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Abstract

Exposure to nicotine during smoking causes a multitude of metabolic changes that are poorly understood. We quantified
and analyzed 198 metabolites in 283 serum samples from the human cohort KORA (Cooperative Health Research in the
Region of Augsburg). Multivariate analysis of metabolic profiles revealed that the group of smokers could be clearly
differentiated from the groups of former smokers and non-smokers. Moreover, 23 lipid metabolites were identified as
nicotine-dependent biomarkers. The levels of these biomarkers are all up-regulated in smokers compared to those in former
and non-smokers, except for three acyl-alkyl-phosphatidylcholines (e.g. plasmalogens). Consistently significant results were
further found for the ratios of plasmalogens to diacyl-phosphatidylcolines, which are reduced in smokers and regulated by
the enzyme alkylglycerone phosphate synthase (alkyl-DHAP) in both ether lipid and glycerophospholipid pathways.
Notably, our metabolite profiles are consistent with the strong down-regulation of the gene for alkyl-DHAP (AGPS) in
smokers that has been found in a study analyzing gene expression in human lung tissues. Our data suggest that smoking is
associated with plasmalogen-deficiency disorders, caused by reduced or lack of activity of the peroxisomal enzyme alkyl-
DHAP. Our findings provide new insight into the pathophysiology of smoking addiction. Activation of the enzyme alkyl-
DHAP by small molecules may provide novel routes for therapy.
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Introduction

An estimated one billion men and 250 million women

worldwide are daily tobacco smokers, primarily through cigarettes

[1]. Cigarette smoking is the cause of about 90 percent of the

world’s lung cancer cases, and accounts for one in four cancer

deaths worldwide [2,3,4]. Smoking decreases high density

lipoprotein (HDL) carrying cholesterol, thus increasing the risk

for many cardiovascular diseases. The incidence of acute

myocardial infarction is about 2.5 times higher in smokers than

in non-smokers, according to a study grounded on the population-

based research platform KORA (Cooperative Health Research in

the Region of Augsburg) [5,6,7].

Metabolites are the intermediate or end points of metabolism,

and biomarkers refer to indicators of a particular disease state or a

particular physiological state of an organism. In cigarette smoke,

there are more than 5,000 chemicals, including about 70 cancer-

causing agents (carcinogens), among which nicotine and its major

metabolite cotinine and carbon monoxide are found to be

biomarkers of cardiovascular damage [8,9]. After cigarette smoke

is inhaled, nicotine is carried deep into the lungs, where it is

absorbed into the bloodstream and carried to almost every part of

the body. Nicotine reaches the brain within 10 seconds, and has

been found in breast milk as well as in the umbilical blood of

newborn babies.

There have been a few studies addressing metabolite changes in

smokers. Several metabolites, including carbon monoxide, metab-

olites of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-

(3-pyridyl)-1-butanone (NNK), and total cotinine (cotinine plus

cotinine-N-glucuronide), were investigated in urine samples of a

study in which the number of cigarettes consumed was reduced

daily. No significant differences were observed, presumably due to
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a potential compensation mechanism [10,11]. It was suggested

that people who are trying to cut back by consuming fewer

cigarettes per day change their behavior by inhaling longer and

deeper, which is known to alter a smoker’s exposure to

carcinogens.

Due to a lack of powerful tools for analyses, large-scale

metabolic screens of smoking phenotype in blood plasma or

serum have not been reported to date. In recent years, technology

improvements have greatly advanced the field of metabolomics,

which involves rapid, high-throughput characterization of the

small molecular metabolites identified in an organism [12,13,14].

Metabolite profiles are very much dependent on the genetic

background and the physiological status of the organism. They are

also dependent on environmental factors and are regarded as the

ultimate result of cellular regulation, resulting in the observed

phenotypes [15,16,17,18]. However, the classes and numbers of

detected metabolites are still limited to date.

In the current study, we investigated concentrations of 198

metabolites in 283 KORA samples by targeted metabolomics, in

order to study the influence of cigarette smoking on blood serum

profiles. We systematically analyzed the metabolic profiles

employing several statistical methods, such as simple calculation

of the correlations of metabolites and the ratios of metabolite

concentration, metabolites clustering, multivariate statistics (Partial

Least Squares Discriminant Analysis, PLS-DA, Principal Compo-

nent Analysis, PCA and Correspondence Analysis, CA)

[14,19,20,21,22], as well as ANOVA [23] and Wilcoxon tests

[24,25]. We investigated the populations at individual and group

levels and observed significant changes of two types of metabolites,

which are intermediates or end products of glycerophospholipid-

and ether lipid-metabolism, in smokers compared to former and

non-smokers. Based on our own data and as well on another gene

expression study, we propose a molecular mechanism explaining

the altered lipid balance in smokers.

