Immunity

The Transcription Factor NFAT Promotes Exhaustion

of Activated CD8* T Cells

Graphical Abstract

Inhibitory
|\ receptors
TCR " TN
/’H’ g
l Exhaustlon reat@
Activation-related genes CD8 Tcell

NFAT

CD8" Tcell

Highlights
e NFAT proteins induce a transcriptional program of CD8* T cell
exhaustion

e CD8" T cells lacking NFAT fail to express inhibitory surface
receptors

e An engineered NFAT that cannot cooperate with AP-1
strongly induces exhaustion

e The engineered NFAT1 blunts TCR signaling and impairs
CD8" function in vivo

Martinez et al., 2015, Immunity 42, 1-14
February 17, 2015 ©2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.immuni.2015.01.006

Authors

Gustavo J. Martinez,
Renata M. Pereira, ...,
Anjana Rao

Patrick G. Hogan,

Correspondence

harri.lahdesmaki@aalto.fi (H.L.),
arao@liai.org (A.R.)

In Brief

The NFAT family of transcription factors
plays an established role in T cell
activation. Rao and colleagues show that
NFAT also controls the program of T cell
exhaustion by regulating the expression
of key inhibitory receptors and signaling
molecules that dampen TCR signaling.

Accession Numbers
GSE64409

Cell


mailto:harri.lahdesmaki@aalto.fi
mailto:arao@liai.org
http://dx.doi.org/10.1016/j.immuni.2015.01.006

http://dx.doi.org/10.1016/j.immuni.2015.01.006

Please cite this article in press as: Martinez et al., The Transcription Factor NFAT Promotes Exhaustion of Activated CD8" T Cells, Immunity (2015),

Immunity

The Transcription Factor NFAT
Promotes Exhaustion of Activated CD8™ T Cells

Gustavo J. Martinez,'-'1.12 Renata M. Pereira,’-'" Tarmo Aij6,"->'" Edward Y. Kim,® Francesco Marangoni,?

Matthew E. Pipkin,’-* Susan Togher,! Vigo Heissmeyer,>¢ Yi Chen Zhang,” Shane Crotty,® Edward D. Lamperti,®

K. Mark Ansel,’® Thorsten R. Mempel,® Harri LAhdesméki,%* Patrick G. Hogan,' and Anjana Rao'-*

1Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA

2Department of Information and Computer Science, Aalto University School of Science, Aalto 00076, Finland

3Division of Rheumatology, Allergy, and Immunology, Center for Imnmunology and Inflammatory Diseases, Massachusetts General Hospital,

Harvard Medical School, Boston, MA 02114, USA

4Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA

SInstitute of Molecular Immunology, Helmholtz Zentrum Miinchen, Marchioninistrasse 25, 81377 Munich, Germany
8Ludwig-Maximilians-Universitat Miinchen, Institute for Inmunology, Goethestrasse 31, 80336 Munich, Germany

“Department of Radiology, St Lukes Roosevelt Hospital Center, New York, NY 10019, USA

8Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA

SImmune Disease Institute, Harvard Medical School and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Boston,

MA 02115, USA

10Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco,

San Francisco, CA 94143, USA
1 Co-first author

12Present address: The Scripps Research Institute, Jupiter, FL 33458, USA

*Correspondence: harri.lahdesmaki@aalto.fi (H.L.), arao@liai.org (A.R.)

http://dx.doi.org/10.1016/j.immuni.2015.01.006

SUMMARY

During persistent antigen stimulation, CD8* T cells
show a gradual decrease in effector function,
referred to as exhaustion, which impairs responses
in the setting of tumors and infections. Here we
demonstrate that the transcription factor NFAT con-
trols the program of T cell exhaustion. When ex-
pressed in cells, an engineered form of NFAT1 unable
to interact with AP-1 transcription factors diminished
T cell receptor (TCR) signaling, increased the expres-
sion of inhibitory cell surface receptors, and inter-
fered with the ability of CD8" T cells to protect
against Listeria infection and attenuate tumor growth
in vivo. We defined the genomic regions occupied by
endogenous and engineered NFAT1 in primary CD8"*
T cells and showed that genes directly induced by
the engineered NFAT1 overlapped with genes ex-
pressed in exhausted CD8* T cells in vivo. Our data
show that NFAT promotes T cell anergy and exhaus-
tion by binding at sites that do not require coopera-
tion with AP-1.

INTRODUCTION

The transcription factor nuclear factor of activated T cells (NFAT)
is well established as a key regulator of T cell activation (Crabtree
and Olson, 2002; Hogan et al., 2003; Macian, 2005; Rao et al.,
1997). Of the five members of the NFAT family, NFAT1-NFAT4
(also known as NFATC1-NFATc4) are regulated by Ca*-calci-

neurin signaling; of these, NFAT1, NFAT2, and NFAT4 are ex-
pressed in cells of the immune system and have important roles
in T cell development and function. All NFAT proteins make very
similar contacts with DNA but can have distinct expression
patterns and functions as judged by the non-overlapping pheno-
types of mice deficient in individual NFAT family members (Crab-
tree and Olson, 2002; Hogan et al., 2003; Macian, 2005). NFAT
proteins interact with structurally unrelated Fos-Jun (AP-1) tran-
scription factors to form cooperative NFAT:AP-1 complexes
(Chen et al., 1998) that are critical for the induction of cytokine
genes and other activation-associated genes (Macian et al.,
2000). Adding to its versatility, NFAT forms dimers on palin-
dromic «B-like sequence elements and can bind DNA as a
monomer (Chen et al., 1998; Giffin et al., 2003; Jin et al., 2010;
Stroud et al., 2002); it also forms cooperative complexes with
FOXP3, a transcription factor central to T cell regulatory function
(Bandukwala et al., 2011; Chen et al., 1998; Macian et al., 2000;
Wu et al., 2006). The ability to participate in multiple transcrip-
tional complexes allows NFAT to contribute to different tran-
scriptional programs depending on the cell type and signaling
context in which it is activated (Hogan et al., 2003).

We previously linked NFAT not only to T cell activation but also
to T cell “tolerance” and “anergy” (Fehr et al., 2010; Heissmeyer
et al., 2004; Macian et al., 2002), hyporesponsive states induced
in T cells exposed to activating signals through the T cell receptor
(TCR) in the absence of positive or presence of negative costi-
mulatory signals (Nurieva et al., 2011). Another hyporesponsive
state, termed CD8" T cell “exhaustion,” is induced in antigen-
specific cytolytic T cells (CTLs) exposed to persistent antigen
stimulation, for instance in the context of chronic viral infections
and cancer (Schietinger and Greenberg, 2014; Wherry, 2011).
Exhausted CD8* T cells display a transcriptional program
distinct from that of functional effector or memory CD8* T cells
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(Wherry et al., 2007), characterized, for example, by the expres-
sion of several inhibitory cell surface receptors including PD-1,
LAGS, TIM3, TIGIT, and CTLA-4 (Schietinger and Greenberg,
2014; Wherry, 2011). However, the key transcription factor(s)
responsible for establishment of CD8"* T cell exhaustion have
not yet been identified (Wherry, 2011).

