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Abstract

Ordinary differential equations (ODEs) have become a valuable tool for

mathematically representing biological processes as dynamical systems. How-

ever, inference of the associated parameters for fitting the differential equa-

tions to measurement data is not straightforward. Furthermore, if the

structure of the ODE itself is uncertain, i.e. if several competing models

exist, model selection methods have to be applied. In the last few years

a steady increase in the use of Bayesian methods for both parameter and

model inference could be noted. These are especially suited to inference

in biological systems, since they can efficiently handle the occurring issues

such as small numbers of observables, considerable parameter correlations,

non-identifiabilities and nonlinearities. Due to the complex nature of the

problems at hand, it is however almost never possible to use Bayesian meth-

ods ”out of the box”, but they always have to be adapted to the specific task

at hand, often due to scaling or dimensionality issues. This was thought

to be hard to impossible in higher dimensional systems. In this work, we

are able to show that nevertheless efficient inference is possible with the

newly improved methods that we introduce. More precisely, we refine sev-

eral existing Bayesian methods, ranging from an adaptive scheme for the

computation of high-dimensional integrals required for model selection to

multi-chain Metropolis-Hastings algorithms for high-dimensional parameter

inference. We then present a range of examples spanning from simple mod-

els with lots of data where model inference is difficult to highly complex,

high-dimensional models where parameter inference is challenging.



Zusammenfassung

Gewöhnliche Differentialgleichungen sind ein wertvolles Instrument um bi-

ologische Prozesse mathematisch als dynamische Systeme zu repräsentieren.

Allerdings ist die Inferenz der zugehörigen Parameter alles andere als ein-

fach, wenn an Messdaten gefittet werden soll. Ist zudem die Struktur

der Differentialgleichung an sich unsicher, d.h. wenn mehrere konkurri-

erende Modelle existieren, müssen Modellselektionsmethoden angewandt

werden. In den letzten Jahren wurden Bayesianische Methoden sowohl für

Parameter- als auch Modellinferenz immer beliebter. Diese sind beson-

ders geeignet für die Inferenz in biologischen Systemen, da sie effizient mit

auftretenden Problemen wie etwa einer kleinen Anzahl beobachtbarer Kom-

ponenten, bedeutenden Parameterkorrelationen, Nichtidentifizierbarkeiten

und Nichtlinearitäten umgehen können. Wegen der komplizierten Natur

biologischer dynamischer Systeme ist es jedoch nur in den seltensten Fällen

möglich, vorhandene Methoden als fertige Standardmethoden anzuwenden,

sondern sie müssen an die jeweils vorliegende spezielle Problemstellung

angepasst werden, oftmals wegen Skalierungs- oder Dimensionalitätsprob-

lemen. Das wurde für schwer bis unmöglich in höherdimensionalen Sys-

temen gehalten. In dieser Arbeit sind wir in der Lage zu zeigen, dass

nichtsdestotrotz effiziente Inferenz möglich ist dank der neu weiterentwick-

elten Methoden, die hier präsentiert werden. Genauer gesagt verfeinern wir

eine Reihe existierender Bayesianischer Methoden. Das Spektrum reicht

hierbei von adaptiven Schemata zur Berechnung hochdimensionaler Inte-

grale, die für die Modellselektion benötigt werden, bis hin zu Multiketten-

Metropolis-Hastings-Algorithmen für hochdimensionale Parameterinferenz.

Wir präsentieren eine Sammlung verschiedener Anwendungsbeispiele, die

von einfachen Modellen mit vielen Datenpunkten, wo Modellinferenz schwer



ist, bis zu hochkomplexen, hochdimensionalen Modellen, wo Parameterin-

ferenz allein eine Herausforderung darstellt, reicht.
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1

Introduction

If you can’t explain it simply,

you don’t understand it well enough.

Albert Einstein

1.1 Scientific question of this thesis

At first glance, mathematics and biology might seem to be very two very differently

oriented sciences. In mathematics there is usually a unique and provable solution for

a problem or none at all, while in biology often many contradictory theories exist even

for simple processes. While many principles of mathematics have stood unchanged for

centuries, in biology, new theories for interactions are proposed on a daily basis and

almost no two biological entities are ever exactly the same due to biological variability.

However, scientific discoveries starting from the 20th century have shown that never-

theless the application of mathematics to biological problems is extremely worthwhile

1



1. INTRODUCTION

and can yield many exciting new insights.

Gaining knowledge in biology is usually only possible by doing experiments. This of

course can have several disadvantages. First of course, experiments are tainted with

measurement noise, which has to be considered in order to get reliable results. Second,

often not all components in the biological system are measurable due to technical

or monetary limitations. On top of that, there is the biological variability between

individuals. Nevertheless many new discoveries have been made thanks to experiments.

Despite and also because of all these difficulties, biological systems are a very interesting

and challenging task for applied mathematics. The complexity of biological systems

encourages mathematicians to develop better methods, to the profit of both sides.

This successful collaboration began when scientists started applying statistical methods

for analyzing biological data. More and more complex approaches have been applied

successfully since roughly the 1940s, see Hodgkin & Huxley [1952]; Turing [1952]; von

Foerster [1959]; Welch [1947]. Wiener [1948] was one of the first to introduce a systems

view. Kitano [2002a,b] then provides an overview over the field of systems biology.

For understanding a biological process at the systems level, often models are build

for examining the process behavior as a whole. However, care has to be taken when

building a model. As Box & Draper [1987] so nicely put it: “Essentially, all models

are wrong, but some are useful.” Thus it should be clear before building a model what

the aim of such a model should be, e.g. whether its purpose is in-depth understanding

of system behavior or the prediction of responses to different stimuli (Kitano [2002b]).

Models being useful here means that even though models always are simplified views

of the complex biological system, they can still offer mechanistic insights. The art here

is to choose the right level of abstraction to make the model still representative, but

computationally feasible. Lawrence et al. [2010] also call this a modeling compromise.

The example they provide illustrates this point very well: Even if it is known that a

system exhibits dynamical behavior, the assumption that the chemical reaction rates

are large relative to the interval at which the system is observed allows us to ignore

the dynamic behavior. This can result in enormous computational savings, even if it

is clear that measurements of the system at smaller time intervals would refute the

2



1.1 Scientific question of this thesis

model hypotheses immediately. Still the simplification can be well justified if it allows

to answer a specific question.

An ideal way to include several such competing modeling hypotheses is through a

Bayesian framework, where individual hypotheses are sustained through probability

distributions over parameters. The Bayesian approach allows assessing the probability

of a hypothesis together with its underlying parameter uncertainty, which is an impor-

tant advantage. For practical reasons, it is usually not feasible to consider all possible

complexity levels of hypotheses (Lawrence et al. [2010]). In real world applications, one

thus often is constrained to only a few model hypotheses.

For understanding a system, it is an important first step to identify all components

and their interactions, the biological network. As Kitano [2002b] points out, it is then

especially important to understand the dynamics of a biological system, not only the

network wiring at the basis of the system. The author likens this to a static street map,

which does not give any answers to questions such as where traffic patterns emerge and

why and how they can be controlled.

For modeling the dynamics of a system, differential equations are a very useful tool

(Aldridge et al. [2006]) as they can give new mechanistic insights, e.g. in Aldridge et al.

[2011]; Kollmann et al. [2005]; Swameye et al. [2003]. They can be used to analyze the

evolution and maintenance of cellular functionality over time. The size of the model

can vary dramatically depending on the questions asked, from simple linear models of

one component to large and complex nonlinear systems of differential equations.

All differential equation models have in common that they are usually parameter de-

pendent, e.g. on rate constants, initial conditions etc. These parameters have to be

inferred to fit the model to the data in question (Ljung [1999]), we thus have to per-

form parameter inference.

If the structure of the biological system itself is uncertain, we are faced with the problem

of structural inference, also called model selection. The target here is to choose among

a finite set of candidate models the one which best explains the data. Often these

candidate models correspond to different hypotheses which interactions are present in

the biological system (Lawrence et al. [2010]). For structural inference a variety of

indicators are applied, originating from various fields (Kirk et al. [2013]).

3



1. INTRODUCTION

Parameter inference and also structural inference can be called an inverse problem

or reverse engineering. Parameter inference assesses the values and uncertainty of

parameters within the model, while structural inference compares several such models.

