 582 patients, the
presence of preS mutants was found to correlate with
a 3.77-fold higher risk for HCC development [109],
underlining the significance of these findings.
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HBx/HBV X-protein and frequent truncations
in the course of HCC development

The HBx protein has been implicated as a direct onco-
genic protein [110—112]. Studies using HBx transgenic
mouse models have shown spontaneous HCC develop-
ment [113,114]; however, other groups merely observed
an increased sensitivity to other known carcinogens

M Ringelhan et al

woodchuck hepatitis virus failed to establish chronic
infection [120]. Severity of liver damage correlates with
levels of HBV due to increased integration of HBx in
active chronic liver disease and increased hepatocyte
proliferation [121,122]. It has been reported that HBx
is involved in hepatocarcinogenesis, due to pleiotropic
effects on several signalling pathways regulating cell
death, proliferation, differentiation (including EMT),

[115,116]. HBx, a small polypeptide (154 amino acids),
is usually expressed at low levels during HBV infections
and is frequently detected at high levels in HBV-related
HCCs [117]. HBx can be found in the cytoplasm of
infected hepatocytes and at low levels in the nucleus, and
has been identified as a trans-activating protein [118],
playing a crucial role in virus gene expression, viraemia
and infectivity [119]. An X-protein-negative clone of

oxidative stress and DNA repair, as possible oncogenic
factors in hepatocarcinogenesis (see Figure 3) (reviewed
in [123—-125]). For example, HBx has been reported to
drive pro-proliferation [126], induce cell-cycle arrest
[127] and prevent [128] or even induce apoptosis [129].

One proposed possible direct carcinogenic effect of
HBx is the induction of regional hypermethylation or
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Figure 3. Examples of proposed, direct HBV effects driving hepatocarcinogenesis. The key players of HBV integration, HBx, c-terminally
truncated HBx and PreS/S mutants, as well as their proposed signalling pathways in HBV-associated hepatocellular carcinoma (HCC),
are shown. These factors directly alter the expression and activity of selected signalling pathways and drive malignant transformation.
Secondly, these factors can drive metastatic disease as well as worsen overall survival by making HCC more aggressive: CHB, chronic
hepatitis B; TFIIH, transcription factor Il H; miR, microRNA; DNMT1, DNA methyltransferase 1; ERK, extracellular signal-regulated kinases;
INK4a, also known as p16/cyclin-dependent kinase inhibitor 2A; RB, retinoblastoma protein; RAS, protein family class of small GTPases;
RAF, family of three serine/threonine-specific protein kinases; MAPK, mitogen-activated protein kinases; EGFR, epidermal growth factor
receptor (also known as ErbB-1/HER1); ErbB-2, also known as CD340/proto-oncogene Neu/human epidermal growth factor receptor 2
HER2/neu; SRC, c-Src, a non-receptor protein tyrosine kinase; URG11, up-regulated gene 11; PTEN, phosphatase and tensin homologue;
PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AKT, also known as protein kinase B (PKB); mTOR, mammalian target of rapamycin;
MMP10, matrix metalloproteinase 10; ER, endoplasmic reticulum; AP1, activator protein 1; NF-xB, nuclear factor-x light chain enhancer
of activated B cells; VEGF, vascular endothelial growth factor; JAB1, JAK-binding protein; p27/Cip1, cyclin-dependent kinase inhibitor 1B;
TRAIL, TNF-related apoptosis-inducing ligand; FADD, Fas-associated protein with death domain; EMT, epithelial-mesenchymal transition;
UPR, unfolded protein response)
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global hypomethylation, eg by inducing DNA methyl-
transferase 1 (DNMTI) expression, silencing tumour
suppressor genes and inducing chromosomal instability
[130]. Accordingly, HBx was reported to complex with
wild-type p53 protein, limiting p53-specific tumour
suppressor functions (for review, see [131]) by inhibit-
ing sequence-specific DNA binding and transcriptional
activation, as well as suppressing nucleotide excision
repair [132,133]. In the same direction, HBx was
shown to activate the RAS-RAF-MAPK [134] and
ERK-INK4a—RB pathways [135]. This abrogates
expression of tumour suppressors and overcomes
senescence, which is usually triggered due to chronic
inflammation and oxidative stress to protect from car-
cinogenesis [136]. Next, HBx was reported to overcome
senescence by suppression of cyclin-dependent kinase
inhibitors INK4a (p16), as well as p21 Cipl/CDKNIA)
[137] and to deregulate the G,—M checkpoint, result-
ing in a rescue from HBx-mediated apoptosis [138].
Another proposed key player in suppressing DNA repair
and tumour suppressors is directly by HBx-up-regulated
URG]I 1, altering expression of multiple microRNAs.
Resulting up-regulation of miR-148a has been shown to
drive cell cycle progression and cell migration by sup-
pressing PTEN, thus increasing Akt—mTOR signalling
[139]. Furthermore, other microRNAs are possibly also
directly targeted by HBx-like miR-122a, which targets
cyclin G1 [140] and inhibits HBV replication, as well
as inhibiting expression of p27 [121].