Here we show that NFAT elicits two parallel programs of CD8*
T cell activation and exhaustion. To separate the NFAT-depen-
dent programs of T cell activation and exhaustion, we generated
an engineered version of NFAT1 that is incapable of AP-1 coop-
eration and therefore elicits no effector response. Expression of
this engineered protein blunts T cell receptor (TCR) responses
and elicits CD8" T cell exhaustion in mouse models of tumor
growth and bacterial infection. The alternative NFAT-dependent
transcriptional program is not limited to this simplified experi-
mental situation, however, as shown by the fact that NFAT-defi-
cient CD8" T cells fail to express either effector cytokines or the
inhibitory cell surface receptors PD-1, LAGS3, and TIM3 that are
characteristic of exhausted CD8* T cells. By using genome-
wide analyses, we have defined the DNA elements functionally
occupied by endogenous and engineered NFAT1 proteins and
have correlated occupancy with gene expression and in vivo
function. Our results elucidate the transcriptional programs of
hyporesponsiveness (anergy and exhaustion) in both CD4* and
CD8" T cells and show that NFAT proteins have a primary role.

RESULTS

We generated an engineered version of NFAT1, CA-RIT-NFAT1,
that is constitutively nuclear and therefore constitutively active
(CA) (Figure S1A; Okamura et al., 2000) and also unable to interact
with AP-1 (“RIT” refers to three residues —R468, 1469, and T535
in mouse NFAT1 —that have been mutated to interfere selectively
with the NFAT:AP-1 interaction [Macian et al., 2000, 2002]). The
engineered CA-RIT-NFAT1 elicits no effector response, and so
was a convenient tool for the genome-wide analysis. However,
all three NFAT proteins present in T cells contribute to the nega-
tive regulatory program, as described below.

CA-RIT-NFAT1-Expressing Cells Display Defective TCR
Signaling
We used a bicistronic (IRES-GFP) retrovirus to introduce CA-
RIT-NFAT1 into in-vitro-activated P14* TCR transgenic T cells
that also bore a deletion of the TCR Ca. region (Tcra™"); the
P14 TCR transgene recognizes a peptide from the gp33 protein
of mouse lymphocytic choriomeningitis virus (LCMV) presented
on H-2DP. Naive T cells were stimulated with anti-CD3 and
anti-CD28; infected with IRES-GFP retrovirus, empty (mock),
or expressing either CA-RIT-NFAT1 or CA-RIT-NFAT1 with four
point mutations in the DNA binding loop that abolish DNA bind-
ing (DBDmut-CA-RIT-NFAT1) (Jain et al., 1995); and expanded
with interleukin-2 (IL-2) to generate effector CTLs (Pipkin et al.,
2010). Expression of CA-RIT-NFAT1 in CD8" T cells substantially
decreased IL-2 production in response to secondary stimulation
(Figures S1B and S1C), even though CA-RIT-NFAT1 was ex-
pressed at amounts comparable to or lower than endogenous
NFAT1 (Figures S1D and S1E).

To ask whether CA-RIT-NFAT1 expression impaired Ca*
influx, we transduced CD4* T cells with CA-RIT-NFAT1 or empty
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vector (mock), labeled them with the Ca®* indicators Fluo-4 or
Fura-2, and quantified Ca2* influx by flow cytometry (Figure S1F)
or single-cell imaging (Figure S1G). Compared to cells trans-
duced with empty vector, cells expressing CA-RIT-NFAT1 dis-
played increased basal Ca?* (Figure S1F) as well as reduced
Ca?* influx upon TCR stimulation (Figure S1F; Figure S1G, left).
In contrast, Ca2* influx was not diminished when TCR signaling
was bypassed with thapsigargin treatment, which depletes
endoplasmic reticulum (ER) Ca®* stores by inhibiting the SERCA
Ca?*-ATPase (Figure S1G, right). Moreover, the increased phos-
phorylation of both ZAP-70 and PLCy1 observed in control cells
within minutes of re-stimulation with anti-CD3 and anti-CD28
was strongly impaired in cells expressing CA-RIT-NFAT1 (Fig-
ure S1H). Thus, CA-RIT-NFAT1 expression affects two of the
earliest steps of TCR signaling upstream of Ca®* entry; other
steps in the signaling window between TCR stimulation and ER
store depletion could potentially also be impaired (Heissmeyer
et al., 2004).

CA-RIT-NFAT1-Expressing Cells Display Impaired
Function In Vivo

To test the biological effects of expressing CA-RIT-NFAT1 in
CD8* T cells, we utilized an in vivo Listeria protection assay
(modified from Kaech et al., 2003) (Figures 1A and S1l). Naive
P14* TCR transgenic CD8" T cells were stimulated with anti-
CDS3 and anti-CD28 and transduced 1 day later with CA-
RIT-NFAT1, DBDmut-CA-RIT-NFAT1, or empty vector, then
expanded with a low concentration of IL-2 in vitro to generate
“memory-like” CD8" T cells (Pipkin et al., 2010). Transduced
GFP* cells were then sorted by flow cytometry and transferred
into naive recipient mice; 1 day later, the mice were infected
with genetically modified Listeria monocytogenes expressing
gp33 peptide (Figures 1A and S1l). Consistent with induction of
an effective immune response against the Listeria-gp33, mice
receiving mock-transduced gp33-specific T cells showed a sig-
nificant reduction in bacterial colony-forming units (CFUs) per
spleen at 3 and 5 days after infection, compared to mice that
did not receive any cells, whereas mice receiving cells trans-
duced with CA-RIT-NFAT1 did not control Listeria infection
effectively (Figures 1B and S1J). Thus CA-RIT-NFAT1 expres-
sion blunted the secondary immune response of CD8" T cells
in vivo; some protection was still evident, however, indicating
that T cell function was strongly diminished but not completely
eliminated.

The adoptively transferred CA-RIT-NFAT1-expressing cells
survived in vivo and were able to reach the infection site,
although at lower percentages and total numbers compared to
control cells, as judged by their presence in spleens of recipient
mice 5 days after infection (Figure S1K and data not shown).
Compared to cells transduced with DBDmut-CA-RIT-NFAT1,
a higher percentage of CA-RIT-NFAT1-expressing cells ex-
pressed PD-1, TIM3, and LAG3, inhibitory surface receptors
characteristic of exhausted T cells (Figures 1C and 1D).