Not only the size of the model, but consequently also the number of parameters can

vary dramatically between models, from one or two to several hundred. Thus parameter

estimation is found everywhere in systems biology (Engl et al. [2009]) and extensive

research has gone into the field (Horbelt et al. [2002]), producing a wide array of

parameter estimation procedures. These are often optimization based, using different

cost functions, such as likelihoods. A recent overview over different methods has been

given in Villaverde & Banga [2014].

Tackling both parameter inference and model selection at the same time is possible

with Bayesian statistics (Bayes [1763]). Bayesian methods found increasing popular-

ity due to their ability to extract information from uncertain and noisy data as well

as the possibility to include prior knowledge to yield the posterior distribution of the

model parameters given the provided measurement data. Analytical inference of this

distribution becomes quickly infeasible, yet Markov chain Monte Carlo (MCMC) meth-

ods can be ideally applied, as these can deal with considerable parameter correlations,

non-identifiabilities and nonlinearities. Pioneering work using Monte Carlo methods

comes from Battogtokh et al. [2002]; Brown & Sethna [2003]; Sanguinetti et al. [2006].

It was made possible by advances in computer technology and the development of

Markov chain Monte Carlo methods such as the Metropolis-Hastings algorithm (Hast-

ings [1970]; Metropolis et al. [1953]), which is very generally applicable. Brown &

Sethna [2003]; Lawrence et al. [2010]; Wilkinson [2006] are also examples of successful

Bayesian parameter inference in differential equation models. Bayesian model selection

methods often also use MCMC methods for approximating the marginal likelihoods of

the models given the data.

When using MCMC methods especially for ordinary differential equation (ODE) mod-

els from systems biology, one soon realizes that it is not possible to apply standard

algorithms “out of the box”. Instead, MCMC methods have to be tuned to the model

at hand. Sometimes even new methods have to be developed for reliable inference.

This is also due to issues of MCMC concerning scalability, as it is often not clear how

to implement an efficient MCMC method in high-dimensional spaces.

4



1.1 Scientific question of this thesis

Parameters are not always “well-behaved”, sometimes due to limitations of the data

like low time resolution or measurement noise (Gutenkunst et al. [2007]; Komorowski

et al. [2011]) and/or to deeper underlying problems of the model that are the focus

of identifiability analysis (Cobelli & DiStefano [1980]; Little et al. [2010]; Raue et al.

[2009]). A strict analysis of parameter and prediction uncertainty has to take place for

obtaining reliable and meaningful results. This is often also called uncertainty analysis.

In this thesis, we focus on efficient inference tailored to the biological system at hand.

For this we improve existing Bayesian inference methods for both parameter and model

inference. The advancement of the methods is driven by the issues occurring in the

examined biological systems, which are among others small numbers of observables,

considerable parameter correlations, non-identifiabilities and nonlinearities. We have

found that due to the complex nature of the problems at hand, it is almost never

possible to use Bayesian methods ”out of the box”. Instead, they always have to be

adapted to the specific task at hand, which was thought to be hard to impossible in

higher dimensional systems. It is for example well known that MCMC methods do

not scale well with increasing sampling dimensions. In this work, we are able to show

that nevertheless efficient inference is possible with the improved methods that we

introduce. All in all, we refine several existing Bayesian methods, ranging from an

adaptive scheme for the computation of high-dimensional integrals required for model

selection to multi-chain Metropolis-Hastings algorithms for high-dimensional parameter

inference.

We present in detail three application examples from systems biology. We go from

doing model selection on two small ODE models with lots of data, where we improved

existing model selection methods, over a medium sized application to a large ODE

system with many parameters, where we applied a new method for MCMC. Each of the

three applications poses its own difficulties and all three require different methodology

for handling them.

In summary, the aim of this thesis is to show how Bayesian methods can and have to be

improved to yield reliable inference results in varying biological systems. For this, we

also combine Bayesian methods with other mathematical methods such as numerical

quadrature and optimization-based uncertainty analysis. In the following two sections,

5



1. INTRODUCTION

we will first give an overview of the presented topics and then give a review of the main

scientific contributions of this thesis.

1.2 Overview of this thesis

This thesis is separated into two parts. The first part, comprising chapters 2 to 5,

focuses on the methodological aspects. This includes an overview over already known

methods as well as methods newly extended in this thesis. The second part, com-

prising of chapters 6 to 8, presents the biological applications to which the presented

methodology was applied.

Thus in the first chapter after this one, Chapter 2, we will give a brief overview over

the necessary prerequisites for the rest of this thesis. This includes some basics on

probability distributions, Markov chains and numerical integration, as well as a brief

introduction to molecular biology. The main tool for modeling processes in molecular

biology considered in this thesis are ordinary differential equations, which are hence also

introduced. We also give a short introduction of non-Bayesian parameter estimation in

such ordinary differential equation systems.

Chapter 3 introduces Bayesian inference, from prior and posterior distributions to the

analysis of identifiability. While identifiability analysis as such does not have to be

Bayesian, it can also be done in a Bayesian way with the help of profile posteriors,

which are also introduced.

Markov chain Monte Carlo algorithms are presented in Chapter 4. This includes well-

known methods as the Metropolis-Hastings algorithm as well as new methods. One

of these is the Adaptive Metropolis Parallel Hierarchical Sampling, which was newly

constructed for one of the applications presented in this thesis.

The main methodological novelty is contained in Chapter 5. Here we first present

Bayesian model selection through the computation of Bayes factors. We then introduce

a new adaptive variant for calculating them through thermodynamic integration and

evaluate the new scheme and several other well-known model selection techniques on a

numerically tractable model selection example.

6



1.3 Main scientific contributions

In Chapter 6 we present the first application of the methods doing model selection

on single-cell time-lapse microscopy data. While the ordinary differential equation

models in this application are small, the inference is nevertheless interesting, since single

cells are fitted individually but in parallel, leading to large numbers of independent

parameters that have to be inferred.

Chapter 7 presents model selection on a medium sized problem of ten versus eleven

coupled linear ordinary differential equations, with twelve and fifteen parameters re-

spectively. It compares models for Zirconium processing in the human body on the

basis of compartmental models. We analyze thermodynamic integration in this context

and present additionally the results of an identifiability analysis.

In Chapter 8 we are faced with a high-dimensional system of 113 parameters in a model

for 25 molecular components. Here already the parameter inference is very challenging

and standard MCMC algorithms fail. We show how multi-chain algorithms can be

applied successfully and how a combination of Bayesian inference with identifiability

analysis is worthwhile for obtaining reliable results.

Finally, Chapter 9 presents a discussion of the presented methods and applications. We

draw general conclusions and show potential targets for future research.

1.3 Main scientific contributions

The main scientific contributions of this thesis are

• the introduction of a variant of multi-chain MCMC methods, the Adaptive Metropo-

lis Parallel Hierarchical Sampling,

• the adaptive Simpson’s rule for calculating marginal likelihoods through thermo-

dynamic integration for model selection,

• inference, identifiability analysis and model selection in single-cell data based on

individual treatments of single cells,

• analysis of thermodynamic integration results on two medium-sized linear multi-

compartmental models combined with identifiability analysis and

7



1. INTRODUCTION

• the proof-of-principle that Bayesian parameter inference of over 100 parameters

in a biological system is possible.

These contributions were in part already published in peer-reviewed journals. Some

parts of this thesis will thus correspond to or be in parts identical with the following

publications:

• D. Schmidl∗, S. Hug∗, W.B. Li, M.B. Greiter and F.J. Theis (2012). Bayesian

model selection validates a biokinetic model for Zirconium processing in humans.

BMC Systems Biology, 6(1), 95.

• S. Hug∗, A. Raue∗, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer

and F.J. Theis (2013). High-dimensional Bayesian parameter estimation: case

study for a model of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2),

293-304.

• S. Hug, D. Schmidl, W.B. Li, M.B. Greiter and F.J. Theis. Uncertainty in

Biology: a computational modeling approach, chapter Bayesian model selection

methods and their application to biological ODE systems, in revision

• S. Hug, M. Schwarzfischer, J. Hasenauer, C. Marr and F.J. Theis. An adaptive

method for calculating Bayes factors using Simpson’s rule, in revision

• M. Schwarzfischer, O. Hilsenbeck, B. Schauberger, S. Hug, A. Filipczyk, P.S.

