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1 Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany, 2 Institute for Medical Information

Processing, Biometry and Epidemiology, Ludwig-Maximilian University, Munich, Germany, 3 Institute for Statistics, Stablab, Ludwig-Maximilians University, Munich,

Germany

Abstract

Background: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP) genotypes, can lead to
falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects
with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to
provide tools for it.

Methods and Results: By numerous simulation scenarios, we systematically investigated several error measures, including
discrepancy, error rate, and R2, and introduced the sensitivity and specificity to this context. We exemplified several
measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly
reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall
error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing
correlation between the alleles and increasing ambiguity.

Conclusions: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be
computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype
can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in
association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype
reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods
accounting for misclassification.
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Introduction

Haplotypes have been the subject of considerable attention as

they complement the information from the SNP (single nucleotide

polymorphism) genotypes. When viewing the nucleotides of the

two DNA strands as two long rows of code, we consider haplotypes

to summarize the horizontal multi-locus information per strand

while genotypes summarize the vertical information on a single

locus across the two strands. There are several advantages of

haplotypes: In regions of high linkage disequilibrium (LD),

haplotype diversity is said to be limited resulting in only a few

existing haplotypes and thus a gain in power for the analyses [1,2].

Multilocus haplotypes may capture the LD information in a gene

better than methods based on single loci [3]. Furthermore, latent

functional loci may be identified by haplotypes as they serve as

multiallelic markers. Finally, the haplotype may represent the

biologically functional genetic unit rather than the genotypes [4].

Haplotypes can thus provide additional information with respect

to association analysis and localization of complex disease genes

[5], especially in the presence of multiple susceptibility alleles [6].

One draw-back of haplotypes is the fact that experimental

derivation of haplotypes is still not practical for the large number

of individuals in epidemiological studies, but has to be inferred

statistically. The most frequently used methods for haplotype

reconstruction are based either on the maximum likelihood-based

expectation-maximization (EM) algorithm [7] or on a Bayesian

framework incorporating the coalescent model [8,9]. The per-

formance of the various reconstruction methods have already been

compared by some groups on real or simulated datasets [8–12].

PHASE, for example, has been found to outperform other

methods, if the data were generated by a coalescent model [8].

But clearly all methods involve a certain amount of error in the

reconstructed haplotypes.

Fallin and Schork [13] investigated the haplotype error using

the mean squared error (MSE), which was found to increase with

increasing minor allele frequency (MAF), decreasing LD and
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increasing number of loci. However, the MSE summarizes the error

in the estimated haplotype frequencies rather than the error in the

individuals’ haplotypes, which is of interest in haplotype association

analyses. One commonly used error measure for the error in the

individuals’ haplotypes is the error rate of which some authors have

described selected aspects [8,10–12] . However, a systematic

investigation of the error rate is still lacking. Furthermore,

researchers are often interested in subjects carrying a specific

haplotype and thus rather in the error in assigning this haplotype

than in an error measure averaging across all haplotypes. Individual

haplotypes are coded as trichotomous variables, which results in a

straight-forward 363 misclassification problem. In association

analysis models, misclassification in independent variables, in this

case the haplotypes, are known to yield biased estimates [14,15]. The

amount of bias depends on the magnitude of the error. If the

corresponding 363 misclassification matrix is known, it completely

describes the error mechanism and can be used for post-hoc

adjustment of haplotype association analyses.

There are methods available, which do not infer individual

haplotypes but instead use estimates of the distribution of haplotypes

given the observed genotypes to estimate risk parameters within a

likelihood framework ([16–21]). However, these methods are often

limited to specific study types or modelling techniques. Inferred

individual haplotypes provide the advantage of being easily adapted

into the framework of generalized linear models and can thus be

analyzed with standard statistical software. For haplotypes that are

fairly well reconstructed, the analysis of inferred haplotypes is

unbiased and is more powerful than the analysis based on expected

haplotype probabilities [22]. For haplotypes with higher uncertainty

in reconstruction, information of the misclassification probabilities

can be used to correct association estimates, for example using the

MC-SIMEX method [23].

However, downstream association analyses are not the only

reason for inferring haplotypes. Haplotypes can also be used to put

up phylogenetic trees or for selection of certain subjects in a study.

Researchers in the need to select study subjects with specific

haplotypes for subsequent in-depth functional studies use the

haplotype assignment to individuals and rely on sufficient

assignment certainty for subject selection.

For these reasons we think it is worthwhile to have a closer look

at haplotype uncertainty with special emphasis on misclassification

probabilities of individually inferred haplotypes.

Therefore, we aimed at a general understanding of the

magnitude of haplotype reconstruction error in a systematic

approach by simulations and analytical derivations. We applied

various simulation scenarios including scenarios based on realistic

haplotype distributions from our epidemiological study at hand.