To assess the impaired function of CA-RIT-NFAT1-expressing
T cells in a different in vivo system, we utilized a tumor model in
which influenza hemagglutinin (HA)-specific CL4 TCR transgenic
T cells were transduced with CA-RIT-NFAT1 or DBDmut-CA-
RIT-NFAT1 (Bauer et al., 2014; Marangoni et al., 2013). The cells
were expanded in vitro, then transferred into congenic mice that
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had previously received HA-expressing CT26 tumors (CT26HA)
subcutaneously in one flank and CT26 tumors that did not ex-
press HA in the contralateral flank. Tumor growth was assessed
daily for 8 days after T cell transfer, and the expression of
exhaustion-associated surface markers on the transferred cells
was evaluated 3 days after transfer (Figure 1E). Control cells ex-
pressing the mutant DBDmut-CA-RIT-NFAT1 rejected the
CT26HA antigen-expressing tumor without rejecting the contra-
lateral tumor that did not express HA (Figure 1F), whereas cells
expressing CA-RIT-NFAT1 showed diminished effector activity
(Figure 1F) despite being present in the tumor at similar
frequencies as cells expressing DBDmut-CA-RIT-NFAT1 (Fig-
ure 1G). As in the Listeria model, we observed a higher frequency
of expression of the inhibitory markers PD-1, TIM3, and LAGS in
CA-RIT-NFAT1-expressing cells recovered from the tumor,
compared to cells expressing DBDmut-CA-RIT-NFAT1 (Figures
1H and 1I).

Overall, even in the presence of endogenous NFAT proteins,
CA-RIT-NFAT1 directly or indirectly upregulated the expression
of several markers of T cell exhaustion on the CD8" T cells and
induced a negative feedback transcriptional program that atten-
uated CD8" T cell responses in two different settings in vivo.

Exhausted Cells Retain the Ability to Signal through
NFAT

We asked whether NFAT could translocate to the nucleus in
in-vivo-exhausted T cells. CT26HA tumors were implanted in
Thy1.1* recipients that were then injected with regulatory
T cells that recognize the HA antigen; this regimen induces
exhaustion of endogenous CD8" T cells (Bauer et al., 2014).
Ten days after tumor injection, mice were sacrificed, and tu-
mor-infiltrating T cells were restimulated ex vivo with plate-
bound anti-CD3e for 15 min. The cells were then fixed and sorted
to separate the exhausted PD-1*TIM3"* cell and control PD-
17TIM3™ cell populations (Figure S2A) and stained for endoge-
nous NFAT1 and DAPI (Figures 1J and S2B). The results show
clearly that exhausted CD8"* T cells are permissive for NFAT1
nuclear translocation upon activation through the TCR, although
higher amounts of TCR stimulation are required than for non-ex-
hausted cells (Figure 1K). Thus, in-vivo-generated exhausted
T cells can activate NFAT nuclear import, thus further reinforcing
the exhaustion phenotype in the absence of AP-1 cooperation.

The Transcriptional Program Induced by CA-RIT-NFAT1
Overlaps with that of Exhausted and Anergic T Cells

To define the transcriptional program induced by CA-RIT-
NFAT1, we performed RNA-seq on CD4" and CD8* T cells trans-
duced with empty or CA-RIT-NFAT1 retrovirus. Almost 2,000
genes showed altered expression (p < 0.05) in CA-RIT-NFAT1-
expressing CD8* T cells compared to mock-transduced cells,
with approximately half of the genes showing increased expres-
sion and half decreased expression (Figure 2A, top). Similar
results were obtained for CD4* T cells (Figure 2A, bottom). There
was substantial overlap in genes differentially expressed in CD4*
and CD8"* T cells (one-tailed version of Fisher’s exact test;
p value < 10719, indicating that ectopic expression of CA-RIT-
NFAT1 has similar transcriptional effects in both cell types (Fig-
ures 2B-2D). There was also a highly significant overlap between
the transcriptional profiles induced in CD8* and CD4* T cells by

CA-RIT-NFAT1 and those observed in exhausted CD8" T cells
and anergic CD4* T cells in vivo (22/56 genes and 99/371 genes,
respectively; p value < 1079 (Figures 2E, 2F, and S3E; Tables 1,
S1, and S2; Doering et al., 2012; Okamura et al., 2009; Wherry
et al., 2007).

CA-RIT-NFAT1-expressing T cells showed increased protein
and mRNA expression of the inhibitory receptors LAG3, TIM3,
PD-1, and GITR, based on flow cytometry, RNA-seq, and quan-
titative PCR (Figures 2 and S3A-S3D). Upregulation of the inhib-
itory receptors depended on NFAT1 DNA-binding, as shown by
the fact that it was not observed in cells expressing DBDmut-CA-
RIT-NFAT1 (Figure S3B and data not shown), despite higher
expression of this DNA-binding mutant compared to CA-RIT-
NFAT1 (Figure S1E). Several genes coding for transcription fac-
tors (Prdm1, Bhlhe40, Irf4, Ikzf2, Zeb2, Lass6, Tox, Eomes) were
recently identified in a network analysis (Doering et al., 2012) as
potentially contributing to induction of the exhausted state;
except for Eomes, all these transcription factors are also upregu-
lated in CA-RIT-NFAT1-expressing cells (Figure S3E). Moreover,
genes encoding other categories of negative regulatory proteins
(e.g., diacylglycerol kinase, several phosphatases) were also ex-
pressed at higher amounts in cells expressing CA-RIT-NFAT1
compared to mock-transduced cells (Figure S3E). Thus, even
in the absence of interaction with AP-1, NFAT1 can induce
exhaustion- and anergy-associated genes in both CD8* and
CD4* T cells.

CA-RIT-NFAT1 Directly Upregulates Gene Expression by
Binding to Gene Promoter Regions
To determine which genes were likely to be direct targets of
NFAT1 and CA-RIT-NFAT1, we analyzed the genomic distribu-
tion of both proteins in CD8* T cells by chromatin immunoprecip-
itation followed by next-generation sequencing (ChlIP-seq).
Because only very small numbers of exhausted T cells can be
obtained from mice, it was not possible to perform ChIP-seq ex-
periments to define NFAT binding sites in exhausted CD8" T cells
in vivo. Instead, we compared the genome-wide distribution of
endogenous NFAT1 with that of ectopically expressed CA-RIT-
NFAT1 in CD8" T cells left resting or stimulated in vitro.
Wild-type (WT) or NFAT1-deficient naive P14* Tecra™/~ CD8*
T cells were stimulated with anti-CD3 and anti-CD28, retrovirally
transduced with empty vector or CA-RIT-NFAT1, and expanded
in IL-2-containing media to yield effector CTLs (Pipkin et al.,
2010). 6 days later, cells were either left untreated (resting) or re-
stimulated with PMA and ionomycin for 1 hr, and chromatin was
prepared and immunoprecipitated with anti-mouse NFAT1.
Immunoprecipitation was specific, as evidenced by the low
number of background peaks in NFAT1-deficient compared to
control cells (Figure 3A). For subsequent analysis, we removed
peaks also present in NFAT1-deficient cells and therefore
considered background. As expected from the constitutive
nuclear localization of CA-RIT-NFAT1 (Figure S1A), similar
numbers of CA-RIT-NFAT1 peaks were observed in resting
and restimulated NFAT1-deficient cells transduced with CA-
RIT-NFAT1 (Figure 3B, middle). Comparison with the genome
reference (mm9; Figure 3B, right) showed that both NFAT1 and
CA-RIT-NFAT1 peaks were enriched at promoters/transcription
start sites (TSS), exons, and the first introns of genes (Figures 3B
and 3C).
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Figure 1. CTLs Expressing a Constitutively Active NFAT1 Incapable of Cooperating with AP-1 Have Impaired In Vivo Function

(A-D) GFP"P14*CD8" T cells expressing CA-RIT-NFAT1 or its DNA-binding mutant were transferred to CD45.1* congenic mice, which were infected 1 day later
with gp33-expressing Listeria monocytogenes.