Hoppe, M. Strasser, F. Buggenthin, J.S. Feigelman, J. Krumsiek, D. Loeffler, K.D.

Kokkaliaris, A.J.J. van den Berg, M. Endele, S. Hastreiter, C. Marr, F.J. Theis

and T. Schroeder. Single-cell quantification of cellular and molecular behavior in

long-term time-lapse microscopy, in preparation

We mark specifically in the beginning of a chapter where this is the case. Asterisks in

the list indicate a shared first authorship.

The content of the first of these papers is also in part contained in another thesis

(Schmidl [2012]), as this was a joint first author work. While the focus of Dr. Schmidl

was more on the copula-based sampling of the models and the insights that can be

gained from the posterior distribution, the author of this thesis performed the anal-

ysis of the thermodynamic integration and the identifiability analysis of the models.

Furthermore, the author contributed the analysis of an additional model variant.
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Also the second paper is a joint first author work, thus the content of this paper is

also to a small part contained in another thesis (Raue [2013]). The contribution by

the author of this thesis is the MCMC and its interpretation and evaluation, while Dr.

Raue provided the profile likelihoods.

Further scientific contributions

In addition to the publications specified above, the author of this thesis participated

in several other research projects, which are in some cases not directly related to the

content of this thesis or where the contribution was more minor. These projects have

led to the following publications:

• S. Hug and F.J. Theis (2012). Bayesian inference of latent causes in gene reg-

ulatory dynamics. In Latent Variable Analysis and Signal Separation, 520-527.

Springer Berlin Heidelberg.

• D. Schmidl, C. Czado, S. Hug, F.J. Theis (2013). A vine-copula based adaptive

MCMC approach for efficient inference of dynamical systems. Bayesian Analysis

8(1),1-22.

• D. Schmidl, C. Czado, S. Hug, F.J. Theis (2013). Rejoinder on: A vine-copula

based adaptive MCMC approach for efficient inference of dynamical systems.

Bayesian Analysis 8(1),33-42.

• A. Raue, M. Schilling, J. Bachmann, A. Matteson, M. Schelke, D. Kaschek, S.

Hug, C. Kreutz, B.D. Harms, F.J. Theis, U. Klingmüller and J. Timmer (2013).

Lessons learned from quantitative dynamical modeling in systems biology. PloS

one 8(9), e74335.

• C. Vehlow, J. Hasenauer, A. Kramer, A. Raue, S. Hug, J. Timmer, N. Radde,

F.J. Theis and D. Weiskopf (2013). iVUN: interactive Visualization of Uncertain

biochemical reaction Networks. BMC Bioinformatics 14(Suppl 19), S2.
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2

Mathematical and biological

basics

This chapter introduces some notions from molecular biology that are relevant for

this thesis. Furthermore, some notation, basic probability distributions, Markov chain

theory and numerical integration are introduced, followed by basics about dynamical

systems in biology and non-Bayesian parameter estimation in such systems are pre-

sented.

This chapter presents necessary preliminaries for the understanding of the subsequent

chapters. Especially the Markov chain theory will be needed for understanding the

required properties of MCMC algorithms presented in Chapter 4.

2.1 Molecular biology

In this section we shortly introduce some basic notions from biology relevant to our

applications. These are from molecular biology in general, and more specifically about

stem cells and signaling pathways, since these are important applications in this thesis,

see Chapters 6 and 8.
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2.1.1 Basics of molecular biology

The discovery of deoxyribonucleic acid (DNA) as the coding blocks for all living organ-

isms has opened a tremendous amount of new avenues for biological research (Choud-

huri [2003]; Olby [1974]). The Human Genome Project (Collins et al. [2003]) has de-

coded the entire human DNA in 2003, yet still many of the mechanistic interplays and

dynamics of genetics are unclear. We do know that one single molecule contains the

entire genetic information for the organism (Alberts et al. [2002]). While not everything

is known about the mechanics, we still know that a gene is a small stretch of DNA that

contains the genetic code for a protein (Pearson [2006]). Humans have about 20000 to

25000 of these genes. The information in a gene is used for building a protein through

the two steps of transcription and translation (Crick [1970]). Transcription means

that the so-called transcription factors read the gene of the DNA strand and initiate

the assembly of RNA (ribonucleic acid). There are several distinct types of RNA, for

example messenger RNA (mRNA) or micro RNA (miRNA). Not for all of them their

complete function is clear yet. What is known however is that in the translation step,

which takes place in the cell’s cytoplasm, proteins are assembled according to the in-

formation in the RNA. Proteins are in this case assembled from smaller building blocks

called amino acids. Two recent studies have shown that the human proteome contains

about 20000 different proteins (Kim et al. [2014]; Wilhelm et al. [2014]).

Many cell processes are in some way or the other regulated by such proteins, protein

complexes or peptides (short sequences of amino acids). Examples are numerous, rang-

ing from structure proteins for cell skeletons, transcriptions factors, enzymes regulating

metabolism or growth factors like cytokines and hormones that stimulate proliferation

and cell growth, see e.g. Frixione [2000]; Hartwell & Weinert [1989]; Latchman [1997];

Lodish et al. [2012].

2.1.2 Signaling pathways

We know that proteins regulate the important functions in living organisms, but we

now want to go into more detail of how they do that. One primary way is via cel-

lular signaling. In this, signals are transmitted from cell to cell by proteins, small

peptides, lipids or even single amino acids. A few mechanisms of signaling are known:

14



2.1 Molecular biology

first is direct cell-to-cell transfer of molecules, for example notch signaling (Artavanis-

Tsakonas et al. [1999]). The second mechanism is by the secretion of molecules from

the signaling cell. The receiving cell reacts to the signal through its receptors on the

cell surface, see e.g. Lodish et al. [2012]. More precisely: the signaling molecule binds

to the extracellular receptor of the receiving cell. This triggers a biochemical reaction

cascade where information is transported through the cell membrane into the cell. In-

side the cell, a receptor associated kinase or kinase domain gets activated, which in

turn activates other intracellular proteins or other signaling molecules. These can then

be transported to a target, e.g. the nucleus of the cell, where they might for example

control transcription of their target genes. In general, this works by phosphorylation

or dephosphorylation steps of proteins (Kowarsch [2011]), which can be imagined like

switching the proteins on or off. This whole second mechanism is also called cellular

signaling pathway or simply signaling pathway.

A very important example for such a signaling pathway is the JAK/STAT signaling

pathway, which will also be examined in more detail in a later chapter of this thesis.

JAK/STAT is an important pathway for gene regulation, which is why it is much

investigated and of major scientific interest (Aaronson & Horvath [2002]; Swameye

et al. [2003]). Disruption of the pathway has been associated with diseases such as

leukemia, bronchial asthma or cancer (Igaz et al. [2001]). The two key players in the

pathway are the kinase JAK (Janus kinase), which has four variants in mammals,

and the transcription factor STAT (Signal Transducer and Activator of Transcription),

which has seven variants in mammals. The pathway can be triggered by about fifty

signaling molecules of different types such as cytokines, growth factors or hormones.

Important examples include the epidermal growth factor (EGF), interferons like INFα,

INFβ and INFγ, Interleukin-6 (IL-6), or the hormone erythropoietin, which is known

by many under its abbreviation Epo for its use in blood doping.

An example of the JAK/STAT signaling pathway can be seen in Figure 2.1. In our

example, Epo regulates erythropoiesis, the production of red blood cells. Epo binds to

its cognate receptor, which leads to rapid activation of JAK2 phosphorylation followed

by phosphorylation of the latent transcription factor STAT5. The quantitative link

between the integral STAT5 response in the nucleus and survival of erythroid progenitor

cells has recently been elucidated (Bachmann et al. [2011]). The broad dynamical range
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cell membrane

nuclear membrane

Figure 2.1: Dynamical model of the Epo induced JAK2/STAT5 signal trans-

duction pathway, adopted from Bachmann et al. [2011]. The hormone erythropoietin

(Epo) binds to its membrane receptor (EpoR) and subsequently leads to receptor phospho-

rylation (pEpoR) and to phosphorylation of its associated Janus kinase (JAK2, pJAK2).