We present a systematic overview of error measures with focus on

haplotype-specific error measures posing a classical misclassifica-

tion problem and present the sensitivity and specificity as two

intuitive measures. We outline analytical and simulation ap-

proaches to quantify several error measures, describe the size and

dependencies of these haplotype errors and show the impact on

odds ratio estimates.

Methods

Notation and Definitions
Let L be the number of loci and N the number of individuals. For each

individual i = 1, ...,N, the vector Gi = (Gi1,...,GiL) denotes the

subject’s genotypes at the L loci, l = 1, ...L, with Gil indicating the

number of minor alleles at locus l for individual i and GilM{0,1,2}.

Consequently, there are 3L possible values c = (c1,...,cL) for Gi.

There are M = 2L possible different haplotypes h1, ..., hM in the

population, the haplotypes of subject i can be written as a vector

Hi = (Hi1,...,HiM), with each Him indicating the true number of copies of

the haplotype hm of subject i, m = 1, ..., M, and HimM{0,1,2}. Due to

the restriction
P

m~1,...,M

Him~2, there are
Mz1

2

� �
possible

values g = (g1,..., gM) for Hi. Hi thus denotes the individual’s

haplotype pair (‘‘diplotype’’) and the various g reflect all possible

pairs. The number of different pairs actually appearing in a sample

is further restricted by the correlation between the alleles at the

loci. The effective number of loci, Leff, can be computed according

to Nyholt [24] taking this correlation into account. Note that the

term ‘‘allele’’ and ‘‘haplotype’’ is not used completely consistent in

the literature. We define an allele to be one of the different values

on one chromosome at a SNP locus and haplotypes to be the

combination of the alleles across several loci. The diploid human

beings thus exhibit two alleles (at one SNP locus) and two

haplotypes (across several SNP loci).

When statistically reconstructing haplotypes from genotypes, the

reconstructed number of copies of each haplotype in subject i is denoted as

Hi* = (Hi1*,...,HiM*) being the vector of the expected values given

the observed genotypes Gi as estimated by a reconstruction

program: Hi* = E(Hi|Gi). As an unambiguous decision for a

haplotype pair is not always possible, the Him* move in a

continuous space, Him* M [0,2]. The most probable or most likely number

of haplotypes Cim* is derived by categorizing Him* into the most likely

haplotype pair for each individual with Cim* indicating the observed

number of copies of the haplotype hm, thus returning to the discrete

space, Cim*M{0,1,2}. They are also often denoted as individually

inferred haplotypes.

Haplotypes can be inferred unambiguously (i.e. without error)

for subjects being heterozygous in less than two loci. The ambiguity

fraction is the number of subjects being heterozygous for at least two

loci, Namb, divided by N, which thus describes the proportion of the

sample where haplotype reconstruction error might occur.

The frequencies of the haplotypes h1,..., hM in the sample are

denoted as f = (f1,..., fM) with fm~
P

i~1,...,N

Him=2N, m = 1, ..., M,

1~
P

m~1,...,M

fm. The sampling error for estimating the frequency is

considered to be ignorable in large enough data sets. Analogously,

the frequencies of the reconstructed haplotypes Hi* are denoted as

f* = (f1*,...,fM*).

Measures of the haplotype reconstruction error
The accuracy of haplotype reconstruction can be measured in

different ways for different purposes. We propose a classification

based on three characteristics: (1) The uncertainty across all

haplotypes (1a, ‘‘overall error measure’’), versus the error in a

specific haplotype (1b, ‘‘haplotype-specific error measure’’). (2)

The uncertainty in a sample statistics (2a, i.e.: haplotype

frequencies, fRf*) versus the uncertainty in individuals’ haplotypes

(2b). (3) To further differentiate 2b: The error made by using the

expected number of haplotype copies, HRH* (3a), versus the

error made by using the most probable haplotype, HRC* (3b).

The measures are defined and related to the above stated classes in

the following (for a summary, see Table 1):

Discrepancy. The discrepancy D is the average of the

differences between true and reconstructed haplotype frequencies,

providing an ‘‘overall measure’’ of the error fRf * based on the

summary statistics f instead of the subjects’ haplotypes (class 1a, 2a):

D~D f1, . . . , fM , f �1 , . . . , f �M
� �

~
1

2

XM
m~1

fm{f �m
�� ��:

Haplotype Misclassification
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A haplotype-specific discrepancy is given by Dm fm, f �m
� �

~
1
2

fm{f �m
�� �� for m = 1,..., M (class 1b, 2a). The discrepancy is close to

the mean squared error (MSE) [11,13], which is another way of

averaging.

Error rate. The error rate among all individuals,

ERall~
Xn

i~1

1{cið Þ=N, where ci~
0,Hi=C�i
1,Hi~C�i

�
,

is the proportion of subjects with falsely classified haplotypes.

Another definition is the error rate restricted to the subjects with

ambiguous reconstruction, ERamb, where Namb replaces the N in the

denominator [8]. ERall and ERamb are ‘‘overall measures’’ of the

error HRC* (class 1a, 2b, 3b).