(A) Schematic of the experiment. Abbreviation is as follows: RV, retrovirus.
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Genome browser views of genes encoding the inhibitory re-
ceptors PD-1, LAG3, TIM3, and Siglec-F illustrate that endoge-
nous NFAT1 binds only after PMA and ionomycin stimulation
(Figures 3D [compare lines 1 and 2] and S4A), whereas CA-
RIT-NFAT1 ChIP-seq peaks were observed in both resting and
stimulated cells (Figure 3D [compare lines 5 and 6]). These
ChIP-seq peaks were not observed in NFAT1-deficient T cells
(Figure 3D [compare lines 3 and 4]), attesting to the specificity
of our NFAT1 antibody. There was substantial overlap in ChIP-
seq peaks for endogenous NFAT1 and CA-RIT-NFAT1, as well
as ChIP-seq peaks of CA-RIT-NFAT1 binding under resting
and stimulated conditions (Figures 3D and S4A). Regions of
NFAT1 but not CA-RIT-NFAT1 binding and vice versa are dis-
cussed below.

To understand the genome-wide binding patterns of NFAT1
and CA-RIT-NFAT1, we examined the ChIP-seq data in more
detail. The distribution of CA-RIT-NFAT1-bound regions with
respect to the nearest TSS differed depending on whether the
genes transcribed from that TSS were up- or downregulated
by CA-RIT-NFAT1. The majority of upregulated genes had a
CA-RIT-NFAT1 binding site within 2.5 kb of the TSS, but the
binding sites were widely distributed with respect to the TSS of
downregulated genes (Figures 3E and 3F). These results suggest
that CA-RIT-NFAT1 directly regulates the transcription of upre-
gulated genes by binding to sites in the vicinity of their
promoter/TSS regions. Figure S4E shows the distribution of
ChlP-seq peaks for other transcription factors with respect to
the TSS (see Supplemental Discussion).

Sequence Motif Analyses of NFAT1 and CA-RIT-NFAT1
Binding Sites in CTLs

We used a motif-search algorithm (HOMER) to compare
sequence motifs enriched above background in NFAT1 and
CA-RIT-NFAT1 ChlIP-seq peaks (Figure 4). We considered
ChlP-seq peaks that bound endogenous NFAT1 in stimulated
cells (n ~29,000) and CA-RIT-NFAT1 under resting or stimulated
conditions (n ~12,500 and ~14,500, respectively; Figure 4A).
Notably, most NFAT1 ChlIP-seq peaks did not overlap with CA-
RIT-NFAT1 ChIP-seq peaks (Figure 4A, left and middle), sug-

gesting that at these sites, NFAT binding is strongly stabilized
by AP-1 (probably by ~20-fold or more) (Rao et al., 1997). Among
these is the well-known composite NFAT:AP-1 element in the //2
promoter (Figure 4B, left; Chen et al., 1998; Jain et al., 1992,
1993). Similar composite elements are known to occur in the pro-
moter and enhancer regions of several other calcium-respon-
sive, cyclosporin A (CsA)-sensitive genes (Hogan et al., 2003;
Rao et al., 1997).

In ChIP-seq peaks for endogenous NFAT1, the top two en-
riched motifs were the consensus monomer NFAT binding
element (5'-TTTCCA-3’, complement 5'-TGGAAA-3') and a com-
posite NFAT:AP-1 element (5/-IGGAAAnnnIGAG/CTCA-3’)
(Figure 4C, left). Composite NFAT1:AP-1 element was the top
enriched motif in the subset of NFAT1 ChlP-seq peaks that did
not bind CA-RIT-NFAT1 (Figure 4D, left), whereas the monomer
NFAT element was the top enriched motif in the subset of NFAT1
ChIP-seq peaks that also bound CA-RIT-NFAT1 (data not
shown). As an example of the latter group, the proximal Ctla4
promoter contains the monomer NFAT binding element
5'-TGGAAAAT-3' (Figure 4B, right). These data confirm that the
RIT mutation abolishes NFAT1:AP-1 interaction in cells as it
does in vitro and emphasize that despite its inability to engage
in cooperative interactions with AP-1, CA-RIT-NFAT1 binds
functionally and with measurable affinity to many NFAT1 binding
sites.

Finally, a substantial number of the CA-RIT-NFAT1 ChIP-
seq peaks detected in resting and stimulated cells were not
observed in stimulated WT cells (Figure 4A, Table S4). These
peaks showed low enrichment for NFAT:AP-1 composite sites
(Figure 4C) and no enrichment for kB-like sites such as the
site in the Rnf128 promoter that binds NFAT1 homodimers (5'-
GTAACGTTTCC-3' or 5-GGATTCTTCC-3') (Soto-Nieves et al.,
2009); Rnf128, which encodes the E3 ligase Grail, is upregulated
in anergic CD4* T cells (Fathman and Lineberry, 2007). Rather,
the strong enrichment for consensus NFAT binding motifs in
CA-RIT-NFAT1 ChIP-seq peaks suggests that monomer binding
is dominant under these conditions, perhaps stabilized through
protein-protein interactions with other partner proteins (see Sup-
plemental Discussion).

(B) Three days after infection, total bacterial colony-forming units (CFUs) per spleen were determined (each dot represents a mouse; mean + SEM; *p < 0.05;

Hokk,

p < 0.001 via t test). A representative experiment of two is shown.

(C) Five days after infection, co-expression of PD-1 and LAG3 or PD-1 and TIM3 on transferred cells (CD45.2*) was determined by flow cytometry. Representative

contour plots are shown.

(D) The mean fluorescence intensity (MFI) for each receptor is shown. p values were calculated by t test. *p < 0.05; **p < 0.005; ****p < 0.0001.
(E-1) GFP"'Thy1.2*CL4* TCR transgenic CD8" T cells expressing CA-RIT-NFAT1 or its DNA-binding mutant were transferred to Thy1.1* congenic mice, injected

7 days previously with CT26 and CT26HA tumor cells in contralateral flanks.

(E) Schematic of the experiment. Abbreviation is as follows: TILs, tumor-infiltrating cells.