Receptor phosphorylation is balanced by activation of a phosphatase (SHP1, SHP1act).

Active EpoR/JAK2 complexes lead to phosphorylation of the Signal Transducer and Ac-

tivator of Transcription (STAT5, pSTAT5) that transmits the signal to the nucleus (np-

STAT5). In the nucleus, STAT5 leads to target gene expression that induces pro-survival

signals and self-regulating negative feedbacks. In this case, two regulator proteins and

their respective mRNAs are involved, Suppressor Of Cytokine Signaling (SOCS3) and the

Cytokine-Inducible SH2-containing protein (CIS).
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2.1 Molecular biology

of Epo concentrations up to 1000-fold in vivo (Becker et al. [2010]) requires a stringent

regulatory system. This model will be examined in more detail in Chapter 8.

2.1.3 Hematopoietic stem cells

Signaling between cells can lead for example to cell division. Every living organism

needs a means to produce new cells, e.g. to replace dead cells, to keep the correct

balance between different cell types and to react to injuries. The production of new

cells is mediated by a special type of cells, the stem cells (Becker et al. [1963]). They

can be characterized through two main properties: (i) they are pluripotent, i.e. they

have the ability to become different types of specialized cells and (ii) they can self-renew

indefinitely and thus stay in their pluripotent state even after cell division. How and

why stem cells do or do not differentiate, i.e. become more specialized cells, is however

still poorly understood.

One very interesting subtype of stem cells are hematopoietic stem cells (HSCs) re-

sponsible for replenishing all necessary types of blood cells through the process of

hematopoiesis (Orkin & Zon [2008]). The process of differentiating HSCs is thought

to be a lineage tree, where the HSCs on top of the tree differentiate through several

intermediate cell types to finally give rise to specialized blood cells such as erythrocytes

or platelets, as can be seen in Figure 2.2.

At the end of this lineage tree, one can find erythropoiesis, the generation of red blood

cells, the erythrocytes. As introduced in the previous section, this process is heavily

regulated in cells via the JAK/STAT signaling pathway. This will be discussed further

in Chapter 8.

When cells differentiate, they become more and more specialized and gradually lose

their ability to self-renew. The exact mechanisms of lineage decisions are not fully

understood. It is known that cellular decisions can be triggered by external stimuli

or intrinsic factors (Rieger & Schroeder [2007]). Transcription factors specific to each

lineage play an important role in the differentiation process through auto-activation

and mutual inhibition. For the decision between granulocyte/macrophage progenitors

(GMPs) and megakaryocyte/erythrocyte progenitors (MEPs), the transcription factors

PU.1 and Gata1 have been suggested as key players (Graf & Enver [2009]). For both
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Self-
renewal

MPP

GMLP CMP

GMP MEP

Erythrocyte
PlateletsGranulocyte

MacrophageDendritic cellNK cell B Lymphocyte

ST-HSC

LT-HSC

CLP

Bone
Marrow

Chapter 6

Chapter 8

Figure 2.2: Differentiation tree of hematopoietic stem cells, adopted from Rossi

et al. [2012] and Schwarzfischer [2013]. Starting with HSCs, the cells start to differentiate

into more specialized cell types and lose their ability to self-renew in the process. In Chapter

6 we focus on the granulocyte/macrophage progenitor (GMP) cells, while in Chapter 8 the

production of erythrocytes is studied.
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transcription factors the ability to inhibit the opposing player, transcriptional self-

activation and the ability to shut down opposing downstream lineage-specific genes

are known (Nerlov et al. [2000]; Zhang et al. [1999, 2000]). As also pointed out in

Schwarzfischer et al. [2014], the data on this differentiation is contradictory although

the system is heavily studied (Foster et al. [2009]). For this reason, continuous single-

cell investigations are crucial for gaining insight into the complex underlying biological

processes and for dispersing the existing discrepancies.

2.1.4 Time-lapse microscopy for molecular biology

As advocated in the previous section, single-cell data is a highly desirable data type

for the study of many systems, not only hematopoietic stem cells. Recent advances in

microscopy technology as well as the development of sophisticated software for curating

the raw data have lead to the availability of time-lapse single-cell microscopy data.

While both microscopy and photography are century-old techniques, their combination

for biological processes is still a quite recent development. A milestone for this was

the discovery of the green fluorescent protein (GFP), whose emission of green light

upon stimulation with ultra violet light can be detected with fluorescence microscopy

(Shimomura et al. [1962]). This has paved the way for determining protein locations and

protein abundances. Full lineages of cells can nowadays be tracked through continuous

filming of cells. However, for this new hard- and software is necessary, since huge

amounts of data are generated which cannot be manually curated. This has lead to

the development of two tools, TTT and QTFy, for efficient quantification of single-cell

time-lapse microscopy data (Schwarzfischer et al. [2014]). The typical work flow of these

tools can be seen in Figure 2.3. For details on the tools and the methods underlying the

image quantification, please refer to Schwarzfischer et al. [2014]. Most importantly, the

individual cells have to be tracked and the fluorescence intensity has to be normalized,

segmented and quantified.

Quantitative time-resolved data obtained through these tools is then the basis for single-

cell inference of parameters in a dynamical system representing the behavior of the

single cell. More specifically, the dynamical properties of the transcription factor PU.1

in GMP cells will be elucidated in Chapter 6. Under special experimental setups, also

fully automated quantification might be possible, such as for example in Halter et al.
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[2007]. There GFP was measured in fibroblast cells, which will also be analyzed in

Chapter 6.

2.2 Basic notions and notation

We will now only very briefly introduce the required mathematical notation, since we

assume that the reader is already more or less familiar with these.

Vectors and matrices will be indicated by bold letters throughout this thesis, while

regular font letters with subscript indices denote their elements. We will display Markov

chains as {X(j)}j∈I for some index set I. Here the superscript (j) denotes the jth

element of the Markov chain. A superscript i denotes a model index of a parameter

vector. For example, we will later use the notation θ
i,(j)
s , this is the s-th element of the

vector θ, belonging to the model with index i, and the jth element of the according

Markov chain. Usually, a dimensionality will be written e.g. as Rdu for the dimension

of u.

2.2.1 Probability distributions

The theory of probabilities is very rich and delves deep for example also into measure

theory. We restrict ourselves to only introducing the necessary notations that will

be used later on. The necessary background knowledge, such as the definition of a

probability density function, can be found e.g. in Grimmett & Stirzaker [2001].

We will now briefly introduce the most important distributions that we will use in the

course of this thesis, which are the uniform distribution, the normal distribution, the

lognormal distribution, the gamma distribution and the triangular distribution. While

the uniform distribution finds use mostly as prior distribution for the parameters that

we want to infer, normal, lognormal and gamma distributions play an important role

both as priors and for the error model of our inference. The triangular distribution

appears as prior distribution in one application example. The normal distribution

will also feature prominently in the Metropolis-Hastings algorithm to be introduced in

Chapter 4.1. An illustration of the five distributions can be seen in Figure 2.4. As the

most simple and basic distribution, we will begin with the uniform distribution.
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Figure 2.3: Work flow for time-lapse microscopy data collection, adopted from

Schwarzfischer [2013]; Schwarzfischer et al. [2014]. The most essential parts of the work

flow are the tracking of the individual cells and then the normalization, segmentation and

quantification of the fluorescence intensity.
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Example 2.1 (Uniform distribution). Let 1B be the indicator function on a non-

empty measurable set B ⊂ Rn, i.e.

1B : Rn → R

x 7→

1, if x ∈ B

0, otherwise.

Let now λn be the n-dimensional Lebesgue measure. If the density function

fX(x) =
1

λn(B)
1B(x)

exists for x ∈ Rn and a random vector X : Ω −→ Rn, we call X uniformly dis-

tributed on B. We use the notation X ∼ U[B]. Examples for this distribution can be

seen in Figure 2.4(a).

Example 2.2 (Normal distribution). A random vector X : Ω −→ Rn is called normally

(or Gaussian) distributed, if the density function fX(x) exists for x ∈ Rn and has

the form

fX(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
for a vector µ ∈ Rn and a positive semidefinite symmetric matrix Σ ∈ Mat(n× n,R).