Proportion of explained variance, R2
m. Rm

2, defined as the

squared correlation between Him and Him* [25], m = 1, ..., M, is a

haplotype-specific measure for the error HRH* (class 1b, 2b, 3a). It

is computed as the ratio of the haplotype variance explained by the

genotypes, Var(Him*), to the variance of the Bin(2, fm)-distributed

(true haplotype frequency), 2f̂m*(12f̂m*), assuming no error in the

haplotype frequency from reconstruction (fm = fm*).

Sensitivity and specificity. In the context of haplotypes,

sensitivity and specificity are defined as ‘‘the probability that a true

carrier of a certain haplotype is classified as such’’ (sensitivity) and

‘‘the probability that a true non-carrier is classified as such’’

(specificity), respectively, for m = 1, .., M,

Snm~P C�imw0 Himj w0
� �

and Spm~P C�im~0 Him~0j
� �

:

Thus, 12Snm and 12Spm measure the ‘‘haplotype-specific error’’

HRC* (1b,2b,3b).

Misclassification probabilities. The error resulting from the

transition HRC* is a pure misclassification problem for a tri-

chotomous variable, which is described by a 363 misclassi-

fication matrix consisting of the misclassification probabilities

pkl = P(Cim* = k|Him = l), k,l = 0,1,2. Assuming no genotyping error,

the subjects truly having two copies of a haplotype (true homozygous)

as well as subjects with two copies of a haplotype in the

reconstruction (observed homozygous) have always homozygous

genotypes for all loci. These haplotypes can be reconstructed

unambiguously and the misclassification probabilities p20, p21, p02,

and p12 equal zero. The misclassification matrix is then completely

determined by sensitivity, specificity and the true haplotype

probabilities or the observed haplotype probabilities (see Table 2).

Data
SNP data on numerous genes in a subsample of the population-

based KORA study were available as examples. This sample of

704 individuals aged 55 to 74 years was a subset of the fourth

survey (S4) of the KORA (Cooperative Research in the Region of

Augsburg) study from 1999–2001 [26]. Genotypes were obtained

via mass spectrometry (MALDI-TOF MS). The 8 genes in this

investigation had been discussed as possible risk factors for

diabetes, but had shown no or only a small association [27,28] :

IL-18, IL-13, MIP1A , INS, IL-6, MCP1, TNFA, and CAPN10. We

Table 1. Classification of measures for the haplotype reconstruction error.

Error in haplotype frequency Error in subject-specific haplotype Hi
1

Overall measure Discrepancy (D) Error rate among all subjects (ERall)

Error rate among ambiguous subjects (ERamb)

Haplotype-specific measure Discrepancy per haplotype (Dm) Correlation between true and reconstructed haplotypes (Rm
2)

Sensitivity (Snm) and Specificity (Spm)

Misclassification probabilities

1Hi denotes the vector of length M coding the number of copies of true haplotypes of subject i, i = 1, ..., N for the m = 1, ..., M possible haplotypes.
doi:10.1371/journal.pone.0001853.t001

Table 2. Misclassification matrices for haplotype
reconstruction error.

Misclassification matrix in its most general form

Reconstructed Cim*

0 1 2 g

True
Him

0 p00
(m) p10

(m) p20
(m) 1

1 p01
(m) p11

(m) p21
(m) 1

2 p02
(m) p12

(m) p22
(m) 1

Misclassification probabilities for haplotype reconstruction error expressed
by sensitivity, specificity, and true genotype probabilities

Reconstructed Cim*

0 1 2 g

True
Him

0 Sp 1-Sp 0 1

1 p
mð Þ

1
zp

mð Þ
2

{Sn p
mð Þ

1
zp

mð Þ
2ð Þ

p
mð Þ

1

Sn p
mð Þ

1
zp

mð Þ
2ð Þ{p

mð Þ
2

p
mð Þ

1

1 1

2 0 0 1 1

Misclassification probabilities for haplotype reconstruction error expressed
by sensitivity, specificity, and observed genotype probabilities

Reconstructed Cim*

0 1 2 g

True
Him

0 Sp 1-Sp 0 1

1 {p�
0
{Sp p�

0
{p�

1
{p�

2ð Þ{Snp�
0

p�
2
{p�

0
zSp p�

1
zp�

0ð Þ{Snp�
2

p�
2
{Spp�

2
{Sn p�

0
zp�

2ð Þ
p�

2
{p�

0
zSp p�

1
zp�

0ð Þ{Snp�
2

0 1

2 0 0 1 1

Misclassification probabilities: pkl
(m) = P(Cim* = K|Him = l), k,l = 0,1,2, m = 1,..., M, for

subject i; sensitivity: Snm = P(Cim*.0|Him.0); specificity: Spm = P(Cim* = 0|Him = 0);
true or reconstructed haplotypes’ probabilities (i.e. probabilities that a subjects
has k number of copies of haplotype hm): pk

(m) = P(Him = k), k = 0,1,2;
pk

(m)* = P(Cim* = k); true or reconstructed number of copies of hm: Him or Cim*,
respectively.
doi:10.1371/journal.pone.0001853.t002
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reconstructed haplotypes by the EM algorithm and derived

haplotype frequencies. Depending on the gene, 2–7 loci were

involved. Additionally, haplotype frequencies were derived by

PHASE, but the differences to EM-derived haplotype frequencies

were very small and had no impact on our results, and thus results

using PHASE-derived input haplotype frequencies are not

reported here.