Results

Clustering of human metabolites in the KORA population
In total, 283 human blood sera were analyzed and 198

metabolites were obtained for each individual (see Materials and

Methods). An correlation matrix of all metabolite concentrations

was calculated based on the 283 individuals and hierarchical

clustering resulted in two main clusters, A and B (Figures 1A, S1 and

S2). Cluster A consists of lipids and has two sub clusters:

glycerophospholipids (cluster A1) and sphingolipids (cluster A2),

except for 14 acyl-alkyl- (ae) phosphatidylcholines. For classes and

biochemical names of the metabolites see Table S1. In general,

metabolites with similar polar head groups and the same type of side

chains were found to be closely clustered. For example, sub cluster

A11 consists of the same head group phosphatidylcholines (PC), and

is differentiated by those with diacyl- (aa) vs. ae-phosphatidylcholines

(Figure 1A); three sub clusters were obtained in A12, phosphatidyl-

ethanolamines (PE) and phosphatidylinositols (PI) with aa bonds, the

third sub cluster comprises lipids with one side chain, but three head

groups (PC, PE and PA for phosphatidic acids). Cluster B also

consists of two sub clusters–acylcarnitines together with amino acids

(cluster B1) and biogenic amines (cluster B1 and B2), and

prostaglandins with sugars (cluster B2), except for nine glyceropho-

spholipids. Related classes of metabolites are generally clustered

together based on the population-based KORA samples.

When the influence of smoking on the human metabolome was

investigated, 28 current cigarette smokers were removed from the

Figure 1. Comparison of clustering results. (A) Classification of the 198 metabolites based on population-based KORA samples (n = 283). Similar
classes of metabolites are shown with the same color. The numbers in brackets next to the metabolite name indicate how many metabolites are
included. In some clusters, one other class of metabolite was clustered together, did not indicated here. (B) Classification of the 198 metabolites by
removing the 28 current smokers from the date set (n = 255). Similar clusters in plots A and B are shown with gray shadows. For more details, see
Figures S1 to S4.
doi:10.1371/journal.pone.0003863.g001
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sample set to ensure statistical accuracy. A slightly different

clustering of metabolites was consequently observed (Figure 1B

and Figures S3, S4). Overall, cluster B did not change, except that

six sphingomyelins and two glycerophospholipids moved from

cluster A to B2. A decreased level of correlation of the

glycerophospholipids was seen in cluster A (Figures S1, S2, S3

and S4). Furthermore, some glycerophospholipids were found to

be closely related with sphingolipids in clusters A21. This

suggested that some lipids were affected because of the removal

from the dataset of the data for the 28 smokers.

To investigate the significance of observed differences between

the full dataset and that with the removal of the 28 current

smokers, 200 permutations were conducted by randomly sampling

255 individuals (i.e. removing 28 samples without replacement)

from the ‘‘283 dataset’’, and a correlation matrix of all metabolites

was calculated. The resulting 1986198 matrix was correlated with

the one obtained using the original ‘‘283 dataset’’. Each of the two

matrices was first converted into a vector. The Pearson’s

correlation coefficient of these vectors was then calculated. The

normal distribution of these 200 coefficients has been used in a t-

test as a null hypothesis. It is significantly different from the one in

which the 28 smokers were removed (p-value of t-test was 2.28E-4)

and correlated with the pair-wise matrices of the original 283

dataset, suggesting that the observed differences after the removal

of the 28 smokers are not a random effect.

Metabolic profiles differentiate current smokers from
former and non-smokers

When Partial Least Squares Discriminant Analysis (PLS-DA),

Principal Component Analysis, (PCA) and Correspondence

Analysis (CA) were applied for the 283 individuals with 198

metabolites, current, former and non-smokers could be separated

to a certain extent (Figure 2A, PCA and CA results are shown in

Figure S5). When the three groups based on the mean value of the

metabolites were characterized, CA results showed that smokers

separated clearly from former and non-smokers by the first CA

component, which accounted for 89 percent of the total variance

(Figure 2B).

The first component is dominated by a set of metabolites

(Table 1), indicating that these metabolites are primarily

responsible for separating smokers from former and non-smokers.

The higher the CA score, the more it contributes to the separation.