We use the notationX ∼ N(µ,Σ). We call µ the mean and Σ the covariance matrix

of the distribution. In the univariate case n = 1, the density function simplifies to

fX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
for the standard deviation σ > 0. We write X ∼ N(µ, σ2). Later, we will also use

the notation φ(x;µ, σ) for the probability density function of the univariate normal

distribution evaluated at x with mean µ and standard deviation σ. Examples for the

univariate normal distribution can be seen in Figure 2.4(b).

Example 2.3 (Lognormal distribution). The univariate lognormal distribution for a

random variable X is defined by its density function for x ∈ R, µ ∈ R and σ > 0, if it

exists, by

fX(x) =
1

x
√

2πσ2
exp

(
−(log(x)− µ)2

2σ2

)
1(0,∞)(x),

where 1(0,∞)(x) denotes the indicator function on (0,∞) as defined above. We write

X ∼ LN(µ, σ2). Figure 2.4(c) shows examples for this distribution.
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Example 2.4 (Gamma distribution). A one dimensional random variable X is called

gamma distributed, if its density fX(x) exists and is given by

fX(x) =
1

Γ(k)λk
xk−1 exp

(
−x
λ

)
1(0,∞)(x)

for x ∈ R, the shape parameter k > 0 and scale parameter λ > 0, where 1(0,∞)(x)

is again the indicator function on (0,∞) and

Γ(k) :=

∫ ∞
0

tk−1 exp(−t) dt

is the gamma function. We write X ∼ Γ(k, λ). Later, we will also use the notation

φΓ(x; k, λ) for the probability density function of the univariate gamma distribution

evaluated at x with shape k and scale λ. The typical shapes of this distribution can

also be seen in Figure 2.4(d).

Example 2.5 (Triangular distribution). The univariate triangular distribution for a

random variable X is defined by its density function for x ∈ R, a ∈ R, b ∈ R and c ∈ R
for a < b < c, if it exists, by

fX(x) =



0 for x < a

2(x−a)
(c−a)(b−a) for a ≤ x ≤ b

2(c−x)
(c−a)(c−b) for b < x ≤ c

0 for c < x

where a and c are the lower and upper bound, respectively, and b is the mode of the

distribution. We write X ∼ T(a, b, c). Figure 2.4(e) shows that the density of this

distribution has indeed a triangular shape.
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Figure 2.4: Univariate distributions. (a) The uniform distribution. (b) The nor-

mal distribution. (c) The lognormal distribution. (d) The gamma distribution. (e) The

triangular distribution. (a-e) Shapes of the densities for different parameter values.
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2.2.2 Markov chains

Markov chains yield the necessary theoretical background for the Markov chain Monte

Carlo algorithms presented in Chapter 4. More detailed introductions can be found

in e.g. in Meyn & Tweedie [1996]; Robert & Casella [2004]. Throughout this section,

we will let (Ω,F, P ) denote a probability space. Furthermore, all random vectors are

functions X : Ω −→ Ω′ onto a measurable space (Ω′,F′) ⊆ (Rn,B(Rn)). Without loss

of generality let the density function for each random vector exist and be positive for

any realization x ∈ Ω′ considered here. Furthermore, we consider only state spaces

Ω′ ⊆ Rn that are thus continuous.

First, there is of course a precise mathematical definition of a Markov chain:

Definition 2.1 (Markov chain). Let (Ω,F, P ) be a probability space and {X(t)}t∈I
a stochastic process. {X(t)}t∈I with values in the state space Ω′ is then a Markov

chain, if I = N0 and for any measurable set A ⊆ Ω′, any index T ∈ I \ {0, 1} and

any realization x(0), . . . ,x(T ) of X(0), . . . ,X(T ), the random vector X(T+1) does not

depend on x(0), . . . ,x(T−1). For the distributions, that means that

PX(T+1)|X(0)⊗···⊗X(T )

(
X(T+1) ∈ A|x(0), . . . ,x(T )

)
= PX(T+1)|X(T )

(
X(T+1) ∈ A|x(T )

)

Since I = N0, a Markov chain is an entity with discrete indices, which attains a value

from an in our case continuous state space for each index. The important thing about

such a first-order Markov chain is that the value at index T + 1 only depends on the

value at T , if X(T ) is known, thus it is in a sense memoryless. This is also called the

Markov property.

Markov chains can have many desirable properties. We will now give only a brief

mathematical introduction that we hope is easy to understand for those not already

familiar with the concepts. For those interested, we refer to the literature for more

detailed introductions, e.g. Robert & Casella [2004].

When the state of the system changes, this is called a transition. It is associated with a

probability, which is thus called transition probability. If the state space Ω′ were finite

and discrete, we could write this transition probability as pij = P{X(T ) = j|X(T−1) =

i} (Meyn & Tweedie [1996]). However we here deal with continuous state spaces, thus
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we use the notion of a transition kernel, which will be introduced in a moment. But

first we define:

Definition 2.2 (Time-homogeneous Markov chain). Let {X(t)}t∈N0 with values in Ω′

be a Markov chain. We call {X(t)}t∈N0 time-homogeneous, if for all all s ∈ I and

(s+ 1)-uplets t0 ≤ t1 ≤ ts the distributions of X(t1−t0), . . . ,X(ts−t0) given a realization

x(t0) and X(t1), . . . ,X(ts) given a realization x(0) are equal.

In other words, the joint distribution is time independent, time here refers to the chain

index (t). In the following, we will always assume that all Markov chains considered

are time-homogeneous.

The definition of Markov chains also makes a simplification of notation possible when

considering the joint distribution PX(0)⊗···⊗X(t) of the random vectors X(0), . . . ,X(t).

Definition 2.3 (Transition kernel). Let {X(t)}t∈N0 be a Markov chain on a probability

space (Ω,F, P ) with values in Ω′. For a measurable set A ∈ Ω′, the distribution

k(A|x) := PX(t+1)|X(t)

(
X(t+1) ∈ A|X(t) = x

)
=

∫
A
PX(t+1)|X(t)(dy|x)

is called (time homogeneous) transition kernel (or transition probability) from

x ∈ Ω′ to A ⊆ Ω′.

It can be seen from the definition already that the transition kernel is a time indepen-

dent function

k : F′ × Ω′ −→ [0, 1],

with the properties (see also Robert & Casella [2004])

(i) k(·|x) is a probability measure for all x ∈ Ω′

(ii) k(A|·) is measurable for all A ∈ F′.

Moreover, the transition kernel can also be written down in a different form via a

function p : Ω′ × Ω′ −→ [0,∞) as

k(dy|x) = p(y|x) dy + r(x)1x(dy) (2.1)

As before, 1x(dy) is the indicator function. Per definition, it also follows that p(x|x) =

0 and that r(x) = 1−
∫

Ω′ p(y|x) dy.
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The aim of most Markov chain Monte Carlo methods as presented in Chapter 4 is

the inference of a distribution π by approximating it with samples from a Markov

chain {X(t)}t∈N0 . Like any iterative method, the key question is that of convergence,

i.e. making sure the Markov chain converges to π, irrespective of its starting point. For

this, we have to define what is meant by convergence in this context, but first we will

define several desirable properties of Markov chains that will be necessary for achieving

said convergence.

Definition 2.4 (Invariant/stationary distribution). A distribution π is called invari-

ant or stationary for the transition kernel k(·|·) if

π(A) =

∫
Ω′
k(A|x)π(dx) (2.2)

=

∫
Ω′
k(A|x)πd(x) dx, ∀A ∈ F′ (2.3)

where πd is the probability density function to π with respect to the Lebesgue measure.

Definition 2.5 (Reversible Markov chain). We call a stationary Markov chain {X(t)}t∈N0

reversible if for A ∈ F′

P (X(t+1) ∈ A|X(t+2) = x) = P (X(t+1) ∈ A|X(t) = x). (2.4)

True to its name, reversibility for a Markov chain means that the direction of the evo-

lution does not influence the dynamics of the chain. An important sufficient condition

for stationarity and reversibility is given by the following definition.

