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Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has
been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable
component have started to emerge from genome-wide association studies (GWAS), although the majority
remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly
associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an
independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in
genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our ana-
lyses demonstrated significant enrichment of common variants between fat distribution and endometriosis
(P 5 3.7 3 1023), which was stronger when we restricted the investigation to more severe (Stage B) cases
(P 5 4.5 3 1024). However, no genetic enrichment was observed between endometriosis and BMI (P 5 0.79).
In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in
both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and
CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling
pathway; formal pathway analysis confirmed a statistically significant (P 5 6.41 3 1024) overrepresentation of
shared associations in developmental processes/WNT signalling between the two traits. Our results
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demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an oppor-
tunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution
and endometriosis pathogenesis research fields can inform each other.

INTRODUCTION

Endometriosis is a common condition in premenopausal women
characterized by chronic pelvic inflammation causing pain and
subfertility (1), and has an estimated heritability of 51% (2).
The International Endogene Consortium (IEC) performed
the largest endometriosis GWAS to date in 3194 surgically
confirmed cases (including 1364 moderate–severe—Stage
B—cases) and 7060 controls of European ancestry, with replica-
tion in a further 2392 cases and 2271 controls (3). One genome-
wide significant locus was observed in an intergenic region on
chromosome 7p15.2 (rs12700667), primarily associated with
Stage B disease (P ¼ 1.5 × 1029, OR ¼ 1.38, 95% CI 1.24–
1.53). A second locus near WNT4 (rs7521902) was found after
meta-analysis with published results from a Japanese GWAS
of 1423 cases and 1318 controls (4); a genome-wide meta-
analysis confirmed the two loci and found a further five (5).

Rs12700667 on 7p15.2 also marked 1 of 16 reported genome-
wide significant loci associated with waist-to-hip ratio adjusted
for BMI (WHRadjBMI) in an independent GWAS meta-analysis
by the GIANT Consortium involving 77 167 individuals of
European ancestry with replication in a further 113 636 indivi-
duals (rs1055144: discovery P ¼ 1.5 × 1028; meta-analysis
P ¼ 1.0 × 10224; r2 ¼ 0.5 with rs12700667 in 1000G pilot
CEU data) (6,7). This was surprising, as prospective epidemio-
logical studies have suggested consistently that reduced
BMI—a measure of overall adiposity—is associated with
increased risk of endometriosis, but there is relatively limited
evidence for an association with WHRadjBMI—a measure of
fat distribution (8,9). We conducted a logistic regression analysis
in the IEC dataset of rs1055144 on endometriosis disease
status, conditioning on rs12700667, which demonstrated that
the SNPs reflected the same association signal (unpublished
data; conditional P ¼ 0.65).

The epidemiological evidence of an association between
endometriosis and BMI, together with the observed GWAS
locus in common between endometriosis and WHRadjBMI,
led us to conduct a systematic investigation of overlap in associ-
ation signals between the IEC endometriosis GWAS and GIANT
Consortium WHRadjBMI (N ¼ 77 167) (6,7) and BMI (N ¼
123 865) (7,10) meta-GWAS datasets through genetic enrich-
ment analyses.

RESULTS

Genetic enrichment analysis of endometriosis with
overall adiposity and fat distribution

Using independent, imputed (1000 Genomes pilot reference
panel) GWAS datasets of endometriosis (IEC; 3194 cases in-
cluding 1364 Stage B cases, 7060 controls), BMI (GIANT;
123 865 individuals) and WHRadjBMI (GIANT: 77 167 indivi-
duals), we first considered loci genome-wide significantly

associated with endometriosis, BMI or WHRadjBMI in each
of the individual GWAS. The two genome-wide significant
endometriosis loci (intergenic 7p15.2 and WNT4) had signifi-
cantly lower P-values of association than expected by chance
in the WHRadjBMI GWAS (Table 1: rs12700667, P ¼ 4.4 ×
1025 and rs7521902, P ¼ 1.3 × 1023; binomial P ¼ 1.0 ×
1024), while 2 of the 16 genome-wide significant WHRadjBMI
loci (intergenic 7p15.2 and GRB14) had P , 0.01 in the
endometriosis GWAS (binomial P ¼ 0.011). No enrichment
between genome-wide significantly associated loci was ob-
served for endometriosis versus BMI (Supplementary Material,
Table S1: rs12700667, P ¼ 0.27 and rs7521902, P ¼ 0.92).

To investigate whether statistical enrichment extended beyond
genome-wide significant loci,we investigated the most significant
(P , 1 × 1023) independent (r2 , 0.2) endometriosis GWAS
signals for enrichment of WHRadjBMI or BMI signals with
P , 0.05 and vice versa (number of lookup SNPs per dataset:
n¼ 717 to 748; see Supplementary Material, Methods). We
observed statistically significant enrichment between variants asso-
ciated with endometriosis (particularly Stage B) and WHRadjBMI
(all endometriosis versus WHRadjBMI: P ¼ 3.7 × 1023; Stage
B endometriosis versus WHRadjBMI: P ¼ 4.5 × 1024), but not
between endometriosis and BMI (all endometriosis versus BMI:
P ¼ 0.79; Stage B endometriosis versus BMI: P ¼ 0.85) (Fig. 1;
Supplementary Material, Table S2). Results were similar when
using female-limited WHRadjBMI (N ¼ 42 969 women) and
BMI (N ¼ 73 137 women) GWAS summary statistics (7); to op-
timize power, in the remainder of the paper we therefore focus on
sex-combined WHRadjBMI and BMI datasets (Supplementary
Material, Fig. S1). Empirical testing of statistical enrichment
through permutation (see Supplementary Material, Methods)
provided near-identical results (Fig. 1; Supplementary Material,
Fig. S1).