F) Tumor growth was determined on a daily basis after cell transfer.
G-l) Characterization of transferred cells 3 days after transfer.

H) Representative contour plots are shown.

(
(
(
(
(
(

G) Frequency of tumor-infiltrating CA-RIT-NFAT1- and DBDmut-CA-RIT-NFAT1-transduced cells in live gate.
H and I) Co-expression of inhibitory receptors on transferred cells determined by flow cytometry.

1) MFI for each receptor is shown. p values were calculated by t test. **p < 0.005; **p < 0.0005; ***p < 0.0001.

(J and K) NFAT nuclear translocation in exhausted cells. Single-cell suspensions from 10-day-old CT26HA tumors were stimulated ex vivo with increasing doses

of plate-bound anti-CD3 and immediately fixed.

(J) Confocal images of ex-vivo-stimulated TIL exhausted cells (CD45*CD8*PD-1*TIM3") purified by cell sorting and stained for endogenous NFAT1. Arrows

highlight cells with nuclear NFAT1. Scale bar represents 10 um.

(K) NFAT nuclear translocation in exhausted (PD-1*TIM3*) and non-exhausted (PD-1"TIM3~) CD8" tumor-infiltrating lymphocytes calculated from confocal
images in (J). Means + SD of >10 fields of view (at least 720 cells) are shown. p values were calculated by t test.

See also Figures S1 and S2.
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Figure 2. The Transcriptional Program Induced by CA-RIT-NFAT1 in T Cells Overlaps with that of In Vivo Exhausted or Anergic T Cells

(A) Genes whose expression is altered upon CA-RIT-NFAT1 expression in CD8" (top) or CD4* (bottom) T cells. Changes in gene expression in CA-RIT-NFAT1-
expressing versus mock-transduced cells plotted against overall gene expression.

(B) Venn diagram displaying numbers of genes significantly induced (top) or downregulated (bottom) in CD8" and/or CD4* T cells.

(C) Heatmap representation of changes in gene expression in CA-RIT-NFAT1-transduced over mock-transduced CD4" and CD8" T cells (p < 0.05). Each
horizontal line represents one gene, ordered by gene expression (highest to lowest fold change). 18 genes that showed opposite trends in CD4* and CD8* T cells
were omitted (depicted in the upper left and lower right quadrants of D, right panel).

(D) Scatter plot representing changes in gene expression in CA-RIT-NFAT1-transduced cells versus mock-transduced cells (RPKM values from RNA-seq) in
CD8* T cells (y axis) versus CD4* T cells (x axis). Each dot represents a gene. Pearson correlation coefficients are indicated. *p < 107°.

(E) Overlap of genes significantly upregulated upon CA-RIT-NFAT1 expression in CD8" T cells with genes significantly upregulated in either in-vivo-generated
exhausted CD8* T cells (top) (cluster #1 [Wherry et al., 2007]), or upregulated in anergic CD4*CD25 CD45RB'°LAG3* T cells compared to CD4*CD25~
CD45RB'°LAG3™ T cells (bottom) (Okamura et al., 2009).

(F) Plots show the probability of observing more than N overlapping genes if sets with 1,047 and 78 genes (top) or 1,007 and 470 genes (bottom) are sampled

randomly from the set of all genes. *p value for the overlap < 10~'° (one-tailed Fisher’s exact test).

See also Tables S1, S2, and S6 and Figure S3.

NFAT-Deficient CD8* T Cells Show Diminished
Expression of Exhaustion-Associated Inhibitory Surface
Receptors

To examine the requirement for endogenous NFAT proteins in
the regulation of exhaustion-associated genes, we bred our con-
ventional gene-disrupted NFAT1-deficient mice (Xanthoudakis
et al., 1996) to mice deficient in NFAT2 in the T cell lineage (Fig-
ure S5A; see Experimental Procedures). When differentiated into
“memory” CTLs (Pipkin et al., 2010) and restimulated with PMA
and ionomycin in vitro, NFAT1,2 double-deficient CD8* T cells
showed clearly decreased induction of the effector cytokines
IL-2 and IFN-y compared to WT or singly NFAT1- or NFAT2-defi-
cient CD8™ T cells (Figure 5A); they also showed strongly dimin-

6 Immunity 42, 1-14, February 17, 2015 ©2015 Elsevier Inc.

ished expression of the inhibitory surface receptors LAG3, TIM3,
and PD-1 (Figure 5C and data not shown). The residual expres-
sion was due to NFAT4, the third NFAT protein present in im-
mune cells: NFAT1,2-deficient cells additionally transduced
with shRNA against NFAT4 (Figure 5B) produced little or no
IL-2 or interferon-y (IFN-y) upon restimulation (Figure 5A) and
expressed little or no LAG3 and PD-1 either under resting condi-
tions or after restimulation (Figure 5C), indicating that all three
NFAT proteins contribute to CD8" T cell activation and exhaus-
tion. Notably, there was no defect in proliferation of the NFAT1,
2-deficient CD8" T cells under these conditions (Figure S5B).
To ask whether NFAT family members were required for induc-
tion of the inhibitory receptors in vivo, we utilized a mouse model
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Table 1. Partial List of Genes Expressed in Exhausted and/or

Anergic T Cells that Are also Induced in CA-RIT-NFAT1-
Expressing CD4 and CD8 T Cells