Other effects attributed to HBx are enhanced oxidative
stress, increased levels of ROS and calcium signalling
by interaction with the ER [141] and mitochondria
[123,142,143]. Various studies point to sustained higher
cytosolic calcium levels and a stimulating effect on
HBV replication, in addition to other possible onco-
genic effects, such as activating src and ras signalling
[144] (reviewed in [143]). HBx was shown to activate
FOXO4, which enhances resistances to ROS-induced
cell death [145], activating autophagy as a pro-survival
factor facilitating virus persistence and hepatocarcino-
genesis [100,146]. Additionally, hypoxia induced by
necro-inflammation induces binding and stabilizing
hypoxia-induced factor 1a (HIF1a) by HBx, promoting
angiogenesis and cell migration by up-regulation of
VEGEF and matrix metalloproteinases [147—149].

Increased EGFR signalling and up-regulation of
ErbB2 (Her2/Neu) and other members of the epider-
mal growth factor receptor tyrosine kinases, as well
as loss of inhibitor proteins, have been reported in a
subset of HCCs, creating autocrine/paracrine activation
loops [150—-153]. ErbB2 up-regulation in CHB and in
some HCCs correlated with HBx expression [154,155].
Targeting ERBB2 mRNA by a specific siRNA not
only reduced ErbB2 expression but also reduced the
expression of P-catenin [154]. This links the ErbB
family to the multitude of effects reported by activation
of P-catenin signalling in HCC, including prolifera-
tion, migration, EMT and loss of adhesion. p-Catenin
activation occurs in many cancers, mostly driven by
activating mutations in p-catenin itself or by inherited
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and sporadic mutations in regulatory proteins such as
the tumour suppressor APC and AXIN, which normally
complex and inactivate fB-catenin in the OFF-state of
canonical WNT signalling, together with E-cadherin
and other factors [156—158]. In human HCC, mutations
in WNT/B-catenin signalling are common (~15-33%
CTNNBI, ~15% AXINI and 1-2% APC) [159-161].
However, these mutations were mostly reported in
HBV-negative HCCs and frequent -catenin activation
in CHB-driven HCC must rely on other modes of
activation. Consistent with this idea, up-regulation of
URG1 1 through HBx leads to up-regulation of f-catenin
[138]; inhibitory binding of B-catenin by E-cadherin
is facilitated by HBx through DNA methylation of the
E-cadherin promoter [162] or inhibition of miR-373 and
up-regulation of SNAIL [163] — all driving increased
WNT-independent activation of f-catenin. Furthermore,
HBx was reported to activate the proto-oncogene Src,
which can also activate p-catenin signalling [164—166].

The analysis of HBx mutants naturally induced by
integration in the host genome has helped to define the
functional relevance of protein domains of HBx. For
example, HBx amino acids 116—140 were shown to
be required for mitogenic pathway activation [167].
HBx variants were reported to play an important role
in the course of hepatocarcinogenesis [148,167—170]
and were reported to be independent predictors for
survival after HCC resection [171]. C-terminally trun-
cated HBx, in particular, is frequently found in HCC
[81,86,168,169]. A recent study reported detection of
C-terminally truncated HBx in 46% of HBV-HCC
[168], which was significantly correlated with venous
invasion, and in vitro data showed increased cell inva-
sion, C-Jun activity and expression of MMP10 [168].