Simulations and analytical approach to quantify
haplotype reconstruction error

In the simulations, true haplotype frequencies were taken as

input parameters. For each simulation run, 1000 haplotypes were

randomly drawn given the haplotype frequency distribution thus

creating two copies of the haplotypes for 500 subjects assuming

Hardy-Weinberg equilibrium. Genotypes were deduced and

haplotypes were reconstructed from these genotypes using the

EM as well as the PHASE algorithm. The reconstructed

haplotypes were compared with the true haplotypes using the

various error measures. For 100 simulations, the mean and the

standard deviation of the error measures were computed. These

mean error measures from the simulations were compared with

analytical computations, which we derived (Appendix S1).

To derive the true haplotype frequencies as input parameters,

different scenarios were implemented for the simulations and the

analytical computations:

Abstract scenarios included three types: (a) A two-locus scenario

varying the frequency f1 of haplotype h1, while two other

frequencies f3 and f4 are set at 0.1 and 0.05. (b) Another two-

locus scenario varying the MAFs of locus 1 and locus 2,

MAF1 and MAF2, and the correlation r. With DLD~

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF1

: 1{MAF1ð Þ:MAF2
: 1{MAF2ð Þ

p
[29], the haplo-

type frequencies were derived as f1 = DLD2MAF1?MAF2,

f2 = 2DLD+(12MAF1)?MAF2, f3 = 2DLD+MAF1?(12MAF2), and

f4 = DLD2(12MAF1)?(12MAF2). (c) Various multi-locus scenarios

assuming equal MAFs for 3–6 loci under the assumption of r = 0.

Real data scenarios used the sets of haplotype frequencies as they

were observed in the KORA data described above.

Impact of haplotype reconstruction error on odds ratio
estimates

To evaluate the impact of haplotype misclassification on

association estimates, we constructed a case-control study with 500

controls and 500 cases, with a given ‘‘true’’ Odds Ratio (OR) and

frequency of the risk haplotype assuming a dominant genetic model.

With these specifications, a simple 262 contingency table can be

constructed. Via the matrix method [30], we derived an analogous

contingency table that could be expected to be observed under the

given sensitivity and specificity specifications. From these, we can

calculate the ‘‘observed’’ OR and compare it with the given OR.

Results

Discrepancy
Figure 1A illustrates that the discrepancy increases steadily with

increasing frequency of one haplotype (other frequencies fixed,

abstract scenarios type a) until it reaches a maximum of 0.00917 for

f1 = 0.46, and then, for f1.0.61, it decreases monotonically. The

discrepancies in real data scenarios (Table 3) show values below 0.005

indicating an average difference between true and reconstructed

haplotype frequencies below 0.5%, except for MCP1 and CAPN10.

There is a small difference when comparing EM- or PHASE-derived

haplotypes yielding a smaller discrepancy using the EM for INS and

MCP1, and a smaller discrepancy using PHASE for IL-6.

Figure 1. Discrepancy and error rate depending on haplotype frequency: A) Discrepancy (from simulations) and error rate (analytically
derived), B) ambiguity fraction and correlation coefficient r (Abstract type a scenarios: two loci varying frequency f1 of haplotype h1 = 00 with f3 = 0.1
and f4 = 0.05 for h3 = 01 and h4 = 11).
doi:10.1371/journal.pone.0001853.g001

Table 3. Discrepancy for real data scenarios.

leff l Gene EM PHASE

1.02 2 IL-18 0.000060.0000 0.000060.0000

1.06 3 IL-13 0.000160.0003 0.000160.0003

1.15 2 MIP1A 0.000260.0004 0.000260.0004

1.69 4 INS 0.000360.0007 0.000560.0006

2.31 3 IL-6 0.000860.0011 0.000660.0007

2.96 3 MCP1 0.013060.0070 0.015060.0080

3.00 3 TNFA 0.004060.0030 0.004060.0030

6.38 7 CAPN10 0.032060.0090 0.032060.0100

Values given are discrepancy D6standard deviation using the EM- or PHASE-
reconstruction, stating the number of effective loci, leff, and the number of loci,
l.
doi:10.1371/journal.pone.0001853.t003
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Error rate
For the two-locus scenario varying one haplotype frequency

(abstract scenarios type a), the error rate (see Figure 1A) reaches a

maximum of 0.056 for f1 = 0.57 and is minimal for small f1 or for

large f1. To understand the location of this maximum, the

ambiguity and the correlation coefficient r are displayed in

Figure 1B: At the maximum, the alleles show zero correlation. It

also becomes apparent that the correlation has a stronger

influence on the error rate than the ambiguity in this 2-locus

case.