The choice of significance thresholds in the discovery and
lookup datasets was based on a balance between applying a suf-
ficiently stringent significance threshold in the discovery dataset
that would minimize the proportion of false-positive association
signals, while still having sufficient numbers of loci in each of the
phenotypic association strata to investigate statistical enrich-
ment, and allow the pursuit of meaningful biological pathway
analyses subsequently. We considered the effect of different sig-
nificance thresholds, for both discovery and lookup, which con-
firmed results showing enrichment of association signals
between endometriosis and WHRadjBMI (Supplementary Ma-
terial, Table S3), but no enrichment between endometriosis
and BMI (Supplementary Material, Table S4).

To investigate potential genome-wide sharing of loci between
endometriosis and WHRadjBMI or BMI, we performed poly-
genic prediction analyses (11) evaluating whether the aggregate
effect of many variants of small effect in the WHRadjBMI and
BMI GWAS could predict endometriosis status in the IEC
GWAS (see Supplementary Material, Methods). There was no
significant association between the WHRadjBMI- or BMI-
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Table 1. Association results of published IEC genome-wide significant endometriosis loci (3) in the GIANT WHRadjBMI GWAS, and of WHRadjBMI loci (6,7) in endometriosis GWAS (lookup results are
shown in bold)

GWAS SNP (proxy; r2) Ch Location (B36) RAF (allele) Status Endometriosis all cases Endometriosis Stage B only Overall WHRadjBMI Female-limited WHRadjBMI Nearest gene

P-valuec OR (95% CI) P-valuec OR (95% CI) P-valued Effect (SE) P-valuee Effect (SE)

Endometriosis rs12700667 7 25 868 164 0.74 (A) G 5.1 × 1027 1.21 (1.12–1.31) 3.3 × 1028 1.36 (1.23–1.50) 4.4 3 1025 20.023 (0.005) 3.3 3 1028 20.023 (0.005) Intergenic

Endometriosis rs7521902 1 22 363 311 0.25 (A) G 8.9 × 1025 1.16 (1.08–1.25) 7.5 × 1025 1.26 (1.14–1.39) 1.3 3 1023 20.020 (0.006) 6.1 3 1023 20.023 (0.009) WNT4

WHRadjBMI rs1055144a 7 25 837 634 0.19 (T) G 3.7 3 1025 0.84 (0.77–0.91) 3.1 × 1024 0.78 (0.70–0.88) 1.5 × 1028 0.034 (0.006) 2.3 × 1026 0.039 (0.008) Intergenic

WHRadjBMI rs10195252 2 165 221 337 0.41 (C) G 9.8 3 1023 0.92 (0.85–0.98) 0.56 0.92 (0.84–1.00) 3.2 × 10210 20.031 (0.005) 6.3 × 10215 20.053 (0.007) GRB14

Female WHRadjBMI rs4684854 3 12 463 882 0.43 (C) I (0.98) 0.07 1.06 (0.99–1.14) 0.14 1.07 (0.98–1.17) 1.0 × 1024 0.019 (0.005) 2.3 × 1028 0.039 (0.007) PPARG

WHRadjBMI rs718314 12 26 344 550 0.24 (G) G 0.11 1.06 (0.99–1.15) 0.054 1.10 (0.99–1.22) 2.4 × 1028 0.031 (0.005) 8.2 × 10210 0.047 (0.008) ITPR2-SSPN

WHRadjBMI rs6861681 5 173 362 458 0.32 (A) I (0.96) 0.15 0.95 (0.86–1.04) 0.11 0.93 (0.85–1.00) 1.4 × 1026 0.026 (0.005) 2.1 × 1024 0.027 (0.007) CPEB4

WHRadjBMI rs6795735 3 64 680 405 0.41 (T) G 0.21 1.04 (0.98–1.12) 0.32 1.04 (0.96–1.14) 2.5 × 1027 20.025 (0.005) 7.8 × 1027 20.033 (0.007) ADAMTS9

WHRadjBMI rs2820446

(rs4846567, r2 ¼ 1)b
1 21 974 881 0.71 (C) I (0.99) 0.31 1.04 (0.97–1.12) 0.22 1.06 (0.97–1.17) 5.1 × 10212 0.037 (0.005) 8.5 × 10218 0.064 (0.007) LYPLAL1

WHRadjBMI rs498778

(rs6784615, r2 ¼ 1)b
3 52 453 893 0.93 (T) I (0.95) 0.32 1.08 (0.93–1.24) 0.25 1.06 (0.89–1.27) 4.6 × 1025 0.055 (0.010) 1.1 × 1023 0.063 (0.019) NISCH-STAB1

WHRadjBMI rs1294421 6 6 743 149 0.39 (T) I (0.96) 0.37 1.03 (0.94–1.10) 0.28 1.03 (0.94–1.13) 6.3 × 1029 20.029 (0.005) 3.4 × 1028 20.038 (0.007) LY86

WHRadjBMI rs9491696 6 127 452 639 0.51 (C) I (0.99) 0.43 0.97 (0.91–1.03) 0.64 0.98 (0.90–1.06) 2.1 × 10214 20.037 (0.005) 3.4 × 1028 20.038 (0.007) RSPO3

WHRadjBMI rs1443512 12 52 628 951 0.22 (A) G 0.62 1.02 (0.94–1.10) 0.63 0.97 (0.88–1.08) 3.3 × 1028 0.031 (0.005) 1.4 × 1029 0.048 (0.008) HOXC13

WHRadjBMI rs984222 1 119 305 366 0.39 (C) I (0.99) 0.69 0.99 (0.93–1.05) 0.31 0.95 (0.87–1.04) 3.8 × 10214 20.037 (0.005) 1.2 × 1027 20.036 (0.007) TBX15-WARS2

WHRadjBMI rs4823006 22 29 451 671 0.57 (A) I (0.97) 0.72 1.01 (0.95–1.08) 0.82 1.01 (0.92–1.11) 4.7 × 10210 0.030 (0.005) 6.9 × 1028 0.037 (0.007) ZNRF3

Female WHRadjBMI rs10478424 5 118 816 619 0.79 (A) I (0.97) 0.80 1.01 (0.93–1.10) 0.56 1.03 (0.93–1.15) 1.6 × 1024 0.023 (0.006) 1.0 × 1025 0.037 (0.009) HSD17B4