At the same time, multiple functions of HBx, as well
as changes in host gene expression mediated by HBx,
seem to be essential for virus replication and hepato-
cyte survival or protection from the immune response,
consequently benefiting the virus and hence promoting
HCC development [121]. Some of the proposed onco-
genic effects of HBx mentioned above were reported
from in vitro experiments or mouse models with very
high expression levels of the HBx protein. This points
to a potent function of HBx also in already estab-
lished HCC, since the highest accumulation of viral HBx
RNA was found in HCC tissue [110,172]. Secondly, the
anti-apoptotic and pro-apoptotic effects of the HBx pro-
tein seem to be dependent on the status of hepatocyte
differentiation [173].

Future perspective

Identification of new therapeutic targets in HCC

Potentially curative treatment options for HCC, such
as liver transplantation and surgical interventions,
are limited to early stages [174]. However, many
patients face a recurrence of HCC after resection, or are
only eligible for palliative treatment due to advanced
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tumour stage. Sorafenib, a pan-kinase inhibitor, remains
the only approved systemic, standard-of-care drug,
improving overall survival by only 2—3 months and
with significant side-effects [175,176]. A recent study
described that sorafenib not only directly inhibits
tumour cell growth but also modifies the crosstalk
between tumour-associated macrophages and natural
killer cells, thus slowing down HCC growth [177]. The
poor prognostic outcome of late-stage HCC results from
human HCCs showing a diverse spectrum of cancer
subtypes, without common oncogene addiction loops
[174,178]. Establishing a comprehensive molecular
classification of HCC remains a challenge, due to
inter- and intratumour heterogeneity [159,179-181].
The different aetiologies of HCC, and especially the
direct carcinogenic effects by HBV, can contribute
synergistically or even alone as carcinogens. In this
‘non-Vogelstein-type’ carcinogenesis, a molecular
classification consisting of six HCC subgroups was
proposed [182], pointing to a specific role of low or
high copy number of HBV (termed *G1/G2’ tumours)
with specific oncogene patterns [160]. Even though the
role of certain viral proteins, as well as HBV integration,
seems overly complex, compelling evidence exists for
their direct role in hepatocarcinogenesis and they should
be further evaluated in carcinogenic-risk stratification
and therapeutic approaches. Thus, the integration of
a molecular classification, intratumour diversity and
aetiological backgrounds, including direct oncogenic
factors of HBV, are missing. This might explain the
failure of some promising Phase II and Phase III trials
using kinase inhibitors, eg sunitinib, brivanib, erlotenib
and linifanib and the mTor inhibitor, everolimus [178].
In order to understand which patients might profit most
from certain therapeutics, a personalized fingerprinting
of HCC is likely to be needed in future clinical trials.

Active surveillance and preventing HCC
development in CHB

Hepatocarcinogenesis remains a major risk for chron-
ically HBV-infected patients, despite the existence
of potent antiviral NAs with high genetic barriers.
Active surveillance programmes can significantly
reduce morbidity and mortality from HCC [1,62]
because early HCC detection enables potentially cura-
tive resection. HBV DNA levels have been confirmed
as the most important predictor of disease progres-
sion and HCC development [5]. However, HBsAg
levels and increased baseline HCC risk should be
taken into account for active surveillance, even in HBV
DNA-negative patients undergoing NA treatment, since
over-expression and truncation of HBsAg increase the
risk for HCC [31,62,65,110,172]. Thus, non-invasive
markers for risk stratification are necessary to identify
patients at high risk for HCC, allowing early diagnosis
and treatment. Certain viral proteins (ie HBs, HBx and
their mutants), as well as integration of HBV DNA,
should be evaluated for inclusion in a screening of a
personal risk prediction for HCC.
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