Figure 2. Error rate for varying MAF and correlations for two loci: Analytically derived error rate for A) r = 0, B) r = 0.25, C) r = 0.5, D) r =
0.75 (Abstract type b scenarios)
doi:10.1371/journal.pone.0001853.g002
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Figure 2 depicts the dependency of the error rate on the MAFs

and r (abstract scenario type b): the smaller the MAF, the smaller the

error. The error is minimal, when both MAFs are small. This is

due to the fact that the ambiguity is smaller for lower MAF as

there are fewer genotypes deviating from the wildtype and thus

fewer heterozygotes. Furthermore, the error decreases for

increasing r. Note that high correlation imposes strong restrictions

on the possible MAF combinations, as the MAF of the second

locus can only slightly deviate from the MAF of the first locus and

thus the parameter space is reduced (Figure 2D). When r = 0,

ERamb is 0.5, which is like flipping a coin (Figure 2A) for assigning

haplotypes to ambiguous subjects.

In Figure 3A, which depicts the multi-locus scenarios under no

LD (abstract scenarios type c), it can be seen that the error rate

increases with the number of loci. This is due to the fact that the

probability of a subject being heterozygous in at least two loci

increases with the number of loci involved, which is depicted by

the increasing ambiguity fraction (Figure 3C). But this is not the

sole reason as it can be seen that also ERamb increases with the

number of loci (Figure 3B): The number of haplotypes increases

and thus the pool for misclassification enlarges. It can further be

seen, that in the case of MAF = 0.5 when all alleles and

consequently all haplotypes are equally frequent, the ERamb is as

large as when a die was rolled for haplotype assignment of

ambiguous subjects. This is due to the fact that then the

haploptype inference is guided by neither the correlation nor the

haplotype frequency. When MAF,0.5 and haplotypes occur with

different frequencies, the reconstruction can improve by preferring

haplotype pairs containing more frequent haplotypes. Note that

Figure 3 shows a worst-case scenario indicating the maximum

possible error due to the no-LD assumption. As it is unreasonable

to infer haplotypes in such a situation in the first place, these error

rates remain unmatched in real data scenarios. It should further be

noted that the error rate derived from simulations instead of using

the analytical approach was practically the same, but slightly lower

(data not shown).

Table 4 shows that the error rates for real data scenarios vary

substantially between genes: The error rate is large for genes with

low LD between loci, which are the genes showing a small

difference between the number of loci and the effective number

Figure 3. Error rate for varying number of loci and MAF under no correlation: A) ERall and B) ERamb and C) ambiguity analytically derived for
abstract type c scenarios (2-6 loci, r = 0, equal MAF at each locus).
doi:10.1371/journal.pone.0001853.g003

Table 4. Error rate for real data scenarios.

leff l gene Simulations using EM Simulations using PHASE Analytical Approach

ERamb ERall ERamb ERall ERamb ERall

1.023 2 IL-18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.064 3 IL-13 0.000160.0008 0.000060.0003 0.000160.0008 0.000060.0003 0.0001 0.0000

1.149 2 MIP1A 0.000260.001 0.000160.0004 0.000060.0010 0.000160.0004 0.0002 0.0001

1.687 4 INS 0.000760.0019 0.000360.0008 0.000660.0017 0.000360.0007 0.0002 0.0001

2.313 3 IL-6 0.002060.003 0.000860.0015 0.000560.0014 0.000360.0007 0.0003 0.0001

2.959 3 MCP1 0.256060.046 0.04860.01 0.258060.051 0.4860.10 0.2460 0.0460

2.999 3 TNFA 0.45660.166 0.0160.0040 0.42860.1670 0.1060.004 0.3900 0.0090

6.384 7 CAPN10 0.19960.024 0.12560.015 0.19760.0240 0.12360.015 0.1870 0.1170

Values given are overall error rate (ERall) and the error rate among ambiguous subjects (ERamb)6standard deviation derived from simulations with EM-reconstruction,
PHASE-reconstruction, as well as the error rate computed by the analytical approach given in Appendix S1.
doi:10.1371/journal.pone.0001853.t004
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of loci (e.g. for MCP1, TNFa, CAPN10). For most genes, the error

rate is well below 1%, which indicates that for 99% of the

subjects the haplotypes are perfectly reconstructed. In these real

data scenarios, the error rate of PHASE-reconstructed haplotypes

is very similar to EM-based haplotypes; the analytical approach

yields similar results as the simulation approach, but slightly

lower.