Gene Full Gene Name Expression

Cell Surface Receptors and Ligands

Lag3 Lymphocyte-activation gene 3 *

Tnfrsf9 Tumor necrosis factor receptor *
superfamily member 9; 4-1BB

Ptger2 Prostaglandin E2 receptor 2 *

Havcr2 Hepatitis A virus cellular receptor *
2; TIM-3

Alcam Activated Leukocyte cell adhesion *
molecule

Tigit T cell immunoreceptor with Ig and +
ITIM domains

Ctla4 Cytotoxic T-Lymphocyte Antigen 4

Ptger4 Prostaglandin E2 receptor 4

Tnfrsf1b Tumor necrosis factor receptor +
superfamily member 1b

Ccl4 Chemokine (C-C motif) ligand 4 +

CD109 Cluster of Differentiation 109 #

CD200 Cluster of Differentiation 200; Ox-2 #

Tnfsf9 Tumor necrosis factor superfamily #
member 9; 4-1BBL

Nrp1 Neuropilin-1 #

Semadc Semaphorin-4C #

Ptprj Receptor-type tyrosine-protein #
phosphatase eta

121 Interleukin 21 #

Tspan2 Tetraspanin-2 #

Transcription Factors

Ikzf2 IKAROS family zinc finger 2; Helios *

Egr2 Early growth response protein 2 *

Tox Thymocyte selection-associated *
high mobility group box protein

Zeb2 Zinc finger E-box-binding homeobox 2 *

Irf4 Interferon Regulatory Factor *

Nfatc1 Nuclear Factor of Activated T cells *
c1; NFAT2

Zbtb32 Zinc finger and BTB domain-containing #
protein 32; ROG

Rbpj Recombinant binding protein #
suppressor of hairless

Hifla Hipoxia-inducible factor 1-alpha #

Signaling

Rgs16 Regulator of G-protein signaling 16 *

Sh2d2a SH2 domain-containing protein 2A +

Nucb1 Nucleobindin-1 +

Piscr1 Phospholipid scramblase 1 +

Ptoni11 Tyrosine-protein phosphatase #
non-receptor type 11

Prkca Protein kinase C alpha (PKCa) #

Plscrd Phospholipid scramblase 4 #

Table 1. Continued

Gene Full Gene Name Expression

Others

Casp3 Caspase 3 *

Gpd2 Glycerol-3-phosphate dehydrogenase +

Gas2 Growth arrest-specific protein 2 +

Sh3rf1 SH3 domain containing ring finger 1 #

Nhedc2 Na*/H* exchanger domain containing 2 #

Plek Pleckstrin #

Tnfaip2 Tumor necrosis factor, alpha-induced #
protein 2

Ctsb Cathepsin B #

The table shows representative genes (identified by RNA-seq) that are
significantly induced in CD4* and CD8"* T cells upon CA-RIT-NFAT1
expression and also overlap with genes expressed in in-vivo-generated
anergic CD4" and exhausted CD8* T cells. Expression levels are as fol-
lows: *, genes that are upregulated in both anergic and exhausted
T cells; +, genes whose expression is significantly upregulated in ex-
hausted T cells but is not statistically significant in anergic T cells; #, genes
whose expression is significantly upregulated in anergic T cells but is not
statistically significant in exhausted T cells. In vivo data obtained from
Doering et al. (2012), Okamura et al. (2009), and Wherry et al. (2007).

of infection with LCMV. WT, NFAT1-deficient, NFAT2-deficient,
or NFAT1 and NFAT2 double-deficient naive CD8* P14* Tcra™/~
T cells (CD45.2*) were transferred into CD45.1* congenic mice.
The mice were then infected with LCMV Armstrong 5 strain,
which induces an acute infection (Wherry et al., 2007); 8 days af-
ter infection, expression of the inhibitory receptors was deter-
mined in the transferred cells ex vivo (Figure 6A). Under these
conditions in vivo, there was only a minor upregulation of
LAGS3; however, consistent with our in vitro studies, expression
of all tested inhibitory receptors was strongly decreased in cells
lacking both NFAT1 and NFAT2 (Figure 6A). Based on our in vitro
experiments (Figure 5), the residual expression is most likely due
to NFAT4.

We then evaluated the role of NFAT proteins by using LCMV
clone 13, which induces a chronic infection that leads to CD8*
T cell exhaustion (Wherry et al.,, 2007). Mice lacking both
NFAT1 and NFAT2 showed a dramatic decrease in the frequency
of cells co-expressing PD-1 and TIM3 or LAG3 (Figure 6B).
Together, our results support a direct role for NFAT family mem-
bers in controlling the expression of inhibitory receptors in CD8*
T cells, both in cell culture and in mice. Not all surface receptors
are affected, however: for instance, the expression of CD44 was
unimpaired in the absence of NFAT (data not shown).

DISCUSSION

In this study, we demonstrate that NFAT proteins, established
regulators of T cell activation, also participate in the transcrip-
tional program of CD8* T cell exhaustion. To dissect these two
aspects of NFAT function, an essential tool was CA-RIT-
NFAT1, an engineered form of NFAT1 that is both constitutively
active and unable to interact with AP-1. Using this engineered
protein, we have defined, for the first time, the genome-wide
localization of NFAT1 under conditions where it does not
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Figure 3. CA-RIT-NFAT1 Directly Upregulates Gene Expression by Binding to Promoter Regions

ChlP-seq results for endogenous NFAT1 in WT cells and for CA-RIT-NFAT1 in transduced NFAT1-deficient cells, either untreated or restimulated with PMA and
ionomycin for 1 hr.

(A) Number of NFAT1 and CA-RIT-NFAT1 ChIP-seq peaks identified by HOMER.

(legend continued on next page)
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cooperate with AP-1, as well as the NFAT-dependent transcrip-
tional profile induced under these conditions. Moreover, we have
used mice and T cells deficient for multiple NFAT family mem-
bers to show that NFAT proteins directly and redundantly control
cytokine expression as well as expression of exhaustion-related
genes in CD8* T cells. We note that some of our detailed findings
might be specific to the experimental systems used here, and
might or might not apply to CD8"* T cell exhaustion observed in
other model systems or in human diseases.

Our data demonstrate that NFAT controls CD8"* T cell exhaus-
tion by binding directly to regulatory regions of many exhaustion-
associated genes, including the Pdcd1 (PD-1) and Havcr2 (TIM3)
promoters and cis-regulatory regions. Although NFAT1 and CA-
RIT-NFAT1 occupy many overlapping sites, endogenous NFAT1
demonstrates a strong preference for canonical NFAT:AP-1
composite sites under stimulation conditions that also activate
AP-1, whereas CA-RIT-NFAT1 shows a strong preference for
monomeric NFAT sites. In some cases, a two-step mechanism
might apply: for instance, LAGS is induced by Egr2 (Okamura
et al., 2009), but NFAT1 binds near both the Egr2 and Lag3
TSSs (Figures 3D and S4A), suggesting that NFAT induces
Egr2, after which NFAT and Egr2 cooperate to induce the
expression of downstream target genes. Other pathways might
also be involved: Notch (Mathieu et al., 2013) and type | IFN
(Terawaki et al., 2011) signaling regulate Pdcd1 expression,
and MEK kinase (Yoon et al., 2011) and T-bet (Anderson et al.,
2010) regulate TIM3 expression.

The transcriptional program evoked by CA-RIT-NFAT1 in
CD8" T cells overlaps with that observed in anergic CD4*
T cells. mRNAs encoding E3 ligases (Fathman and Lineberry,
2007; Heissmeyer et al., 2004; Nurieva et al., 2011); phospha-
tases (Macian et al., 2002); and other signaling proteins including
caspase 3, RGS proteins, and diacylglycerol kinases (Joshi and
Koretzky, 2013; Macian et al., 2002) are upregulated in both
cases. The combined action of these negative regulators is likely
to underlie the diminished activation of ZAP-70 and PLCy1 and
the consequent decrease in Ca2* influx that we observe in CA-
RIT-NFAT1-expressing T cells. We propose that this negative
feedback program becomes dominant in CD4" T cells under
conditions of ineffective costimulation (Mueller, 2010; Nurieva
et al., 2011), and in CD8* T cells in the context of prolonged
low-grade antigenic stimulation and/or inflammation, as encoun-
tered in chronic viral infections and cancer (Schietinger and
Greenberg, 2014; Wherry, 2011).