WHRadjBMI rs1011731 1 170 613 171 0.44 (G) G 0.81 0.99 (0.93–1.05) 0.77 1.01 (0.93–1.11) 1.7 × 10210 0.031 (0.005) 2.1 × 1025 0.028 (0.007) DNM3-PIGC

WHRadjBMI rs6905288 6 43 866 851 0.56 (A) I (0.80) 0.66 0.98 (0.91–1.05) 0.66 0.99 (0.90–1.08) 4.2 × 10210 0.033 (0.005) 7.7 × 10213 0.052 (0.007) VEGFA

aLogistic regression analysis in the IEC GWAS shows that rs1055144 marks the same locus as rs12700667 (conditional P ¼ 0.65; r2 ¼ 0.8).
bSNP was not genotyped in the endometriosis GWAS dataset; result shown is of proxy SNP.
cResults are based on an updated GWAS performed using genotype data imputed up to 1000 Genomes pilot reference panel (B36, June 2010).
dResults are from the GIANT WHRadjBMI discovery GWAS dataset (N ¼ 77 167); 3 of the 14 WHRadjBMI loci have P . 5.0 × 1028, however, they reached genome-wide significance combined with replication analyses in up to a further 113 636

individuals (6).
eResults from the GIANT WHRadjBMI discovery female-limited GWAS dataset (N ¼ 42 969); one of the two female-limited WHRadjBMI loci have P . 5.0 × 1028, however, they reached genome-wide significance combined with replication

analyses in up to a further 71 295 individuals (7).
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derived profile scores (overall or female limited) and all/Stage B
endometriosis (Supplementary Material, Tables S5–S8), sug-
gesting no evidence for a directionally consistent en masse,
genome-wide, shared common genetic component.

We next investigated the variants with most significant evi-
dence for association with both endometriosis (P , 1 × 1023)
and WHRadjBMI (P , 0.05) for predominance in direction of
phenotypic effects (Supplementary Material, Tables S9 and
S10 and Fig. S2). No statistically significant directional

consistency was observed for these variants (P . 0.47), nor
for the 17 loci (Table 1) that were genome-wide significantly
associated with either trait (Fig. 2, P . 0.44). Intergenic
7p15.2 and WNT4 showed discordant directions of effect,
while the effect of GRB14 was concordant (Fig. 2). This could
suggest the presence of multiple biological pathways through
which the variants influence the two phenotypes. We next set
out to investigate the common biology suggested by genetic var-
iants associated with both endometriosis and WHRadjBMI.

Figure 1. Genetic enrichment analyses between endometriosis, BMI and WHRadjBMI GWAS datasets, using independent (r2 , 0.2) SNPs. The panels show (i) The
proportion of SNPs nominally associated (P , 0.05) with WHRadjBMI (A) or BMI (B) by significance of overall and Stage B endometriosis association (P , 1.0 ×
1023 versus P ≥ 1 × 1023); (ii) The proportion of SNPs nominally associated (P , 0.05) with overall and Stage B endometriosis by significance of WHRadjBMI (C)
and BMI (D) association (P , 1.0 × 1023 versus P ≥ 1 × 1023). P-values ofx2 tests assessing statistical difference between proportions are shown above each set of
bars, and 95% confidence intervals of the proportions are given on each bar. For differences with Pchisq , 0.2, empirical P-values are given in brackets (see Supple-
mentary Material, Methods).
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Biology of the loci shared between endometriosis
and fat distribution

Our analysis showing significant enrichment between SNPs
associated with all or Stage B endometriosis (P , 1 × 1023)
and WHRadjBMI (P , 0.05) shown in Figure 1 involved 1284
independent (r2 . 0.2) loci. We explored the biological function
of the loci most strongly associated with WHRadjBMI, at
nominal P , 0.005 (n ¼ 16, Table 2; see Supplementary Mater-
ial, Tables S11 and S12 for all variants associated at P , 0.05).
Two novel loci, rs560584 near KIFAP3 (all endometriosis) and
rs11619804 in CAB39L (Stage B endometriosis), were signifi-
cantly associated with WHRadjBMI after Bonferroni correction
allowing for 1284 independent tests (P , 3.89 × 1025).

The endometriosis risk allele T of rs560584 (OR ¼ 1.14
(1.07–1.22), P ¼ 1.42 × 1024) was associated with lower
WHRadjBMI (b ¼ 20.021, P ¼ 1.47 × 1025), and located in
an intergenic region 46 kb downstream of KIFAP3
(Kinesin-associated protein 3). Together with KIF3A and
KIF3B, KIFAP3 forms a kinesin motor complex, KIF3, that
mediates cellular transport of N-cadherin and b-catenins (12),
which are involved in cell adhesion, the Wnt canonical
pathway and cell cycle progression (13). The Wnt/b-catenin sig-
nalling pathway acts as a molecular switch for adipogenesis (14)
and has multiple suggested roles in endometriosis through sex
hormone homeostasis regulation (15), its role in development
of female reproductive organs (16), molecular mechanisms of
infertility (17) and mediation of fibrogenesis (18).

The Stage B endometriosis risk allele C of rs11619804 (OR ¼
1.17 (1.07–1.28); P ¼ 4.88 × 1024), located in CAB39L
(Calcium-Binding Protein 39-Like), was associated with increased
WHRadjBMI (b¼ 0.022, P¼ 1.06 × 1025; Table 2). The func-
tion of this gene is not well characterized but the encoded protein
interacts with a serine threonine kinase (STK11) that functions as
a tumour suppressor (19).

Rs12700667 in the intergenic region 7p15.2 remained among
the strongest associated shared signals, with the endometriosis
risk allele A associated with reduced WHRadjBMI (b¼ 20.023,
P ¼ 4.4 × 1025). The association maps to an intergenic high
LD region of 48 kb (r2 . 0.8) of unknown functionality.