Haplotype-specific error measures: R2, sensitivity and
specificity

We developed a star plot to summarize the haplotype-specific

errors: Figure 4 and 5 show star plots for three selected genes with

,5 loci and for the CAPN10 gene involving 7 loci (real data

scenarios). The measures were derived analytically (Appendix S1

and S2), but were very similar in the simulations. Comparing

Figure 4 with Table 4 shows that high R2 appears together with

high sensitivity, and that low error rate occurs with high R2 and

high sensitivity.

Furthermore, it can be seen that the specificity is reduced rather

for common haplotypes (e.g. 98% for haplotype 000 for TNFa,

97% for 0000000 of CAPN10). On the other side, the sensitivity is

reduced rather for rare haplotypes (e.g. 101 of MCP1). However,

there are also rare haplotypes which show almost perfect sensitivity

(e.g. 0010101 for CAPN10).

Figure 4. Haplotype-specific error measures: Star plots for various genes displaying R2, sensitivity and specificity (analytically derived) as the
length of the line for each common haplotype (frequency 3 1%). A line reaching the circle indicates a value of 100% (no error). Haplotypes are labelled
using 0/1 coding for major/minor allele and stating the haplotype frequency. Lines are sorted clockwise by haplotype frequency beginning at the top
with the most frequent haplotype. The angle between lines is given by the number of possible haplotypes, i.e. 360u/2L, where L is the number of loci.
The proportion without lines thus indicates the proportion of rare or non-existing haplotypes (,1% frequency).
doi:10.1371/journal.pone.0001853.g004
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Impact of haplotype error on Odds Ratio estimates
Figure 6 illustrates how the observed odds ratio (OR) for a

specific risk haplotype decreases with decreasing sensitivity and

specificity of reconstructing this risk haplotype, here shown for a

given OR of 2 and frequency of risk haplotype of 0.2. Note the

different scales for sensitivity and specificity. For example, if the

risk haplotype is reconstructed with specificity 0.995 and sensitivity

0.500, an OR of 1.8 will be observed, although the true OR is 2.0.

The same bias can be expected for a specificity of 0.960 and

sensitivity 0.995. Therefore, only a very small decrease in

specificity from 1 can result in the same bias as a high decrease

in sensitivity.

Discussion

We provide a classification of the various error measures of

haplotype reconstruction error. We introduced sensitivity and

specificity well-known from other areas of biomedical research to

the context of haplotypes and present an analytical computational

approach. We illustrated the quantity of the various error

measures and their dependencies upon haplotype frequency,

minor allele frequency, correlation, number of loci and ambiguity

in a systematic way. Our data emphasize the dependence of the

haplotype reconstruction error on the specific situation, the

importance of haplotype-specific error measures and the possible

impact on association analyses.

Overall error measure based on haplotype frequencies or
on individuals’ haplotypes (discrepancy versus error rate)

While the discrepancy measures the error in the haplotype

frequencies, the error rate depicts the error in the individual’s

haplotype assignment. Both measures summarize across all the

different haplotypes in the sample. Fallin and Schork [13] stated that

the discrepancy was small. This is supported by our data, as we

observed discrepancies less than 0.005. However, we found that this

observation of small discrepancies could not be transferred to

individuals’ haplotype error, for example the error rate.

The overall error rate is the most reported error measure [8–12]

and indicates the percentage of subjects with either of the two

haplotypes wrongly assigned. Our data showed that the overall

error rate depended heavily on the specific setting: The error rate

was generally increasing with decreasing correlation between the

alleles and increasing ambiguity fraction. The latter also explains

the increasing error rate with increasing number of loci and

increasing minor allele frequency due to the enlarging proportion

of subjects with ambiguous genotypes (heterozygous genotypes for

at least two loci). While the error rate was small - well below 1% -

in some real data examples (e.g. IL-18, INS), which indicates that

99% of subjects have perfectly reconstructed haplotypes, it was

substantial in others (CAPN10, TNFA) with error rate up to 12%.

Overall or haplotype specific error measures (error rate
versus R2 and misclassification probabilities)

The error rate is useful as a measure to summarize across all the

different haplotypes in a sample. However, an investigator is

Figure 5. Haplotype-specific error measures: Star plots for the CAPN10 displaying the R2, the sensitivity or the specificity as in Figure 4. The
angle between lines is given by 360u divided by the number of frequent haplotypes (frequency 3 1%) to accommodate for the large number of loci
(L = 7).
doi:10.1371/journal.pone.0001853.g005

Figure 6. Impact of decreased sensitivity and specificity on a
true odds ratio of 2.0 for a specific risk haplotype (fh = 0.2) in a
case-control study (500 cases, 500 controls). The shades of grey
code for the observed OR with contour lines given for specific observed
ORs as derived by the matrix method.
doi:10.1371/journal.pone.0001853.g006
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usually interested in a specific risk haplotype and in how to

interpret this haplotype’s association estimate. Then the question

arises whether this specific haplotype is reconstructed with great

error, and the error rate averaging across all haplotypes is not of

much help.