Definition 2.6 (Detailed balance condition). Let {X(t)}t∈N0 be a Markov chain with

transition kernel k(dy|x) = p(y|x) dy + r(x)1x(dy) as specified in Equation (2.1).

The Markov chain is said to fulfill the detailed balance condition, if there exists a

probability density function πd such that

p(x|y)πd(y) = p(y|x)πd(x). (2.5)

With these three definitions, we have all that is necessary for the following theorem:

Theorem 2.1. Suppose the detailed balance condition holds for a Markov chain with

transition kernel k and density function πd. Then

(i) the associated distribution π is invariant with respect to k and
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(ii) the Markov chain is reversible.

The proof can be found in Robert & Casella [2004].

While the detailed balance condition is sufficient, it is not necessary for the existence of

a stationary distribution π. Yet it is easy to check and thus a very popular assumption

for many MCMC algorithms, which are the main application for Markov chains in

this thesis. Even if detailed balance is fulfilled, and we thus know that a reversible

stationary distribution π exists, this distribution might still be non-unique. Since this

outcome is not desirable, we include a new concept:

Definition 2.7 (Equilibrium distribution). Suppose every Markov chain associated

with the transition kernel k is converging to the same invariant distribution π, inde-

pendent of the starting value x(0) ∈ Ω′. Then we call π an equilibrium distribution.

For an m-step transition kernel km(A|x) =
∫

Ω′ k
m−1(A|y)k(dy|x) for the transition

from x to A in m ∈ N steps this means

lim
m→∞

km(A|x(0)) = π(A)

point-wise for π-almost all x(0) ∈ Ω′ (Tierney [1994]). Of course, k1(A|x) := k(A|x).

To verify if π is an equilibrium distribution, we will need the concepts of irreducibility

and recurrence.

Definition 2.8 (π-irreducible Markov chain). Let {X(t)}t∈N0 be a Markov chain with

transition kernel k. It is called π-irreducible for a σ-finite π, if for any x ∈ Ω′ and

A ∈ F′ with π(A) > 0 there exists an m ∈ N such that

km(A|x) > 0,

where km(A|x) is the associated m-step transition kernel.

This means that any state in Ω′ can be reached by the Markov chain from x ∈ Ω′

within a finite number of steps. If m = 1, the chain is called strongly π-irreducible.

Definition 2.9 (Periodic Markov chain). Let a Markov chain {X(t)}t∈N0 with tran-

sition kernel k be π-irreducible. The chain is called periodic, if for some integer
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s ≥ 2 there exists a sequence (A0, A1, . . . , As−1) of pairwise disjoint nonempty subsets

Ai ∈ F′, such that for all i = 0, . . . , s− 1 and all x ∈ Ai

k(Aj |x) = 1 for j = i+ 1 mod s.

If a chain is not periodic, we call it aperiodic. In layman’s terms, aperiodic Markov

chains do not cycle deterministically.

Definition 2.10 (Harris recurrent Markov chain). Let c
(t)
A :=

∣∣ {x(s) ∈ A|0 ≤ s ≤ t
} ∣∣

be the number of visits to some subset A ∈ F′ up to index t, starting at some x ∈ Ω′.

Let furthermore Px(A) reflect the probability that c
(t)
A → ∞ as t → ∞. A Markov

chain is Harris recurrent, if there exists an invariant distribution π, such that for

every A ∈ F′ with π(A) > 0

Px(A) = 1 ∀x ∈ Ω′.

For every π-irreducible Harris recurrent Markov chain, there exists an invariant measure

ν on Ω′, see Nummelin [2004]; Schmidl [2012]; Tierney [1994] for more details. This

measure ν is unique up to a multiplicative constant. If ν(Ω′) <∞, we call the Markov

chain positive Harris recurrent. The notion of Harris recurrence is slightly stronger

than the more common notion of a recurrent Markov chain. However, we use it here

as it makes the following two theorems on the convergence of Markov chains more

universally valid. We will focus on these two results, more theoretical considerations

and the proofs of the two theorems can be found elsewhere in the literature (Revuz

[1984]; Schmidl [2012]; Sethuraman et al. [1992]; Tierney [1994]).

Theorem 2.2. Let {X(t)}t∈N0 be a π-irreducible, aperiodic and Harris recurrent Markov

chain with transition kernel k and stationary distribution π. Then

(i) the Markov chain is positive Harris recurrent

(ii) π is the unique equilibrium distribution

(iii) k is ergodic for π, i.e. {X(t)}t∈N0 converges regardless of its starting value x(0) ∈
Ω′.

This theorem yields a useful criterion for showing that an MCMC method is valid: it

should have an existing stationary distribution π, as well as π-irreducibility, aperiodicity
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and Harris recurrence. The following theorem can be derived as a consequence:

Theorem 2.3. Let {X(t)}t∈N0 be a π-irreducible, aperiodic and Harris recurrent Markov

chain with stationary distribution π. Let furthermore f : Ω′ → R be π-integrable

with
∫

Ω′ |f(x)|π(dx) < ∞. It then follows for the sample mean that for a realization

{x(t)}t∈N0

fm =
1

m+ 1

m∑
t=0

f(x(t))→
∫

Ω′
f(x)π(dx) = Eπ[f(Ω′)] almost surely as m→∞.

For a nice example on how to verify the required conditions in a discrete state space,

see Schmidl [2012].

In probability theory, the ”speed of convergence” is measured as the mixing time of

a Markov chain, which can be seen as the time until the Markov chain is ”close” to

its steady state distribution. Time in this context means the discrete indices t of the

chain. Closeness to the steady state distribution can be measured by an appropriate

distribution distance, most commonly the total variation distance, see Levin et al.

[2009] for a thorough introduction.

A practical measure for the quality of a MCMC algorithm is the inefficiency factor. This

is the number r̂ that samples in a stationary Markov chain realization {x(t)}t∈1,...,T have

to be apart in order to be considered independent. More commonly used is the effective

sampling size (ESS) defined as ESS = T/r̂, see also Schmidl [2012] and references

therein.

2.2.3 Numerical integration

Numerical integration is a branch of numerical mathematics in which definite integrals

are approximated, mostly in cases where they are analytically intractable. A thorough

introduction is presented in Atkinson & Han [1985]. We will need these methods, since

probability theory provides us with just these types of integrals. In the one-dimensional

case, the aim of numerical integration, also called quadrature, is to compute the

definite Riemann integral

I(f) =

∫ b

a
f(x) dx (2.6)

of a function f : R → R, x 7→ f(x) on the interval [a, b]. For a continuous f and an

antiderivative F of f , this would mean that I(f) = F (b)−F (a), from the fundamental
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theorem of calculus. When f is continuous, an antiderivative of course exists, however

it is often not easily computable.

The basic idea of quadrature is now to replace f with a function as similar as possible

to f , but whose integral is analytically tractable. We will concentrate on the two

most simple approximations, as these are the ones needed later. The most simple

approximation imaginable is to approximate f with a linear polynomial:

P1(x) =
(b− x)f(a) + (x− a)f(b)

b− a
. (2.7)

Integrating this yields the approximation

J1(f) =
b− a

2
(f(a) + f(b)) (2.8)

This is called the trapezoidal rule and is only a good approximation if the function

is almost linear. It can be shown that the approximation error R1(f) is proportional

to the second derivative of the function (if it exists):

R1(f) = I(f)− J1(f) =
−(b− a)3

12
f ′′(ξ) (2.9)

for some ξ ∈ [a, b]. This confirms that the approximation order of the trapezoidal rule

is one, i.e. it is exact for linear polynomials, since their second derivative is zero. Of

course this can be refined by subdividing the interval [a, b] into smaller intervals and

applying the trapezoidal rule to each.

The ”next better” approximation is to approximate f with a quadratic polynomial

instead of a linear one, interpolating f at a, b and m = (a+ b)/2:

P2(x) =
(x−m)(x− b)
(a−m)(a− b)

f(a) +
(x− a)(x− b)

(m− a)(m− b)
f(m) +

(x− a)(x−m)

(b− a)(b−m)
f(b) (2.10)

After integration, this is Simpson’s rule

J2(f) =
b− a

6
(f(a) + 4f(m) + f(b)) (2.11)

Also for this the approximation error can be computed. We set h = b−a
2 and find that

R2(f) = I(f)− J2(x) = −h5f (4)(ξ∗)/90 (2.12)

for some ξ∗ ∈ [a, b]. As the fourth derivative is zero at all points for a cubic polynomial,

Simpson’s rule is exact for those. Thus the approximation order of Simpson’s rule is

three, two higher than the one for the trapezoidal rule.
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2.3 Dynamical systems

Ordinary differential equations have become a popular tool for modeling dynamical

systems. They are able to handle quantitative data in contrast to Boolean models and

easier to deal with than stochastic differential equations and very useful for modeling

biological processes as introduced in the beginning of this chapter.