Further interesting nearby loci include the miRNA hsa-mir-
148a, with a purported role in Wnt/b-catenin signalling (14);
NFE2L3 (nuclear factor (erythroid-derived 2)-like 3), a tran-
scription factor suggested to be involved in cell differentiation,
inflammation and carcinogenesis (20). The WNT signalling
pathway was further highlighted by the nominal association of
two independent (r2¼ 0.06) endometriosis risk variants near
WNT4 (wingless-type MMTV integration site family), rs3820282
(genic) and rs2807357 (22.4 kb downstream), with reduced
WHRadjBMI (b¼ 20.019, P¼ 5.0 × 1023; b¼ 20.015, P¼
3.7 × 1023; Table 2). Of note is that all shared variants implicated
in WNT signalling (in/near intergenic 7p15.2, WNT4, KIFAP3)
showed consistent—discordant—phenotypic directions of effect.

Risk variant rs10195252, 34.6 kb downstream of GRB14
(growth factor receptor-bound protein 14) was the third locus
with significant evidence for association with both overall (not
Stage B) endometriosis and WHRadjBMI (Table 1). GRB14
has an inhibitory effect on insulin receptor signalling (21),
may have a role in signalling pathways that regulate growth
and metabolism and has been shown to interact with fibroblast
growth factor receptors (22). This shared variant is also in high
LD (r2 ¼ 0.93 and ¼ 0.87, respectively) with a type 2 diabetes
risk variant rs13389219 (23) and fasting insulin risk variant
rs6717858 (24).

Other loci of interest include rs2921188 in PPARG and
rs6556301 near FGFR4 (Table 2). The endometriosis risk
allele A of rs2921188 (OR ¼ 1.13, 95% CI: 1.05–1.21), P ¼
5.9 × 1024) in PPARG (peroxisome proliferator-activated
receptor gamma) is associated with increased WHRadjBMI
(b ¼ 0.017; P ¼ 1.1 × 1023). PPARG is a nuclear hormone
receptor that regulates fatty acid storage and glucose metabol-
ism. Synthetic ligands, such as insulin sensitizing drugs, target
PPARG in treatment of diabetes to lower serum glucose levels
(25) and are also documented to have anti-inflammatory, anti-
angiogenic and anti-proliferative effects on endometrium, with
baboon models suggesting a role in targeting endometriotic
disease (26). Stage B endometriosis risk allele G of rs6556301
near FGFR4 (fibroblast growth factor receptor, OR ¼ 1.17
[1.07–1.28], P ¼ 7.4 × 1024) is associated with reduced
WHRadjBMI (b ¼ 20.021, P ¼ 1.9 × 1024). FGFR4 interacts

Figure 2. Directions of effect of 17 independent SNPs genome-wide significantly associated with all (A) or Stage B (B) endometriosis, or WHRadjBMI. Intergenic
7p15.2, WNT4, and GRB14 are shown in red. Linear regression R2 and P-values used to test for significant directionality of effects (35) are shown.
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Table 2. Results of the top all/Stage B endometriosis loci (P , 1 × 1023) associated with WHRadjBMI at P , 0.005

SNP Chr Position (B36) RAF (allele) Endometriosis Overall WHRadjBMI Female-limited WHRadjBMI Nearest loci
P-value OR (95% CI) P-value Effect SE P-value Effect SE (distance)

All cases
rs560584 1 168 357 136 0.41 (T) 1.4 × 1024 1.14 (1.07–1.22) 1.4 × 1025 20.021 0.005 1.1 × 1023 20.022 0.677 KIFAP3 (46 632)
rs12700667 7 25 868 164 0.74 (A) 5.1 × 1027 1.22 (1.13–1.32) 4.4 × 1025 20.023 0.005 3.4 × 1024 20.028 0.284 NFE2L3 (2 90 221)
rs2921188 3 12 387 115 0.64 (A) 5.9 × 1024 1.13 (1.05–1.21) 1.1 × 1023 0.017 0.005 1.8 × 1024 0.026 0.054 PPARG (0)
rs1250248 2 215 995 338 0.27 (A) 1.6 × 1025 1.17 (1.09–1.26) 1.0 × 1023 0.018 0.005 9.9 × 1024 0.025 0.242 FN1 (0)
rs2630787 3 21 847 339 0.52 (C) 9.2 × 1024 1.12 (1.05–1.19) 1.9 × 1023 20.015 0.004 0.38 20.006 0.030 ZNF659 (79 518)
rs1430788 2 67 721 916 0.31 (C) 9.3 × 1025 1.15 (1.07–1.23) 2.7 × 1023 0.016 0.005 3.1 × 1023 0.022 0.330 ETAA1 (230 878)
rs906721 3 184 687 691 0.41 (A) 6.1 × 1025 1.16 (1.08–1.24) 4.2 × 1023 0.015 0.005 1.7 × 1023 0.023 0.140 KLHL6 (322)
rs1868894 4 187 606 728 0.80 (C) 2.3 × 1024 1.16 (1.07–1.26) 4.9 × 1023 20.018 0.006 0.13 20.013 0.524 MTNR1A (85 075)
rs3820282 1 22 340 802 0.16 (T) 3.3 × 1027 1.26 (1.15–1.37) 5.0 × 1023 20.019 0.007 0.09 20.016 0.749 WNT4 (0)