Our data are consistent with previous studies on the role
of NFAT in CD8" T cell exhaustion. Transcriptional profiling re-
vealed higher expression of mRNA encoding NFAT2 in ex-
hausted murine CD8* T cells isolated directly ex vivo, compared

with all other T cell subsets (naive, effector, memory) examined
(Wherry et al., 2007); NFAT2 was shown to be nuclear in tolerant
CD8" T cells (Srinivasan and Frauwirth, 2007); and Pdcd1
expression was shown to be regulated by NFAT2 (Oestreich
et al.,, 2008). Although Agnellini et al. (2007) reported that
NFAT2 was not present in the nucleus of exhausted CD8*
T cells generated during chronic, high-dose LCMV infection in
mice after 16 hr of stimulation (they did not examine other
NFAT proteins), an alternative interpretation of their data is that
the short inducible isoform of NFAT2 (Chuvpilo et al., 2002) is
poorly induced after restimulation of exhausted CD8" T cells.
Indeed, the higher basal Ca®* concentrations observed by
Agnellini et al. (2007) in exhausted CD8* T cells and in CA-RIT-
expressing cells in this report would increase NFAT-dependent
induction of NFAT2 under basal conditions, as also observed
in ex vivo exhausted cells (Wherry et al., 2007). Moreover, the
blunted but not completely blocked Ca®* influx in restimulated
CA-RIT-NFAT1-expressing T cells is consistent with the obser-
vation that exhausted CD8* T cells support Ca* influx upon
restimulation (Agnellini et al., 2007).

Although in these studies we engineered NFAT1 to eliminate
NFAT:AP-1 cooperation, we propose that the NFAT-driven tran-
scriptional program of feedback attenuation of T cell responses
is a normal late feature of the immune response. Fos and Jun
are elevated only transiently after stimulation (Jain et al., 1992),
whereas NFAT can remain in the nucleus for long times even in
response to very low elevations of intracellular Ca®* (Dolmetsch
et al., 1997; Marangoni et al., 2013; Oh-Hora et al., 2008). Fos
expression also declines during chronic infection despite antigen
persistence, whereas NFAT2 expression is increased as dis-
cussed above (Wherry et al., 2007). Finally, exhausted CD8"
T cells, defined in a tumor setting by PD-1 and TIM3 expression,
can support the nuclear translocation of endogenous NFAT1 in
response to high levels of TCR stimulation (Figure 1J). The combi-
nation ofincreased basal Ca®* and a residual low concentration of
Ca?* signaling in anergized or exhausted cells would be sufficient
for NFAT proteins to enter and remain in the nucleus to maintain
the exhausted state. This would result in the transcriptional induc-
tion of exhaustion-related genes, whose expression requires
NFAT but not NFAT:AP-1 cooperation as shown here.

Especially in the presence of antigen-specific T regulatory
cells, tumor-infiltrating CD8" T cells display brief and unstable
T cell-APC contacts that nevertheless are sufficient to induce
prolonged NFAT-dependent transcription and establish a
feedback mechanism that results in decreased T cell responses
(Marangoni et al., 2013). Under these conditions, delayed export
of NFAT from the nucleus results in a “memory” of previous
signaling by NFAT (Marangoni et al., 2013). In contrast, signaling

(B) Pie charts show the genomic distribution of ChIP-seq peaks for endogenous NFAT1 in WT cells transduced with empty vector (left) or CA-RIT-NFAT1 ChIP-
seq peaks in NFAT1-deficient cells transduced with CA-RIT-NFAT1 (middle two pie charts). Representation of the annotated regions in the mouse mm9 genome

is shown for comparison (right).

(C) Enrichment of NFAT1 binding sites in annotated genomic regions based on their relative abundance in the mouse genome (mm9). Statistical analysis was
performed by Fisher’s exact test. **p <2 x 1076 *p <1 x 107'"% *p <1 x 1072
(D) Genome browser views of Lag3, Pdcd1 (encoding PD-1), Siglecf, and Havcr2 (encoding Tim3) loci showing the distribution of NFAT1 and CA-RIT-NFAT1

ChlIP-seq peaks.

(E and F) Cumulative plots (E) or probability per base pair (F) of the distance between the closest NFAT1 binding site relative to the transcription start site of all
genes (black) and genes significantly (p < 0.05) upregulated (red) or downregulated (blue) in NFAT1-deficient cells transduced with CA-RIT-NFAT1 in resting
conditions. The lower panels in (F) are expanded views of the histograms in the vicinity of the TSS.

See also Figure S4.
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Figure 4. ChIP-Seq Peaks for Endogenous NFAT1 Are Enriched for Composite NFAT:AP-1 Sites
(A) Venn diagrams showing the overlap of ChlP-seq peaks in the different conditions.
(B) Genome browser views of /l2 and Ctla4 loci showing the distribution of ChIP-seq peaks.

(C) List of the top six most representative motifs ranked based on the p values. The HOMER program searches for published motifs, and therefore duplicate AP-1

and Runx sequences are listed.
(D) Motifs identified as enriched only in peaks from one set of ChIP-seq data as indicated.
Sequences are in 5’ to 3’ direction. See also Table S3.
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pathways regulating Ras, ERK, and AP-1 activation exhibit a
shorter signal memory (Faroudi et al., 2003), suggesting that
tolerance and/or exhaustion programs are evoked in tumor-infil-
trating T cells as a result of an altered balance between NFAT
and other transcription factors including AP-1. Consistent with
the likelihood that AP-1 does not participate in the exhaustion
program, exhausted T cells show not only a higher expression
of NFAT2 transcripts but also a concomitant reduction in
the AP-1 family member Fos (Wherry, 2011). These findings
complement our own observations that the strongest exhaustion
phenotype is induced in vitro by CA-RIT-NFAT1, which cannot
cooperate with AP-1.

The NFAT-dependent program of anergy and/or exhaustion
has considerable relevance for the clinic. For instance, the PD-
1-PD-1 ligand pathway is well established as a major inhibitory
receptor pathway involved in T cell exhaustion (Barber et al.,
2006), and blocking this pathway during chronic LCMV infection
reinvigorates virus-specific CD8" T cell responses, resulting in
lower viral loads (Barber et al., 2006). Moreover, antibodies to
PD-1 and CTLA-4 have emerged as surprisingly effective agents
for cancer immunotherapy (Schietinger and Greenberg, 2014),
and individual or combined blockade of TIM3, PD-1, and LAG3
with antagonist antibodies has been shown to reverse exhaus-
tion efficiently in CD8" T cells (Blackburn et al., 2009; Jin et al.,
2010; Sakuishi et al., 2010). These therapies all act downstream
of the NFAT-dependent program of anergy and exhaustion that
we have described here.