2.3.1 ODE and DDE systems for biological processes

A lot of scientific effort has gone into the understanding and modeling of molecular

processes. Here the interactions of chemical species Z1, . . . , ZD are studied. If we

consider [Zd] molecules of species Zd, the concentration of Zd in the reaction volume

Ω can be defined as zd = Zd
Ω (McNaught & Wilkinson [2000]). Furthermore, let z =

(z1, . . . , zD)> denote the concentration vector of all D involved species.

In most of our applications, we want to model the dynamics of reactions involving the

chemical species over time. To this end, various approaches exist and have been proven

useful. Which approach to apply depends strongly on the biological question at hand.

In this thesis, we solely consider systems fulfilling two assumptions (Gillespie [1992]).

First, the system has to be in thermodynamic equilibrium, i.e. well-mixed. This means

that we have uniform concentration in space. Furthermore, we require large molecule

numbers � 1 for all involved chemical species. Then the chemical kinetics can be

modeled by ordinary differential equations (Girolami [2008]; Kholodenko [2006]).

Generally we want to consider reactions Rj , j = 1, . . . , J, where some chemical species

are transformed to other chemical species with a specific rate. Each reaction is associ-

ated with a reaction flux vector vj(z), giving the instantaneous frequency with which

reaction Rj , j = 1, . . . , J occurs given z = (z1, . . . , zD)>. A general formulation of such

a reaction Rj is

D∑
d=1

νd,jZd︸ ︷︷ ︸
educts

κ+j


κ−j

D∑
d=1

ηd,jZd︸ ︷︷ ︸
products

(2.13)

Here, the νd,j ∈ N0 and the ηd,j ∈ N0 are stoichiometric coefficients for d = 1, . . . ,D, j =

1, . . . , J and κ = [κ+1, κ−1, . . . , κ+J, κ−J] ∈ R2J
+ are the reaction parameters or rate

constants. We can now formulate the following three definition building on one another:
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Definition 2.11 (Mass-action kinetics). Chemical reaction kinetics of reaction Rj fol-

low mass-action kinetics, if the flux satisfies the isotropic assumption:

vj(z) = κ+j

D∏
d=1

z
νd,j
d − κ−j

D∏
d=1

z
ηd,j
d . (2.14)

The law of mass action was first discussed by Guldberg & Waage [1899]. Basically, it

postulates that the rate of a reaction is proportional to the probability of a collision

of the reactants. This is turn is proportional to the concentration of reactants to the

power of the respective stoichiometric coefficients, which represents the molecularity or

number in which a reactant participates in reaction Rj .

Definition 2.12 (Stoichiometric matrix). The entries Sd,j of the stoichiometric ma-

trix S ∈ ZD×J are given by

Sd,j = ηd,j − νd,j . (2.15)

Definition 2.13 (Reaction rate equation). The biological system follows a reaction

rate equation, if its kinetics are given by an ODE of the form

ż = Sv(z). (2.16)

Example 2.6 (Dimerization). We consider a dimerization reaction

2Z1
ξ→ Z2 (2.17)

The flux of this single reaction is given by v(z) = ξz2
1 for the concentrations z1, z2 of

the two chemical species Z1, Z2. Furthermore, the stoichiometric matrix is given by

S =

(
−2

1

)
. Assuming mass action kinetics, this leads to the two differential equations

ż1(t) = −2ξz2
1(t) (2.18)

ż2(t) = ξz2
1(t) (2.19)

These have a unique analytically tractable solution for z(0) = (z0,1, z0,2)>:

z1(t) =
1

z−1
0,1 + 2ξt

(2.20)

z2(t) = z0,2 +
ξtz0,1

z−1
0,1 + 2ξt

(2.21)
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Figure 2.5: Dimerization: analytical solution. For the dimerization in Example 2.6,

we show the analytical solutions of the ODE. Already after a few seconds, the concentration

for z1 (green) goes to zero, as it is consumed to produce z2 (purple), which reaches a steady

state of z2 = 1.

A visualization of this can be seen in Figure 2.5. There we show the true analytical

solution for a choice of ξ = 5 and z(0) = (z0,1, z0,2)> = (2, 0)>. It can be seen that

the system nears a steady state where the concentrations don’t change much any more

already after a few seconds, as all Z1 molecules are converted to Z2 molecules.

As reaction rate equations are quite specific, we consider also the following more general

basic model of the dynamics of a system:

dz(t)

dt
= g(t, z(t), ξ,u(t)), z(0) = z0(ξ) (2.22)

This of course includes reaction rate equations as defined above, but lends more flexi-

bility. Here we consider time points t in the interval [0, T ]. This equation relates the

concentration vector z(t) to its time derivative via a ξ-parameterized, usually nonlinear

function g, which we assume to be Lipschitz-continuous. Usually, the explicit depen-

dence of z(t) on the parameter vector ξ ∈ Rdξ is dropped. This parameter vector can

contain parameters of various types like the reaction rate constants κ±j , j = 1, . . . , J,

initial values to Equation (2.22) or other types like scaling factors. This will also be

seen in later chapters. The function u(t) represents an external input to the system,

e.g. the concentration of a species that is not included in the system, with u(t) ∈ Rdu .

Sometimes it is biochemically more plausible to include time delays into the dynamics

of the systems, as some reactions might take a while, for example if an educt first

has to be produced. If we want to include the possibility to include time delays for
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some processes such as e.g. transcription, we can model this by delay differential

equations (DDEs). We consider discrete and constant time delays τ1, . . . , τρ. Then

we can define a delay differential equation by

dz(t)

dt
= g(t, z(t), ξ,u(t), z(t− τ1), . . . , z(t− τρ)), t ≥ t0 (2.23)

While the restriction to discrete constant time delays still leaves a large and useful

class of DDEs, it is furthermore especially useful, since in this case we get a result

for the existence: If g satisfies a Lipschitz condition in its dependent variables and is

sufficiently smooth in all its variables, the numerical solution to Equation (2.23) exists

(Shampine & Thompson [2001]). More mathematically, Baker et al. [1995] elaborate

on the difficulties that can arise when solving DDEs with the most commonly applied

method, the method of steps. The theory of DDEs is very rich and distinct from ODE

theory, but for the sake of brevity, we refer interested readers to Smith [2011].

Both ordinary and delay differential equations can be seen as a dynamical system.

We do not consider other types of dynamical systems, but take the term to mean either

of the mentioned differential equation types. For our dynamical systems, it is necessary

to assume that the parameters are constant, i.e. time-independent. Furthermore, an

implicit assumption for our dynamical systems is that they are well-stirred and external

influences such as temperature or osmotic pressure stay constant throughout the mod-

eling process. These restrictions yield for ODEs a well-developed theory of existence,

uniqueness and computational complexity. Incorporation of such aspects on the other

hand would call for spatial modeling, e.g. in the form of partial differential equations,

which are generally computationally more expensive to solve than ODEs. If a system

does not fulfill the conditions for the thermodynamic limit, modeling with stochastic

differential equations might be called for, e.g. when dealing with only a few molecules

of each modeled species. Well-established examples for differential equations in systems

biology include the modeling of mRNA synthesis (Goodwin [1963]) or the modeling of

cell cycles in Caulobacter crescentus (Li et al. [2008]) or yeast (Chen et al. [2004]).

For the JAK/STAT pathway as mentioned in Section 2.1.2, it was shown in Raia et al.

[2011] that the number of STAT5 and STAT6 molecules contained in human lymphoma

cells is ∼ 2 · 105 each. Hence the assumptions for the thermodynamic limit for the

JAK/STAT pathway is well justified. Also for the single-cell example in Chapter 6, it

was shown that protein numbers are > 103 (Schwarzfischer [2013]). We can thus model

these systems with ODEs and do not have to consider stochastic differential equations.