Figure 2. Multivariate analysis results. (A) Two dimensional PLS-DA results of 283 individuals. The 28 current smokers are displayed in red, while
154 former smokers and 101 non-smokers are indicated in blue and green, respectively. Three dimensional PLS-DA results are shown in Figure S5A.
(B) CA results of the current, former and non-smoker groups.
doi:10.1371/journal.pone.0003863.g002
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It is the second CA component, which accounts for 11 percent of

the total variance of CA that distinguishes non-smokers from

former smokers in the dataset. The second component is

dominated by two sphingolipids with high CA2 scores (Table 1),

suggesting these two metabolites are sensitive for distinguishing

former smokers from non-smokers.

Novel nicotine-dependent biomarkers
Potential nicotine-dependent (ND) biomarkers were identified

using various statistical methods (Table 1). For example, for

metabolite PC aa C32:1, the mean values of the current smoker

(S), former smoker (fS) and non-smoker (nS) were 71.09, 52.77 and

45.52 mM, respectively; ANOVA tests of these mean values and

the results showed that these differences are highly significant (p-

value 6.9E-07). Wilcoxon tests of the differences between 28 S and

101 nS also indicated high significance with (p-value 1.5E-06);

Wilcoxon tests for the differences between 154 fS and 101 nS are

also significant at the 5% level. In addition to PC aa C32:1, seven

metabolites differing between fS and nS were found to be

significant at 5% level based on the Wilcoxon test (Table 1).

Especially two sphingomyelins, SM (OH, COOH) C16:1 and SM

OH C2:3, and one PC ae C38:2 had the most significant p-values

in the Wilcoxon test comparing former smokers and non-smokers.

These two sphingomyelins were also identified by CA method (i.e.

have high CA2 scores, see above).

For the 23 potential ND biomarkers, the mean values of

current, former and non-smoker groups are clearly distinct

(Table 1). Differences were observed based on the median value

of the three groups, with a few outliers for each metabolite (see box

plots in Figure 3). The biomarker levels in current smokers are

almost all up regulated compared to those in former and non-

smokers, with three acyl-alkyl-phosphatidylcholines (PC ae C40:6,

PC ae C36:2 and PC ae C38:2) down regulated.

Ratios of acyl-alkyl- to diacyl-phosphatidylcholines are
reduced in smokers compared to non-smokers

To further investigate the observed three plasmalogens

deficiency, we calculated ratios of all pair metabolite concentra-

tions and correlated them with nicotine consumption (see

Materials and Methods). The most significantly correlated pairs

of metabolites are listed in Table 2 and are illustrated in Figure 4.

For example, with the smoker phenotype, ratio PC ae C40:6/PC

aa C32:1 is positively significantly correlated (r is 0.333, and p-

value of t-test is 9.5E-09), while ratio PC aa C32:1/PC ae C40:6 is

negatively significantly correlated (r is 20.378 with p-value 5.0E-

11). These data indicate that in smokers, the relative concentration

of PC ae C40:6 was significantly lower than PC aa C32:1, which is

inconsistent with the observation in single metabolite analysis

(Table 1). Moreover, the ratios of metabolite PC ae C40:6 with

other 13 metabolites were all significant, suggesting that

Table 1. Identified nicotine-dependent potential biomarkers

Metabolite Mean6Standard Error (mM) CA scores ANOVA Wilcoxon (p-value)