Stage B cases
rs11619804 13 49 888 131 0.53 (C) 4.8 × 1024 1.17 (1.07–1.28) 1.1 × 1025 0.022 0.005 2.2 × 1022 0.016 0.022 CAB39L (0)
rs12700667 7 25 868 164 0.74 (A) 3.3 × 1029 1.36 (1.23–1.50) 4.4 × 1025 20.023 0.005 3.4 × 1024 20.028 0.284 NFE2L3 (290 221)
rs2782659 6 45 794 768 0.33 (G) 4.2 × 1024 1.18 (1.08–1.30) 9.2 × 1025 0.020 0.005 1.7 × 1024 0.027 0.108 RUNX2 (167 970)
rs6556301 5 176 460 183 0.63 (G) 7.4 × 1024 1.17 (1.07–1.28) 1.9 × 1024 20.021 0.005 7.8 × 1023 20.021 0.845 FGFR4 (2450)
rs1250248 2 215 995 338 0.27 (A) 2.9 × 1028 1.32 (1.19–1.45) 1.2 × 1023 0.018 0.005 9.9 × 1024 0.025 0.242 FN1 (0)
rs4131816 1 161 662 648 0.85 (T) 5.4 × 1024 1.24 (1.10–1.41) 1.5 × 1023 0.022 0.007 0.25 0.011 0.072 NUF2 (70 470)
rs9912335 17 77 552 948 0.69 (T) 3.1 × 1024 1.19 (1.08–1.31) 3.5 × 1023 20.021 0.007 0.10 20.016 0.454 ASPSCR1 (0)
rs10878362 12 64 703 760 0.69 (C) 4.9 × 1024 1.19 (1.08–1.31) 3.6 × 1023 0.015 0.005 3.1 × 1023 0.022 0.204 HMGA2 (57 421)
rs2807357 1 22 364 571 0.64 (A) 9.7 × 1024 1.16 (1.06–1.27) 3.7 × 1023 20.015 0.005 1.0 × 1023 20.024 0.081 WNT4 (22 373)
rs906721 3 184 687 691 0.41 (A) 1.4 × 1024 1.20 (1.09–1.32) 4.2 × 1023 0.015 0.005 1.7 × 1023 0.023 0.140 KLHL6 (322)
rs12267660 10 4 419 530 0.85 (G) 7.9 × 1024 1.24 (1.09–1.40) 4.6 × 1023 0.02 0.007 8.0 × 1023 0.030 0.133 CR749391 (191 913)
rs11685481 2 67 590 253 0.15 (C) 8.4 × 1024 1.23 (1.09–1.38) 4.8 × 1023 0.018 0.006 1.1 × 1022 0.022 0.451 ETAA1 (99 215)
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with fibroblast growth factors, which have roles in angiogenesis,
wound healing and cell migration (27).

Expression quantitative trait loci analysis of the shared
endometriosis and fat distribution loci

We investigated the potential impact of the described 16 genes
(Table 2) shared between endometriosis and WHRadjBMI on
transcriptional function using three public expression data
resources: (i) the Mammalian Gene Expression Uterus database
(MGEx-Udb) (28) containing published information on tran-
scriptional activity of specific genes in human endometrial
tissue from individuals with and without endometriosis; (ii)
the MuTHER study which collected expression and eQTL data
from 776 abdominal fat tissues (29); and (iii) the MOLOBB
dataset of differential expression levels between abdominal
and gluteal fat from 49 individuals (30). Based on the limited
available evidence in the MGEx-Udb database, two genes are
transcribed in endometrial tissue of women with endometriosis
but dormant in those without endometriosis: PPARG and
FGFR4 (Supplementary Material, Table S13). Of the 16
genes, 15 had probes present within 1 Mb either side of the
SNP in the MuTHER database; however, none showed signifi-
cant association with nearby transcripts in abdominal fat tissue
(Supplementary Material, Table S14). The MOLOBB study
data showed cis-eQTL evidence for differential expression of
two genes; KIFAP3 (rs560584; fold change ¼ 0.14, adjusted
P ¼ 0.04) (Supplementary Material, Table S15). Additional
transcriptional evidence relevant to the intergenic 7p15.2 locus
includes the presence of an expression QTL associated with a
transcript of unknown function, AA553656, in subcutaneous
abdominal fat tissue (6), and the differential expression of
nearby hsa-miR-148a between gluteal and abdominal fat tissue
samples (31).

Pathway analysis

To identify potential common biological pathways involved
in the aetiology of endometriosis and the variability of fat
distribution, we conducted pathway analyses using genes with
evidence for enrichment between the traits using (i) the
PANTHER database (32) and (ii) GRAIL (33). For the
PANTHER analysis, we selected the 91 and 108 genes located
in a 1 Mb interval surrounding each independent SNP associated
with all endometriosis (P , 1.0 × 1023) and WHRadjBMI
(P , 0.05), and Stage B endometriosis (P , 1.0 × 1023) and
WHRadjBMI (P , 0.05), respectively (see Supplementary Ma-
terial, Methods). This excluded intergenic loci without a gene
within 1 Mb, such as our top shared locus at 7p15.2. We tested
whether the two sets of genes showed significant overrepresen-
tation of a particular pathway, for each of 176 curated pathways
and 241 biological processes. The top enriched pathways were
‘developmental processes’ (all endometriosis: P ¼ 1.2 ×
1025; Stage B: P ¼ 1.25 × 1024), ‘WNT signalling’ (all endo-
metriosis: P ¼ 1.07 × 1024), ‘gonadotropin-releasing
hormone receptor’ (all endometriosis: P ¼ 1.48 × 1023), ‘cad-
herin signalling’ (Stage B: P ¼ 6.42 × 1024), ‘FGF signalling’
(Stage B: P ¼ 2.96 × 1023) and ‘TGF-beta signalling’ (Stage B:
P ¼ 1.48 × 1023) pathways (Supplementary Material, Tables
S16 and S17). Bonferroni correction for the number of pathways

tested (see Supplementary Material, Methods) rendered ‘WNT
signalling’, ‘developmental processes’, ‘cellular processes’
and ‘cell communication’ significantly enriched; however, this
adjustment is conservative, as exemplified by ‘cadherin signal-
ling’ genes being a subset of those in the ‘WNT signalling’
pathway. Sensitivity analyses exploring the effect of different
endometriosis association thresholds on pathway analyses
showed very consistent results for threshold P , 1.0 × 1022,
with the same top three enriched pathways—WNT signalling,
Cadherin signalling and Gonadotropin-releasing hormone re-
ceptor pathway. No meaningful pathway analyses could be con-
ducted on the limited number of genes passing association
threshold P , 1 × 1024 (Supplementary Material, Table S18).