A known haplotype-specific measure for haplotype reconstruc-

tion error is Rm
2, which indicates the proportion of haplotype

variance explained by the genotypes. It captures the haplotype-

specific error HmRHm*, which is the error from using the

individual’s expected instead of the true number of copies of a

haplotype. This is a very complex error model, as it moves from

the discrete space {0,1,2} to the continuous space [0,2] with the

distribution of Hm* being three-modal at 0,1, and 2. This error

measure can only be applied when using the expected number of

haplotypes Hm* as explaining variables in the haplotype

association analysis.

An alternative is a haplotype-specific measure for the error

HmRCm*, that is the error from using the individual’s most likely

number of copies of the haplotype instead of the true number of

copies. This is an error model from the discrete space {0,1,2} into

the discrete space {0,1,2} and thus a classical misclassification

problem, which is represented by the 363 misclassification matrix.

This is very appealing as the full concept of misclassification is then

available. When the misclassification matrix is known, methods

are available to account for the error, e.g. by means of the matrix

method [30] or the MC-SIMEX [23].

Sensitivity and Specificity
As new notions of haplotype-specific error measures, we

introduced the sensitivity and the specificity to the context of

haplotypes and we illustrated that they complemented the R2 and

differentiated between two reasons for haplotype reconstruction

error:

Firstly, the specificity is an issue for common haplotypes: If the

specificity is reduced, it is reduced rather for a common haplotype

(Figure 4 and 5). This is plausible due to the fact that if any

haplotype is misclassified, it is rather misclassified as a common

haplotype by pure chance. Therefore, a common haplotype is

more likely falsely assigned than a rare haplotype.

Secondly, the sensitivity is an issue for rare haplotypes: If the

sensitivity is reduced, it is reduced more likely for a rare haplotype.

For example, the rather low sensitivity of the haplotype 101 of

MCP1 (Figure 4) was due to the fact, that this haplotype most likely

paired with the most common haplotype 000 given Hardy-

Weinberg equilibrium (haplotype pair 101/000) and that the

alternative haplotype pair 001/100 contained two rather frequent

haplotypes (001 and 100 with frequencies 5.4% and 17.5%). Thus,

the haplotype pair 101/000 would often be falsely reconstructed as

001/100. Generally speaking, the haplotype pair containing a rare

haplotype - and thus the rare haploptype itself - is more likely

falsely classified. On the other side, there are also rare haplotypes

that are perfectly reconstructed, which occurs when there is no

likely alternative haplotype pair. For example, the haplotype

0010101 of CAPN10 (Figure 5) showed almost 100% sensitivity:

Besides the haplotype pair consisting of this rare haplotype and the

most common haplotype, 0010101/0000000, an alternative would

have been 0010001/0000100 or 0010000/0000101. However, for

both alternatives, none of the two haplotypes did exist with

frequency .1%. Thus the probability of such a pair was negligible,

the pair 0010101/0000000 was assigned with great certainty, and

the rare haplotype 0010101 was very well reconstructed.

We also illustrated that sensitivity and specificity completely

describe the misclassification matrix (Table 2) and thus provide the

prerequisite for methods accounting for misclassification.

Impact on Odds Ratio Estimates
We elucidated the magnitude of bias for a case-control study

assuming a dominant model of the risk haplotype. The OR is

substantially biased, if the haplotype is reconstructed with either

small sensitivity and a specificity of 1, or a sensitivity of 1 and only

a very small deviation with respect to the specificity, or with a

reduction of both, sensitivity and specificity. In our real data

examples, we observed a somewhat small specificity for the most

common haplotype of TNFA and a small sensitivity for the rare

MCP1 haplotypes (Figure 4). For these haplotypes, one has to think

about potentially biased estimates. For all other haplotypes,

specificity is 100% and sensitivity so high, that a remarkable bias

is not expected. If interest lies in a certain risk haplotype, for

example haplotype 0010101 of CAPN10 (Figure 5), one does not

have to worry about biased estimates since it is reconstructed with

certainty although it is rather rare.

Star plot for haplotype-specific error measures
The quantity of reconstruction error is hard to predict intuitively

as the reconstruction depends on the full constellation of the other

haplotypes. To better judge whether the haplotype association

estimate is biased due to substantial reconstruction error, looking at

the haplotype-specific error measures would greatly enhance the

knowledge about the reliability of haplotype association estimates.

We have thus developed a graphical tool to comprehensively display

the haplotype-specific error measures Rm
2, sensitivity or specificity,

which is available as R-function in Appendix S2.

Computational considerations
The analytical derivations of error rate, sensitivity and specificity

complement the computational formula of Rm
2 [25]. The simulations

validated the analytical approach also comparing EM- versus

PHASE-reconstruction. It should be noted that the error measures

in the simulations included the sampling error and were thus slightly

higher than the analytically derived measures, but the difference was

not substantial due to sufficient sample size. Comparing EM- with

the PHASE-reconstruction, we found that both methods worked

equally well when applying real data scenarios. The abstract scenarios,

while being useful to make extreme examples and to understand

mechanisms, included situations such as the no-LD scenario under

which no haplotypes should be reconstructed in the first place.