Smoker Former smoker Non-smoker CA1 CA2 p-value S-nS fS-nS

PC aa C32:1 71.0966.01 52.7761.90 45.5261.55 1.13 0.17 6.9E-07 1.5E-06 0.039

PC aa (OH, COOH) C30:3 241.3617.7 192.164.53 174.464.07 1.41 0.17 4.1E-07 4.4E-05 0.024

PC aa C34:1 530.4638.8 417.5610.2 389.369.26 2.06 0.04 2.0E-06 3.6E-05 0.22

PC aa C34:0 72.3764.37 57.5761.61 52.261.43 0.78 0.10 3.6E-06 7.2E-06 0.079

PC aa C36:1 172.6611.7 139.463.34 133.663.07 0.93 20.07 4.9E-05 1.9E-04 0.34

PC aa C36:2 490.3633.2 402.668.56 406.869.12 1.08 20.48 5.4E-04 2.3E-02 0.49

PC aa C36:3 299.8624.5 245.764.95 244.1766.38 0.94 20.28 7.7E-04 5.7E-03 0.72

PC aa C38:2 70.1063.54 58.2161.16 58.7361.34 0.37 20.17 3.6E-04 2.7E-03 0.69

PC aa C38:3 152.669.80 121.863.04 116.663.42 0.94 20.07 6.8E-05 1.4E-04 0.26

PC aa C40:4 12.5960.85 9.5760.45 8.6360.29 0.40 0.03 5.4E-04 4.3E-06 0.21

PC aa C40:5 35.4062.42 27.5861.02 25.2660.70 0.58 0.04 1.2E-04 7.6E-05 0.34

PC aa C32:0 33.0461.99 28.5960.71 26.5360.66 0.28 0.06 1.2E-03 1.8E-03 0.21

PE aa C34:2 3.2460.44 2.2060.10 1.9860.12 0.29 0.01 1.7E-04 2.8E-03 0.083

PE aa C36:2 6.5560.95 4.4060.21 3.8860.22 0.43 0.02 6.9E-05 7.0E-04 0.14

PE aa C36:4 3.8060.41 2.7360.12 2.4460.16 0.27 0.02 4.3E-04 8.0E-05 0.015

PE aa C38:4 7.4760.82 5.3860.27 4.7560.27 0.38 0.03 5.9E-04 4.1E-04 0.056

PI aa C36:4 3.8460.35 2.9360.12 2.6460.13 0.22 0.02 1.0E-03 2.0E-03 0.18

PI aa C38:4 33.3962.58 26.9260.93 25.4660.85 0.43 0.01 3.0E-03 1.4E-03 0.37

PC ae C40:6 7.9060.69 8.7860.21 8.7860.21 20.33 0.10 1.4E-02 5.3E-04 0.024

PC ae C36:2 25.0361.73 24.6260.53 26.57 60.60 20.28 0.19 7.3E-02 0.037 0.011

PC ae C38:2 12.6160.78 12.4260.24 13.6960.33 20.22 0.16 8.2E-03 0.059 4.5E-03

SM (OH, COOH) C16:1 33.8962.41 28.3860.77 23.6460.91 0.53 0.24 1.1E-06 3.4E-05 1.6E-05

SM OH C20:3 195.969.81 179.164.48 157.164.74 0.54 0.47 2.9E-04 2.3E-04 1.2E-03

Metabolite names are listed in the first column (for classes and biochemical names, see Table S1). Mean values with standard error of metabolite concentrations in mM
for each group, current smoker (S), former smoker (fS) and non-smoker (nS), are shown in columns 2 to 4, respectively. The first and second component score of the CA
are given in columns 5 and 6. In the last three columns, p-values of ANOVA and Wilcoxon tests are indicated.
doi:10.1371/journal.pone.0003863.t001
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Figure 3. Box plots of the 23 identified nicotine-dependent potential biomarkers. For each metabolite, box plot of current (S), former (fS)
and non-smoker (nS) groups is illustrated. For each group, the five parameters are the smallest concentration of the metabolite, lower quartile,
median, upper quartile, and largest observation. The points outside the quartiles are outliers.
doi:10.1371/journal.pone.0003863.g003
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plasmalogens (PC ae C40:6) are down regulated in smokers

compared to other 11 diacylated phosphatidylcholines and two

sphingomyelines. For the other two acyl-alkylated phosphatidyl-

cholines, PC ae C38:2 and PC ae C36:2, there were seven and five

significantly correlated diacyl-phosphatidylcholines, respectively.

For five metabolites, PC aa C32:1, PC aa (OH,COOH) C30:3,

PC aa C34:1, PC aa C34:0 and PC aa C36:1, the ratios with the

three acyl-alkyl-phosphatidylcholines were all significantly corre-

lated with the nicotine consumption. These results further suggest

that smokers have higher concentrations of diacyl-phospholipids

and lower concentrations of the plasmalogens, whereas the

opposite is seen in former and non-smokers. Notably, these five

diacyl-phospholipids were found to have the most significant p-

value of ANOVA and Wilcoxon tests based on the single

metabolite study (Table 1). For the most statistically significant

five metabolites, the results based on single metabolites and ratios

of metabolites pairs agree with each other.

Discussion

Our data provide clear evidence that metabolic profiling reflects

human metabolism. We calculated correlation of all metabolite

concentration pairs. Clustering results revealed that metabolites in

related functional contexts are highly correlated. This is also

consistent with similar conclusions of a mouse study based on 67

studied metabolites [26]. This demonstrates that metabolic profiles

are biologically and statistically meaningful.