We used GRAIL (33) to search for connectivity between the
91 and 108 genes all/Stage B endometriosis and WHRadjBMI-
associated genes and specific keywords from the published
literature that describe potential functional connections. We iden-
tified 17 genes with nominal significance (P , 0.05) for potential
functional connectivity for ‘all’ endometriosis and WHRadjBMI
and six genes for Stage B endometriosis and WHRadjBMI
(Supplementary Material, Fig. S3 and Tables S19 and S20).
The keywords associated with these connections included ‘cad-
herin’, ‘differentiation’, ‘development’ and ‘insulin’ for ‘all’
endo, and ‘development’ and ‘embryos’ for Stage B endometri-
osis, marking again developmental processes and cadherin signal-
ling as biological pathways shared in the origins of endometriosis
and fat distribution.

DISCUSSION

In this study, we have investigated the overlap in genetic asso-
ciation signals from the largest GWA studies to date of
endometriosis, overall adiposity (BMI) and fat distribution
(WHRadjBMI). Our results demonstrated that there is a shared
genetic basis between endometriosis and fat distribution that
extends over and above the single genome-wide significant
locus that has been reported in GWAS of the separate traits.
Our analyses highlight novel loci in/near KIFAP3 and
CAB39L, which together with intergenic 7p15.2, WNT4 and
GRB14, showed significant evidence of trait association
sharing. The strength of evidence of enrichment was similar
for overall versus female-limited WHRadjBMI loci, which
may be unexpected, given that endometriosis is a female con-
dition. However, the lack of a stronger enrichment between
female-specific WHRadjBMI GWAS results and endometri-
osis, compared with all WHRadjBMI results should be consid-
ered against the effects of a reduced sample size used for
female-specific WHRadjBMI analyses on power of association
detection.

The enrichment of associated variants was generally stronger
when the endometriosis cases were restricted to moderate–
severe (Stage B) disease, despite the smaller sample size.
Indeed, the association of the top intergenic GWAS locus on
7p15.2, also genome-wide significantly associated with
WHRadjBMI, is limited to Stage B endometriosis. Stage B—
or ASRM Stages III/IV disease (34)—is typically characterized
by ovarian (endometrioma) or deep infiltrating (rectovaginal)
lesions, which were shown to have a substantially greater under-
lying genetic contribution than milder, peritoneal disease
(ASRM Stage I/II) (3). The particular enrichment between
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WHRadjBMI and Stages III/IV endometriosis is intriguing, and
another reason for further functional work to concentrate on this
endometriosis sub-type. There are, however, specific loci that
show enrichment of association with WHRadjBMI and overall
endometriosis, the analysis of which therefore remains of inter-
est. An example is GRB14, which did not show significant asso-
ciation with Stage B disease, displayed a concordant direction of
effect between endometriosis and WHRadjBMI, and the bio-
logical function of which also seems to suggest an entirely differ-
ent contribution to the origins of both phenotypes than the 7p15.2
and WNT4 loci.

The limited available eQTL data showed significant evidence
for differential expression of KIFAP3 between different fat
depots. The variants with most evidence for enrichment
between the traits, in/near intergenic 7p15.2, KIFAP3 and
WNT4, were all implicated in WNT signalling and had consist-
ent—discordant—directions of effect, with endometriosis risk
alleles associated with a decreased WHRadjBMI. Indeed, bio-
logical pathway analyses showed significant evidence for the in-
volvement of developmental processes and WNT signalling in
endometriosis aetiology and regulation of fat distribution, a po-
tential pleiotropic connection that has not been reported to date.

The relatively limited epidemiological evidence of phenotyp-
ic correlation between endometriosis and WHRadjBMI (8,9) is
consistent with the absence of strong directional consistency
of phenotypic effects of genetic variants underlying both traits
at a genome-wide level. Most studies of genetic pleiotropy
between traits to date have focused on genome-wide directional
consistency between epidemiologically or clinically (postu-
lated) correlated traits, such as different metabolic traits (6,35)
or psychiatric conditions (36). However, genome-wide consist-
ency in directionality of phenotypic effects would most likely
apply to traits that share a large proportion of causality, and
that epidemiologically lie on the same causal pathway(s) and
are thus more likely to be examples of mediated (genetic variants
influencing one phenotype indirectly through association with
a second phenotype) rather than biological (genetic variants
exerting a direct biological influence on more than one pheno-
type) pleiotropy (37). Thus, our results of genetic enrichment
between endometriosis and WHRadjBMI demonstrate an
example of the biological complexity of aetiological associations
between complex traits, and suggest that the underlying shared
loci are potentially biologically pleiotropic, given the absence
of phenotypic correlation between endometriosis and
WHRadjBMI and absence of en masse directional consistency
of shared genetic variants on the phenotypes (37,38). It also
demonstrates more generally how potential perturbation of a
causal pathway through, for example, drug treatment targeting
one trait could have unexpected effects on another, even when
there is no clear evidence that these traits are associated clinically
or epidemiologically—a problem often encountered in drug de-
velopment. Systematic exploration of biological pleiotropy of
genetic variants marking potential drug targets may help in high-
lighting the potential of such unwanted or unexpected effects.

While the observed genetic enrichment between endometri-
osis and WHRadjBMI presents new avenues for exploring
common biology, the total absence of any genetic enrichment
between endometriosis and BMI (within the limits of power
presented by these large datasets) is intriguing given the consist-
ent, prospective, observational epidemiological evidence of

phenotypic association between reduced BMI and endometriosis
risk (8). Our analyses represent an adaptation of Mendelian ran-
domization analyses (39,40), in which genetic variants robustly
associated with BMI in the largest GWAS analyses to date (10)
are investigated for association with endometriosis. The total
lack of genetic enrichment suggests that reduced BMI is not
causally related to endometriosis risk. Rather, it suggests that
the observed phenotypic association (8) is either driven by
shared environmental factors, or is due to confounding factors
related to BMI affecting, for example, diagnostic opportunity
for endometriosis.