Our data imply that rescuing AP-1 signaling in exhausted
T cells would reverse the exhausted state, and so offer therapeu-
tic value in chronic viral infections and cancer. Conversely, dis-
rupting NFAT:AP-1 interaction would impose a hyporesponsive
state, thus offering a potential therapeutic avenue for interfering
with autoimmune responses that depend on NFAT:AP-1 cooper-
ation. Because the RIT mutation does not interfere with
NFAT:FOXP3 cooperation (data not shown), confirming predic-

010’ 10° 10 10°

Fluorescence intensity ——y-

Figure 5. NFAT Family Members Regulate the
Expression of Inhibitory Receptors In Vitro
Naive WT, NFAT1-deficient, NFAT2-deficient, or
NFAT1,2-deficient CD8* T cells were purified
by FACS and transduced with a retrovirus en-
coding Ametrine (a variant GFP) and shRNAs
targeting either CD4 (negative control) or NFAT4
to yield single, double, or triple NFAT-deficient
cells.

(A and C) On day 6 after activation, cells were re-
stimulated with PMA and ionomycin for 6 hr (A and C,
right panels) or left untreated (C, left panel). IFN-y
and IL-2 production (A) or expression of cell surface
receptors (C) was determined by flow cytometry of
Ametrine™ cells. A representative experiment out of
two is shown.

(B) Expression of mRNA encoding NFAT4 was as-
sessed by quantitative RT-PCR and normalized to
mRNA encoding L32 ribosomal protein. The amount
of expression in control shCD4 cells was set at 1.
Combined results from three independent experi-
ments are shown (mean + SEM).

See also Figure S5.
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tions from the crystal structures that NFAT proteins make
partially distinct contacts with Fos-Jun and FOXP proteins (Ban-
dukwala et al., 2011; Chen et al., 1998; Wu et al., 2006), it might
be possible to design reagents that disrupt the NFAT:AP-1 inter-
action but leave T cell regulatory function intact. Our future
studies will address these possibilities.

EXPERIMENTAL PROCEDURES

Mice

P14* TCR transgenic (P14*, Taconic) or OT-Il mice were crossed with Tcra™
mice (the P14 TCR transgene recognizes a peptide from the gp33 protein of
mouse lymphocytic choriomeningitis virus [LCMV] presented on H-2DP; the
OT-Il TCR transgene recognizes a peptide from ovalbumin presented on
I-A®). P14*Tcra™’~ mice were further crossed with NFAT1-deficient mice (Xan-
thoudakis et al., 1996) and with mice deficient in NFAT2 in the T cell lineage,
obtained by breeding CD4°" mice with mice in which exon 3 of the gene en-
coding NFAT2 was “floxed” (flanked with LoxP sites) (Figure S5A). The result-
ing mice lack both NFAT1 and NFAT2in T cells (NFAT1, 2-deficient mice). CL4
mice express a transgenic TCR specific for H-2KY/HAs15_523. All mice were
maintained in specific-pathogen-free barrier facilities and used according to
protocols approved by the La Jolla Institute for Allergy and Immunology animal
care and use committees.

/—

Isolation, Culture, and Retroviral Transduction of T Cells

Naive CD8* or CD4* T cells were purified from spleen and lymph nodes har-
vested from 6- to 8-week-old mice by negative selection or by fluorescence-
activated cell sorting. Cells were activated with anti-CD3 and anti-CD28 and
maintained in the presence of IL-2. For cytokine production analyses, cells
were restimulated with PMA and ionomycin. For retroviral transduction, viral
supernatants were generated by transfection of PlatE cells. GFP* or Ametrine™
transduced cells were purified by fluorescence-activated cell sorting. For more
details, see Supplemental Experimental Procedures.

RNA-Seq

For RNA-seq analysis, total RNA was used to isolate poly(A) RNA with the mi-
cropoly(A)purist kit (Ambion). The whole transcriptome library kit (Life Technol-
ogies) was used to prepare paired-end sequencing libraries. Sequencing was
performed with a SOLID4 sequencer (Applied Biosystems) and the sequencing
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reads in color-space were mapped to the mm9 genome via Tophat (Trapnell
et al., 2009). For more details, see RNA-seq data analyses and microarray
data analysis in the Supplemental Experimental Procedures.

ChIP-Seq

Fixed chromatin was sheared to yield 100-300 bp DNA fragments and
immunoprecipitated with protein G/anti-NFAT1 antibody complexes.
Immunoprecipitated and de-crosslinked DNA was end-repaired and ligated
with barcoded SOLID adaptors. Ligated products were size selected by gel
and PCR amplified. Barcoded libraries were sequenced in a SOLID4
sequencer (Applied Biosystems) and the reads were mapped by Bowtie
(Langmead et al., 2009) to the mm9 genome in color-space. For more details,
see ChIP-seq and motif analyses in the Supplemental Experimental
Procedures.

Lymphocytic Choriomeningitis Virus Models

Six-week-old WT mice or mice lacking NFAT1 and NFAT2 in T cells were in-
fected i.v. with 3 x 10° PFU of LCMV clone 13. Eighteen days after infection,
splenocytes were harvested and cells were stained with antibodies against

12 Immunity 42, 1-14, February 17, 2015 ©2015 Elsevier Inc.

Protection Assay

Naive P14*Tcra™/~ CD8* T cells were activated

with anti-CD3 and anti-CD28, transduced with
CA-RIT-NFAT1, DBD-mut-CA-RIT-NFAT1, or empty vector (mock), and
expanded with 10 U/ml IL-2 for 4 days. Then, GFP" cells were purified by
FACS, and 5 x 10* cells were transferred into C56BL/6 recipient mice. One
day later, mice were infected with 1 x 10° CFU Listeria-gp33, kindly provided
by Dr. Rafi Ahmed (Kaech et al., 2003). On day 3 and 5, spleens were harvested
and plated on brain heart infusion agar plates for colony counts and cells
phenotypically characterized by FACS.

In Vivo Tumor Model
Single-cell suspensions from spleens and LNs of CL4 mice were pulsed with
10 uM HAs15-523 peptide for 1 hr at 37°C, then cultured with 10 ng/ml murine
rlL-12 for the first 2 days and 20 ng/ml murine rlL-2 for the following 5 days
as previously described (Bauer et al., 2014). Cells were then transferred to
mice that had been inoculated s.c. in both shaved flanks with 10° viable
CT26HA tumor cells suspended in 50 ul HBSS 7 days before. Tumor size
was determined by caliper measurements of tumor length and width, and
tumor volume was calculated as (I x w?) / 2 (Bauer et al., 2014).

To induce exhausted T cells, CT26HA tumors were implanted in Thy1.1 re-
cipients that were then injected with T regulatory cells that recognize the HA
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antigen (Bauer et al.,, 2014). Ten days after tumor injection, mice were
sacrificed, and tumor-infiltrating T cells were restimulated ex vivo with plate-
bound anti-CD3e for 15 min, after which cells were fixed. Then, PD-1*TIM3*
and PD-1"TIM3™ populations were sorted and stained for NFAT1 and DAPI,
and then analyzed for confocal microscopy.
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