We applied our metabolic profiling to investigate the impact of

cigarette smoking. Significant changes were observed mainly for

clusters of lipid metabolites. Moreover, the 23 biomarkers that we

could identify are all lipids, consistent with the observation that cell

membranes are affected or damaged due to the influence of

tobacco smoking [27]. The physiological importance of lipids is

illustrated by the numerous diseases to which lipid abnormalities

contribute, including atherosclerosis, diabetes, obesity, and

Alzheimer’s disease [28]. Lipids are major components of

biological membranes, which maintain the integrity of cells and

allow the compartmentalization of the cytoplasm into specific

organelles. Cigarette smoke, then, might affect or even damage

cell membranes, thus influencing the concentrations of related

metabolites, namely the biomarkers discovered in this study.

Glycerophospholipid metabolism and ether lipid metabolism

share one small molecule, 1-acyl-glycerone 3-phosphate

[29,30,31]. In the ether lipid metabolism pathway, a unique

Table 2. Significantly correlated ratios of metabolite concentration with smoker phenotype

Metabolite M1 Metabolite M2 n-cases Ratio (M1/M2) Ratio (M2/M1)

r p-value r p-value

PC ae C40:6 PC aa C32:1 283 0.333 9.5E-09 20.378 5.0E-11

PC ae C40:6 PC aa (OH, COOH) C30:3 283 0.317 4.8E-08 20.398 3.7E-12

PC ae C40:6 PC aa C34:1 283 0.320 3.7E-08 20.393 6.6E-12

PC ae C40:6 PC aa C34:0 283 0.339 4.8E-09 20.393 7.1E-12

PC ae C40:6 PC aa C36:0 283 0.317 4.8E-08 20.360 4.4E-10

PC ae C40:6 PC aa C38:5 283 0.317 5.3E-08 20.346 2.3E-09

PC ae C40:6 PC aa C40:6 283 0.314 7.0E-08 20.396 4.6E-12

PC ae C40:6 PC aa C38:3 283 0.317 5.1E-08 20.395 5.6E-12

PC ae C40:6 PC aa C40:4 283 0.313 7.3E-08 20.352 1.1E-09

PC ae C40:6 PC aa C40:5 283 0.356 7.0E-10 20.403 1.9E-12

PC ae C40:6 PC aa C38:2 283 0.302 2.2E-07 20.385 1.9E-11

PC ae C40:6 PC aa C36:1 283 0.305 1.6E-07 20.387 1.5E-11

PC ae C40:6 SM (OH, COOH) C16:1 283 0.329 1.4E-08 20.377 5.4E-11

PC ae C40:6 SM OH C20:3 283 0.315 6.5E-08 20.345 2.4E-09

PC ae C38:2 PC aa C32:1 283 0.326 1.9E-08 20.364 2.8E-10

PC ae C38:2 PC aa C38:3 283 0.313 7.9E-08 20.346 2.2E-09

PC ae C38:2 PC aa C34:0 283 0.317 5.0E-08 20.377 5.2E-11

PC ae C38:2 PC aa C36:1 283 0.316 5.5E-08 20.358 5.7E-10

PC ae C38:2 PC aa C34:1 283 0.305 1.6E-07 20.363 3.2E-10

PC ae C38:2 PC aa C38:2 283 0.300 2.8E-07 20.342 3.6E-09

PC ae C38:2 PC aa (OH, COOH) C30:3 283 0.309 1.1E-07 20.352 1.1E-09

PC ae C36:2 PC aa C36:1 283 0.320 3.7E-08 20.335 7.3E-09

PC ae C36:2 PC aa (OH, COOH) C30:3 283 0.309 1.2E-07 20.344 2.8E-09

PC ae C36:2 PC aa C34:0 283 0.304 1.8E-07 20.342 3.7E-09

PC ae C36:2 PC aa C34:1 283 0.303 2.0E-07 20.341 4.0E-09

PC ae C36:2 PC aa C32:1 283 0.301 2.5E-07 20.327 1.7E-08

Two metabolites M1 and M2 are listed in the first two columns. Pearson’s correlation coefficient r of metabolite ratios of M1/M2 and M2/M1 positively and negatively
correlated with smoker phenotype are shown in columns 4 and 6, respectively. The corresponding p-values of n-cases of t-tests are indicated in columns 5 and 7,
respectively.
doi:10.1371/journal.pone.0003863.t002
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biochemical reaction is catalyzed by the enzyme alkylglycerone