These novel findings present an entirely new opportunity for
functional targeted follow-up of pleiotropic loci between endo-
metriosis and WHRadjBMI in relevant disease tissues such as
endometrium and fat tissue, cellular systems, animal models
and further cross-trait comparisons, to uncover their biological
functions and to assess how studies in the fat distribution research
field can inform research into endometriosis pathogenesis, bio-
marker identification and drug target discovery and validation.

MATERIALS AND METHODS

Genome-wide association studies

IEC endometriosis GWAS
This GWAS included 3194 surgically confirmed endometriosis
cases and 7060 controls from Australia and the UK. Disease se-
verity of the endometriosis cases was assessed retrospectively
from surgical records using the rAFS classification system and
grouped into two phenotypes: Stage A (Stage I or II disease or
some ovarian disease with a few adhesions; n ¼ 1686) or Stage
B (Stage III or IV disease; n ¼ 1364). We previously showed an
increased genetic loading among 1364 cases with Stage B endo-
metriosis compared with 1666 with Stage A disease (3), which
led to two GWA analyses, including (i) 3194 ‘all’ endometriosis
case and (ii) 1364 Stage B cases (Table 3). The genotyped data
were imputed up to 1000 Genomes pilot reference panel (B36,
June 2010) and the GWAS was performed again, using a
missing data likelihood in a logistic regression model including

Table 3. Summary description of the GWAS used in the genetic enrichment
analysis

GWAS Consortium Sample
size

No. of
SNPs
(million)

References

Endometriosis—
all cases

IEC 3194 cases,
7060
controls

�12.5 Painter et al. (3)

Endometriosis—
Stage B cases

IEC 1363 cases,
7060
controls

�12.5 Painter et al. (3)

WHRadjBMI GIANT 77 167 �2.85 Heid et al. (6)
Female-limited

WHRadjBMI
GIANT 42 969 �2.85 Randall et al. (7)

BMI GIANT 123 865 �2.85 Speliotes et al. (10)
Female-limited

BMI
GIANT 73 137 �2.85 Randall et al. (7)

IEC, International Endogene Consortium; GIANT, Genetic Investigation of
Anthropometric Traits Consortium; BMI, body mass index adjusted for age;
WHRadjBMI, waist to hip ratio adjusted for BMI and age.

1192 Human Molecular Genetics, 2015, Vol. 24, No. 4

 at G
SF Forschungszentrum

 on February 2, 2015
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


a covariate representing the Australian and the UK strata, with the
imputed data (N ¼ 12.5 million SNPs). The enrichment analysis
we present is from this set of results.

GIANT Consortium
WHR GWAS. A total of 77 167 subjects of European ancestry in-
formative of body fat distribution measurement WHR from 32
GWAS were included (6). The genotype data were imputed up
to HapMap 2 CEU reference panel. The associations of 2.85
million SNPs with WHR were examined in a fixed-effects
meta-analysis, after inverse normal transformation of WHR
and adjusting for BMI and age within each study in an additive
genetic model; analyses were conducted for males and females
combined (6) and limited to females only (7) (Table 3).

BMI GWAS. A total of 123 865 subjects with overall adiposity
measurement BMI from 46 GWAS were included (10). The
genotype data were imputed up to HapMap two CEU reference
panels. The associations of 2.85 million SNPs with BMI were
tested in an inverse-variance meta-analysis, after inverse nor-
mally transformation of BMI and adjusting for age and other ap-
propriate covariates in an additive genetic model within each
study; analyses were conducted for males and females combined
(10) and limited to females only (7) (Table 3).

Genetic enrichment analysis

With one test of association conducted for each SNP, the GWAS
analyses produced a genome-wide distribution of P-values of in-
dividual SNP associations. Prior to testing enrichment: (i) the
overlap of SNPs present in endometriosis GWAS versus
WHRadjBMI and BMI GWAS was taken, (ii) all SNPs with
MAF ≤ 0.01 were removed, (iii) all SNPs with A/T and C/G
base pairs were removed, (iv) correlated SNPs (r2 . 0.2) were
removed as previously reported (41) by taking the most signifi-
cantly associated SNP and eliminating all SNPs that have a
HapMap CEU pairwise correlation coefficient (r2) . 0.2 with
that SNP, then processing to the next strongly associated SNP
remaining. This resulted in 173 157 independent SNPs in endo-
metriosis versus WHRadjBMI and 173 223 in endometriosis
versus BMI enrichment analyses.

The independent SNPs in the tails (P , 1 × 1023) of the asso-
ciation results distribution of the two endometriosis GWAS (all
endometriosis and ‘Stage B’ cases) were investigated for enrich-
ment of WHRadjBMI or BMI low P-value (P , 0.05) associ-
ation signals; in reversal, SNPs in the tails of WHRadjBMI
and BMI GWAS (P , 1 × 1023) were investigated for evidence
of nominal association (P , 0.05) in the two endometriosis
GWAS. The threshold of P , 1 × 1023 corresponded to the
point at which endometriosis GWAS results started to deviate
from the null distribution (evidence for association) in the
overall and Stage B endometriosis Q–Q plots (Supplementary
Material, Fig. S4). Enrichment was assessed in R by means of
Pearson’s x2 tests with Yates’ continuity correction, testing for
the difference in proportion of SNPs with association P , 0.05
in the lookup dataset according to association in the discovery
dataset (P , 1 × 1023 versus P ≥ 1 × 1023). To test for con-
sistency in directionality of phenotypic effects of the SNPs
with evidence of enrichment, linear regression analysis was per-
formed on the effect (b) of each SNP for WHRadjBMI as

predictor variable and the effect (b) of endometriosis risk as
the outcome variable (35). In addition, a two-sided binomial
test was performed with null hypothesis P ¼ 0.50.