Strengths and Limitations
We consider the classification and systematic investigation of

error measures a useful guidance for researchers interested in

haplotypes and haplotype association estimates. This was strength-

ened by applying both analytical and simulation approaches for

numerous scenarios, by exemplifying the measures to real data and

by utilizing the two main reconstruction methods. Finally, this is

the first work investigating the sensitivity and specificity of

haplotype reconstruction and illustrating their impact on haplo-

type association analyses.

It might be considered a limitation that we used reconstructed

haplotype frequencies from real data as ‘‘true’’ haplotype

frequencies for our real data scenarios. However, this is an excellent

procedure to yield near-realistic haplotype distributions; the

discrepancy was rather small, so that reconstructed haplotype

frequencies could be assumed to approximate the true frequencies

fairly well. Due to the lack of a gold standard, we can only provide

an estimation of expected haplotype misclassification based on the

frequencies of observed haplotypes. Levenstien at al. [31]

presented a method which uses molecular haplotypes on a subset

of individuals to estimate haplotype misclassification and account
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the Likelihood Ratio test for it in the setting of case-control studies.

However, due to the absence of high throughput procedures for

molecular haplotyping, this method is too time- and money-

consuming in most cases. Furthermore, even haplotypes assessed

in the laboratory are subject to error and can thus also not be

taken as a gold standard procedure.

It might also be a limitation that we investigated an extensive,

but not universal set of scenarios. For example, our scenarios were

restricted to haplotypes across 2 to 7 loci, while in practice there

are up to 20 loci. The restriction was made for the sake of limiting

the complexity, hypothesizing that the general findings can be

transferred to longer haplotypes. Finally, we assumed Hardy-

Weinberg equilibrium (HWE) for the haplotype pairs and did not

evaluate the impact of violation of this assumption as other work

has already focused on this issue (e.g. [10]).

It might be argued that inferring individual haplotypes at all is

not an appropriate approach and thus there is no reason for

looking at haplotype uncertainties. In the light of numerous

methods, which have been developed to simultaneously estimate

haplotype probabilities together with association estimates, this

argument seems to have a big relevance. These methods do not

infer individual haplotypes but use the expected values of

haplotypes given the observed genotypes in association analysis

within a likelihood framework [16–18,20] or with estimating

equations [32]. These approaches involve a very complex error

model from the true haplotype as a trichotomous variable into the

continuous space of the expected number of haplotype copies.

They are often limited to case-control studies, can not incorporate

environmental variables or assume additive effects, which is often

not the case [33]. Individually inferred haplotypes, on the

contrary, can easily be incorporated into generalized linear models

(GLM), which provides wide flexibility in the modelling of

underlying inheritance assumptions, the study type, the type of

outcome variable and gene-environment interactions. Due to the

ease of computation in each standard statistical software, this

method is quite popular in practice. Furthermore, if some

haplotypes can be expected to be inferred correctly or with only

small error with respect to sensitivity and specificity as in the

example of the CAPN10 haplotype mentioned, analyses based on

individually inferred haplotype are most powerful. However,

association estimates can be biased substantially, if high haplotype

misclassification is involved [34,35]. In these cases, information of

the misclassification probabilities can be used to correct association

estimates (e.g. using the MC-SIMEX method [23]) and still stay in

the flexible GLM framework.

Summary and Conclusion
In this work, we provide a classification and systematic quantifi-

cation of haplotype reconstruction error measures. Our results under-

score the value of haplotype-specific error measures. We introduce the

well-known and easily communicated concept of sensitivity and

specificity to the context of haplotypes. We provide an analytical

computational approach, and a graphical tool for a summary

presentation, which allows to routinely quantify sensitivity and

specificity next to haplotype frequencies and haplotype association

estimates to provide a sense of certainty into the haplotype

reconstruction, especially if interest lies in one specific risk haplotype.

This has the advantage that then the misclassification matrix is

known thus providing the necessary prerequisite for methods to

account for misclassification for example via the Matrix Method or

the MC-SIMEX. We conclude that haplotype association analyses

can greatly benefit from quantifying haplotype-specific error on a

routine basis.

Supporting Information

Appendix S1 Analytical approach to quantify the error rate,

sensitivity and specificity

Found at: doi:10.1371/journal.pone.0001853.s001 (0.12 MB

DOC)

Appendix S2 Function ‘Sensitivity’ calculates sensitivity, speci-

ficity and efficiency for each haplotype and Function ‘Starplot’

draws sensitivity, specificity or R-square-values for each haplotype

(R-programs)

Found at: doi:10.1371/journal.pone.0001853.s002 (0.01 MB

TXT)
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