phosphate synthase (alkyl-DHAP, EC 2.5.1.26) resulting in the

formation of the ether bond by replacement of the sn-1 fatty acid

with a long chain fatty alcohol (Figure 5). The following

biosynthesis steps in both ether lipid and diacyl-phospholipids

converge in a reaction catalyzed by acylglycerone phosphate

reductase (EC 1.1.1.101), which is utilized in the synthesis of both

ether lipids and diacylated phopholipids [32]. Following similar

synthesis steps in the ether lipid and glycerophospholipid

pathways, acyl-alkyl-phosphatidylcholines and diacyl- phosphati-

dylcholines will be either intermediate or end products of the two

pathways. Alkylglycerone phosphate synthase is encoded by AGPS,

the gene in Homo sapiens. Interestingly, in a human lung project

[33], it was found that the AGPS gene expression is highly

Figure 4. Significantly corrected pairs of metabolites with smoking phenotype. Significantly correlated pairs of metabolites are
demonstrated by dashed lines. For more details, see Table 2. Similar classes of metabolites are shown with the same color.
doi:10.1371/journal.pone.0003863.g004

Figure 5. In smokers, reduced or lack of activity of the enzyme alkyl-DHAP may further regulate the ratio of acyl-alkyl- to diacyl-
phosphatidylcholines in the ether lipid- and glycerophospholipid pathways. Part of the pathways of the glycerophospholipid- and ether
lipid metabolism are shown. The names of the small molecular are indicated. Enzymes alkylglycerone phosphate synthase (alkyl-DHAP, EC 2.5.1.26)
and acylglycerone phosphate reductase (EC 1.1.1.101) are shown in red and blue.
doi:10.1371/journal.pone.0003863.g005
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increased in former and non-smokers relative to current smokers

(Figure S6). The upregulation of alkyl-DHAP seen in our

metabolite profiles and independent in a gene expression study

further corroborates its role in defects linked to smoking.

Human newborns of nicotine-exposed pregnancies reveal

growth retardation due to impairment of uteroplacental circula-

tion as a result of the vasoconstricting effect of nicotine [34].

Studies in the rat showed that mechanisms involving deterioration

development of fetal alveolae and up regulation of lipid

peroxidation by P450 enzymes [35,36]. In this respect, our study

provides a novel insight in that nicotine affects plasmalogen levels.

Plasmalogen comprise a major portion of the phospholipids in the

adult human central nervous system. Overall, it was shown that

newborn plasmalogen levels are relatively low (7% of total

phospholipid mass) [32]. As the plasmalogens may influence the

surface tension in alveolar surfactants [37], we hypothesize that

this would be triggered as well by nicotine. Isolated (single gene

defect) deficiency in human AGPS gene function further indicate

that this gene is embryonic essential and its inactivation leads to a

lethal phenotype [38,39]. This gene is also affected in other

disorders of biogenesis, such as Zellweger Syndrome or Rhizo-

melic chodrodisplasia punctata type 3 [40]. Therefore, all factors

that influence ether lipid balance, including nicotine as shown

here, are of potential risk to human health.

Our metabolic profiling provides a snapshot of the complex

human metabolome. More detailed profiles in combination with

kinetic experiments for blood sample collection are necessary to

draw a comprehensive map and will reflect physiological processes

as responses to developmental, genetic or environmental factors

[16,17,41,42].

The 198 detected metabolites are a large dataset in human

blood samples, though much smaller in comparison to the human

metabolomics database, which currently has a collection of about

2,500 metabolites [43]. Previously identified biomarkers of ND

metabolites [9,44], such as nicotine, cotinine and carbon

monoxide, are not in our dataset. In addition to further technical

improvements in metabolite detection sensitivity, samples from

urine and other tissues are needed to enlarge our dataset.

Our study represents the first large screen of metabolites to

study the influence of cigarette smoking on human blood serum.

Albeit we are aware that the sample size of current smokers in this

pilot study is small, our results are encouraging and we could show

that the smokers are distinctly separated from former and non-

smokers. In general, similar observations were obtained at an

individual level, though with large variance. An interesting

observation is that former smokers were found to be separated

from non-smokers, suggesting that the influence of cigarette smoke

in human blood remains for years. We note, however, that the

group of former smokers is not well-defined in this study because

the time when these individuals quit smoking is not documented.

Damage to the cell membrane from smoking may be reversed

over time due to the repair mechanisms in the human body

[45,46].

The independent but consistent observation from our metabolic

profile analysis and AGPS gene expression data may indicate that

smoking affects the enzymatic activity of alkyl-DHAP and thus

change the ratios of two types of metabolites. However, the overall

fat metabolism is likely not be affected, as the BMI does not vary

significantly between the groups of current, former and non-

smokers (data not shown).

Our analyses suggest that small molecules that activate the

enzyme alkyl-DHAP could be developed to treat plasmalogens

deficiency disorders that are caused by nicotine consumption in

smokers.