Permutation-based enrichment analysis

For those results that showed nominally significant (P , 0.10)
evidence for enrichment in x2 tests of contingency tables, we
performed permutation-based analyses to obtain empirical esti-
mates of significance of enrichment. We (i) randomly picked the
same number of independent SNPs ‘associated’ with the discov-
ery trait at P , 1 × 1023 (e.g. the number of SNPs associated
with all endometriosis at P , 1 × 1023 was n ¼ 717) from the
WHRadjBMI dataset; (ii) counted how many of the randomly
selected SNPs had P-values of association with WHRadjBMI
,0.05; (iii) repeated Steps (i) and (ii) 10 000 times; (iv) deter-
mined the number of instances among the 10 000 draws in
which the number of SNPs associated at P , 0.05 with
WHRadjBMI was greater or equal to the number we observed
in our original analysis (e.g. ≥52/717). For example, for
overall endometriosis and overall WHRadjBMI, we observed
this in 26/10 000 instances, corresponding to a P-value of
2.6 × 1023, which was very similar to the P-value obtained
from the x2 test (P ¼ 3.7 × 1023).

Polygenic prediction analysis

The independent SNPs in both WHRadjBMI and endometriosis
datasets were used to conduct a polygenic prediction analysis
(11). The aim of this analysis was to evaluate the aggregate
effects of many SNPs of small effect and assess whether
subsets of SNPs selected in this manner from one disease/trait
GWAS predict disease/trait status in another, thus providing a
measure of a common polygenic component with concordant
directions of effect underlying the traits. Briefly, subsets of
SNPs were selected from the WHRadjBMI GWAS data based
on their association with WHRadjBMI using increasingly
liberal thresholds, that is, P , 0.01, P , 0.05, P , 0.1, P ,
0.2, P , 0.3, P , 0.4, P , 0.5 and P , 0.75. Using these
thresholds, we defined sets of allele-specific scores in the
WHRadjBMI dataset to generate risk profile scores for indivi-
duals in the endometriosis dataset. For each individual in the
endometriosis dataset, we calculated the number of score
alleles they possessed, each weighted by their effect size
(b-value) of association in the WHRadjBMI dataset. To assess
whether the aggregate scores were associated with endometri-
osis risk, we tested for a higher mean score in cases compared
with controls. Logistic regression was used to assess the relation-
ship between endometriosis disease status and aggregate risk
score.

Expression analyses

MGEx-Udb
The mammalian gene expression uterus database (MGEx-Udb)
is a manually curated uterus-specific database created using a
meta-analysis approach from published papers (28) that pro-
vides lists of transcribed and dormant genes for various
normal, pathological (e.g. endometriosis, cervical cancer and
endometrial cancer) and experimental (e.g. treatment and
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knockout) conditions. Each gene’s expression status is indicated
by a reliability score, derived based on the consensus across mul-
tiple samples and studies which highly variable (http://resource.
ibab.ac.in/MGEx-Udb/).

MuTHER
The MuTHER resource includes LCLs, skin and adipose tissue-
derived simultaneously from a subset of well-phenotyped
healthy female twins (29). Whole-genome expression profiling
of the samples, each with either two or three technical replicates,
was performed using the Illumina Human HT-12 V3 BeadChips
(Illumina, Inc.) according to the protocol supplied by the manu-
facturer. Log2 transformed expression signals were normalized
separately per tissue as follows: quantile normalization was per-
formed across technical replicates of each individual followed
by quantile normalization across all individuals.

Genotyping was conducted using a combination of Illumina
arrays (HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo
1 M). Untyped HapMap2 SNPs were imputed using the IMPUTE
software package (v2). In total, there were 776 samples with
genotypes and expression values in adipose tissue. Association
between all SNPs (MAF . 5%, IMPUTE info score . 0.8)
within a gene or within 1 Mb of the gene transcription start or
end site, and normalized expression values, were performed
with the GenABEL/ProbABEL packages (42) using polygenic
linear models incorporating a kinship matrix (GenABEL) fol-
lowed by the mm score test with imputed genotypes (ProbABEL).
Age and experimental batch were included as cofactors in the ana-
lysis. Benjamini Hochberg corrected P-values are reported.

MolOBB
We performed differential cis-eQTL analysis to compare the ex-
pression levels in gluteal and abdominal fat tissue from 49 indi-
viduals in the MolOBB dataset (24 with and 25 without
metabolic syndrome—MetSyn) (30). We first checked for the
presence of the SNP in the MolOBB genotype data and, in the
case of absence, selected any proxies (r2 . 0.8) available. We
then searched for nearby genes (+500 kb) covered by the ex-
pression data using the bioconductor R package Genomi-
cRanges (43) and tested for association at each pair using a
linear model with the expression level as an outcome and the
SNP allelic dosage as a predictor, adjusting for age, gender
and MetSyn case–control status. This analysis was carried out
for both abdominal and gluteal subcutaneous adipose tissue.
To investigate whether genes were differentially expressed
between the two tissues, we applied a linear mixed model with
tissue, MetSyn case–control status, gender and plate were as
fixed effects, and subject as a random effect using
MAANOVA (44), as previously described in Min et al. (30).
We report the uncorrected and genome-wide FDR corrected
Fs test P-values (30).

Biological pathway analysis

PANTHER
We conducted analyses using the PANTHER 8.1 database con-
taining pathway information on 20 000 genes (Homo sapiens)
(32). We selected independent SNPs, which had association
P-values , 1 × 1023 in the endometriosis datasets and an asso-
ciation P-value of ,0.05 in the WHRadjBMI dataset, resulting

in (i) 91 SNPs for all endometriosis and WHRadjBMI and (ii)
108 SNPs for Stage B endometriosis and WHRadjBMI. Each
SNP was mapped to the closest gene within 1 Mb; 88 of 91
and 103 of 108 genes were present in the PANTHER database,
and these subsets were tested for correlation with 241 biological
processes and 176 pathways classified in the database (32). For
each biological process/pathway, the difference between the
observed fraction of genes in that pathway and the number
expected by chance was tested using Fisher exact test. A Bonfer-
roni correction was used as a conservative method for adjusting
for the maximum number of biological processes (n ¼ 278; P ¼
1.80 × 1024) and pathways (n ¼ 78; P ¼ 6.41 × 1024) tested.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Germany, 68Universität zu Lübeck, Medizinische Klinik II, Lübeck,
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