Materials and Methods

Sample Source
KORA (Cooperative Health Research in the Region of

Augsburg) is a population-based research platform with subse-

quent follow-up studies in the fields of epidemiology, health

economics and health care research [5,6,7]. It is based on

interviews in combination with medical and laboratory examina-

tions, as well as the collection of biological samples. Answers from

the participants were found to be reliable [47]. Details about the

questionnaire forms and variables can be found at KORA-gen [5]:

http://epi.gsf.de/kora-gen/. Four surveys were conducted with

18,079 participants. KORA-S3 consists of representative samples

from 4,856 individuals. The dataset comprises individuals aged

25–74 years resident in the region of Augsburg, Southern

Germany, examined in 1994–1995. During the years 2004–

2005, 2,974 participants participated in a follow-up (KORA-F3)

survey of the one conducted 10 years ago. For all studies, we

obtained written consent from participants and approval from the

local ethical committees.

Sampling
Randomly selected population-based 283 male participants

(aged 55–79 years) of KORA-F3 were used in the current study.

Of the 283 individuals, 28 were current smokers (S), who smoked

one to 50 (mean 17) cigarettes per day. Out of the 28 smokers,

only nine completed the Fagerstöm test of ND form (FTND), the

score of which reflects the addiction level of dependence on

nicotine, and these data were not used in this study. Those who

ceased smoking but smoked at least one cigarette daily were

classified as former smokers. Non smokers had never smoked at

the time when the study was conducted while 154 and 101 were

former smokers (fS) and non-smokers (nS), respectively.

In KORA study, to characterize the nicotine consumption, the

current smoker is defined as 1; sometimes smoker is defined as 2;

former and non-smoker are quantified as 3 and 4, respectively.

Blood samples were collected in 2006. The standardized

biological sample collections applied have been described in detail

previously [5,6,7,48]. Blood was drawn in the morning between 8

and 10 am and was immediately horizontal shaken for 10 minutes,

followed by 40 minutes resting at 4uC to obtain complete

coagulation, and finally centrifugation of blood was performed

at 2000g, 4uC for 10 minutes for serum collection. Serum was

aliquoted and kept for 2–4 hours at 4uC, after which it was frozen

at 280uC until metabolic analyses.

Metabolite measurements
Targeted metabolite profiling by electrospray ionization (ESI)

tandem mass spectrometry (MS/MS) was performed on a fee-for-

service basis on a quantitative metabolomics platform at Biocrates

Life Sciences AG, Austria. The company had no access to phenotype

information that would have permitted any data prefiltering other

than objective quality control for measurement errors based on

internal controls and duplicates. All metabolomics data was used

as received from Biocrates. We did not apply any data correction,

nor were any data points removed. The experimental metabo-

lomics measurement technique is described in detail by patent US

2007/0004044 (accessible online at http://www.freepatentsonline.

com/20070004044.html). A summary of the method can be found

in [28,49,50]. Briefly, a targeted profiling scheme is used to

quantitatively screen for known small molecule metabolites using

multiple reaction monitoring, neutral loss and precursor ion scans.

Quantification of the metabolites of the biological sample is

achieved by reference to appropriate internal standards. The
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method has been proven to be in conformance with 21CFR (Code

of Federal Regulations) Part 11, which implies proof of

reproducibility within a given error range. It has been applied in

different academic and industrial applications [51,52]. Concen-

trations of all analyzed metabolites are reported in mM.

Analyses of Metabolites
A total of 363 metabolites were targeted. Due to variability in

experimental values some were excluded to ensure robustness of

dataset. In the current study, 198 metabolites were used for

subsequent analyses with an above 95 percent detection rate for

each metabolite. Missing values were replaced with population

mean for multivariate analysis.

The metabolomics dataset (for abbreviation and biochemical

name see Table S1) contains 18 amino acids, eight sugars, six

biogenic amines, four prostaglandins, 29 acylcarnitines, 44

sphingolipids and 89 glycerophospholipids with different head

groups and are further differentiated with respect to the presence

of ester (a) and ether (e) bonds in the glycerol moiety, where two

letters (aa = diacyl, ae = acyl-alkyl, ee = dialkyl) denote that two

glycerol positions are bound to a fatty acid residue, while a single

letter (a = acyl or e = alkyl) indicates the presence of a single fatty

acid residue. Lipid side chain composition is abbreviated as Cx:y,

where x denotes the number of carbons in the side chain and y the

number of double bonds. The precise position of the double bonds

and the distribution of the carbon atoms in different fatty acid side

chains cannot be determined with this technology. In the current

study, we used only the most likely metabolites, whereas possible

alternative assignments were not indicated for cases where

mapping of metabolite names to individual masses was ambigu-

ous.

Statistical Analysis
Pearson’s correlation coefficient, hierarchical clustering meth-

ods and Euler’s distance were employed and calculation was done

in R platform (http://www.r-project.org/). Results of pair-wise

correlations of the metabolites and clustering were illustrated by

heat maps [53].

Three multivariate statistical methods, partial least squares

discriminant analysis (PLS-DA), principal component analysis

(PCA) and correspondence analysis (CA), were used

[14,19,20,21,22]. PLS-DA used partial least squares regression

models for classification and it bears some relation to PCA; Instead

of finding the hyper planes of maximum variance, it finds a linear

model describing some predicted variables (e.g. the behavior of

smokers) in terms of observable variables (e.g. detected metabolites

concentrations). PLS-DA and PCA normalizes the populations to

have a mean of zero and a standard deviation of one for every

metabolite; In CA normalization, however, the whole matrix is

defined to be one and each element is a portion of one. CA has the

advantage that the sample size needs not to be bigger than the size

of variables. All the calculations were done in R platform (http://

www.r-project.org/). Besides the basic packages in R, we use CA

and PLS, as well as the required packages by them. PCA is using

‘‘stats’’ the function: princomp. All these packages can be

downloaded at http://www.r-project.org.

Differences among two or more independent groups were

tested by one-way ANOVA and two-tailed test [23].

Furthermore, a non-parametric Wilcoxon test was performed

[24,25] to determine whether the concentration of each small

molecule was significantly different in the two groups

compared.

Supporting Information

Table S1 The abbreviation, class and biochemical name of each

metabolite. For each metabolite, the abbreviation, class and

biochemical name is listed in the first to third columns, respectively.

Found at: doi:10.1371/journal.pone.0003863.s001 (0.05 MB

XLS)

Figure S1 Classification of the 198 metabolites based on

population-based KORA samples (n = 283): part 1. Each square

represents the Pearson’s correlation coefficient between the

metabolite of the column with that of the row. Metabolite order

is determined as in hierarchical clustering and the corresponding

name of metabolite is shown in Figure S2, due to space limitation.

Found at: doi:10.1371/journal.pone.0003863.s002 (3.42 MB TIF)

Figure S2 Classification of the 198 metabolites based on

population-based KORA samples (n = 283): part 2. The corre-

sponding name of each metabolite is shown.

Found at: doi:10.1371/journal.pone.0003863.s003 (1.76 MB TIF)

Figure S3 Classification of the 198 metabolites by removing the

28 current smokers from the date set (n = 255): part 1. Each square

represents the Pearson’s correlation coefficient between the

metabolite of the column with that of the row. Metabolite order

is determined as in hierarchical clustering and the corresponding

name of metabolite is shown in Figure S4, due to space limitation.

Found at: doi:10.1371/journal.pone.0003863.s004 (3.47 MB TIF)

Figure S4 Classification of the 198 metabolites by removing the

28 current smokers from the date set (n = 255): part 2. The

corresponding name of metabolite is shown.

Found at: doi:10.1371/journal.pone.0003863.s005 (1.69 MB TIF)

Figure S5 Multivariate analysis results of 198 metabolites in 283

serum human samples. (A) Three dimensional PLS-DA results of

283 individuals. The 28 current smokers are displayed in red,

while 154 former smokers and 101 non-smokers are indicated in

blue and green, respectively. (B) Three dimensional PCA results.

(C) Three dimensional CA results.

Found at: doi:10.1371/journal.pone.0003863.s006 (1.48 MB TIF)

Figure S6 Gene expression results of AGPS (Gruber et al., 2006).

Source can be found: http://www.ncbi.nlm.nih.gov/geo/gds/

profileGraph.cgi?&dataset = aXH3AG-CCJRMHhztsoqdPGHQLF-

PQLCCGG69sriID&dataset = kkflcfmdegihflmmmmmlhffihfhigeeff-

klmmlfe$&gmin = 35.410000&gmax = 292.510000&absc = &gds =

1673&idref = 205401_at&annot = AGPS. With kind permission of

Dr. Mark Geraci.

Found at: doi:10.1371/journal.pone.0003863.s007 (1.83 MB TIF)
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H. Grallert, H. Gohlke, B. Kranz, A. Döring, A. Peters, H.W. Mewes and
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