For most real-world examples, the system in Equation (2.22) is nonlinear and thus
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often not analytically solvable. In order to be able to compare measurement data and

the dynamical system, the differential equation thus has to be solved numerically on a

computer. For ODEs, this can be done quite efficiently using for example MATLAB’s

ode15s (Shampine & Reichelt [1997]) or SUNDIAL’s CVODEs (Serban & Hindmarsh

[2005]) solvers. For delay differential equations, usually MATLAB’s dde23 (Shampine

& Thompson [2001]) solver is the tool of choice. Otherwise, the linear chain trick

(Smith [2011]) can be applied to transform delay differential equations to ordinary

differential equations. This trick is used to transform the only DDE in this thesis, the

one of Chapter 8, into an ODE, which can then more easily be solved. For all further

considerations, we will thus restrict ourselves to ODE systems.

2.3.2 Multi-compartmental models

A special case of the first-order ordinary differential equation models introduced in

the previous section are multi-compartmental models. Here we do not consider

separate chemical species, but a finite set of mutually exclusive compartments. Each

compartment is assumed to be a homogeneous entity, holding a group of objects un-

ambiguously identifiable with the respective compartment, cf. Jacquez [1985]. Usually,

we only consider the transfer of one chemical species of interest between these com-

partments, in contrast to the reaction rate equations presented previously. All of these

compartments are assumed to be well-mixed and homogeneous with constant volume.

For example, compartments might represent different parts of the body within which

the concentration of the species of interest can be assumed to be equal. An example

of this is also the JAK2/STAT5 pathway model in Figure 2.1, which considers the two

compartments cytoplasma and nucleus.

Transitions of the chemical species between the compartments is governed by several

assumptions:

• Instant homogeneous distribution of the species within the compartment,

• the net flow between the compartments then depends on the density of their

objects,

• the volume of the compartment has to stay constant over time, since otherwise it

is not sensible to look at the concentration of the species.

Interactions between the compartments are then governed by transition equations,

which control the exchange of objects between compartments. Multi-compartmental
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Figure 2.6: Multi-compartmental models. (a) Standard multi-compartmental model

with non-negative transfer matrix A, input transfers I and output transfers O for an

exemplary compartment with concentration zd(t). (b) The same multi-compartmental

model under the assumption of linearity and autonomy.

models can also be seen as dynamical systems, since their transition equations can be

represented by differential equations, in this case a system of first-order ordinary differ-

ential equations. In contrast to many biochemical reaction systems, multi-compartmental

models are usually closed systems, meaning that mass is conserved and there is no

external flow of objects into or out of the system.

Then a formal definition of a multi-compartmental system can be given as follows.

Definition 2.14 (Multi-compartmental model). A D-dimensional multi-compartmental

model is defined by a nonnegative transfer matrix A ∈ Cr(RD
+ ×R+;Mat(D×D;R)),

input transfers I ∈ Cr(R+;RD
+) and output transfers O ∈ Cr(RD

+ × R+;RD
+) such that

1. Ac,d(z, t) ≥ 0, Id(t) ≥ 0 and Od(z, t) ≥ 0 ∀z ∈ RD
+, t ∈ R+ and d = 1, . . . ,D

2. If for z ∈ RD
+ we have zd = 0, then Ac,d(z, t) = 0 and Od(z, t) = 0 ∀c = 1, . . . ,D

and t ∈ R+.

Here Ac,d quantifies transfer or flow from compartment d to compartment c, while Id,

Od are the inflow into and outflow of compartment zd. This is also illustrated in Figure

2.6, with arrows indicating flow into and out of the compartment.
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The dynamics of a multi-compartmental system are then given by

dzd(t)

dt
=
∑
c 6=d

(−Ac,d(z, t) +Ad,c(z, t) + Id(t)−Od(z, t)) (2.24)

With the assumption that the function zd 7→ Ac,d(z, t) is Cr(R+ × R+) with r ≥ 1 and

the second property of Definition 2.14, it is possible to rewrite a multi-compartmental

system as Ac,d(z, t) = zdac,d(z, t) and Od(z, t) = zdod(z, t) for all z ∈ RD+ , t ∈ R+.

We can then rewrite the dynamics as

dzd(t)

dt
= −

od(z, t) +
∑
c 6=d

ac,d(z, t)

 zd(t) +
∑
c 6=d

ad,c(z, t)zc(t) + Id(t) (2.25)

Definition 2.15 (Fractional transfer coefficients). The ac,d(z, t), od(z, t) are the frac-

tional transfer coefficients. If they are constant in z, the multi-compartmental

system is called linear.

With ad,d(z, t) := −
(
od(z, t) +

∑
c 6=d ac,d(z, t)

)
, the dynamics can be rewritten to an

even easier matrix notation for a = (ac,d)c=1,...,D,d=1,...,D:

dz(t)

dt
= az + I (2.26)

As already mentioned, in this thesis we only consider closed systems, meaning that

I,O = 0. Furthermore, the multi-compartmental model presented in Chapter 7 is also

linear and autonomous, meaning that ac,d(z, t) = ac,d ∀c = 1, . . . ,D, d = 1, . . . ,D. An

illustration of this can also be seen in Figure 2.6(b).

For a linear, autonomous and closed multi-compartmental system dz(t)
dt = az, z(0) = z0,

the analytical solution of the matrix differential equation is given by

z(t) = exp(at)z0, (2.27)

where exp(at) is a matrix exponential. In MATLAB, this can be computed by eigen-

value decomposition using the eig function, see also Appendix A.

Multi-compartmental models are often used when the whole body should be modeled,

since then a certain level of abstraction is needed. They thus appear for example in

pharmacokinetic models for the processing of drugs in the human body (Gelman et al.

[1996a]; Shargel et al. [2005]), or in radiation science, where the processing of radioactive
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substances in the human body is monitored (Greiter et al. [2011a,b]). An application

example for this will be the processing of radioactive zirconium in the human body as

presented in Chapter 7.

Example 2.7 (Small multi-compartmental model). We present an example for multi-

compartmental models inspired by pharmacology. It models the dynamics of a chemical

such as a medical drug. The model consists of three compartments: z1, transfer (in this

context this usually means the blood), z2, the tissue into which the chemical distributes

and from which it is transferred back to the transfer compartment and z3, the end

compartment where the chemical is excreted, e.g urine. The transitions between the

compartments are then governed by a system of ODEs as introduced above. We assume

a closed, linear and autonomous system. A visualization of the model and an example

time course of the model can be seen in Figure 2.7. In equations, this yields

dz1(t)

dt
= −a2,1z1(t)− a3,1z1(t) + a1,2z2(t)

dz2(t)

dt
= a2,1z1(t)− a1,2z2(t)

dz3(t)

dt
= −a3,1z1(t)

z1 
transfer 

a2,1 z1 

z3 
end 

z2 
tissue 

a1,2 z2 

a3,1 z1 

(a)
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Figure 2.7: A multi-compartmental model. (a) The small multi-compartmental

model made of the three compartments transfer, tissue and end. (b) Example time course

for the multi-compartmental model with parameters a2,1 = 0.25, a1,2 = 0.2 and a3,1 = 0.1.

Initial conditions were chosen as z1(0) = 0.95, z2(0) = 0.05 and z3(0) = 0.
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2.4 Observability and non-Bayesian parameter estimation

for dynamical systems

In this section, we introduce the notion of an observable of a dynamical system, which

then leads to the first, non-Bayesian parameter estimation procedure, the computation

of a least-squares estimator. We furthermore present a bootstrapping procedure for

assessing the goodness-of-fit.

2.4.1 Observables of a dynamical system

When dealing with ODE models, the most common task we are faced with in the

context of systems biology is fitting the model to measurement data of the system.

This means that the parameters of the model have to be determined or tuned to best

fit the measured data, which typically contains measurement noise such that no perfect

fit is possible. In a non-Bayesian estimation, this mostly means that optimization

techniques are applied.

We already introduced a general formulation of a dynamical system in Equation (2.22),

which we repeat here:

dz(t)

dt
= g(t, z(t), ξ,u(t)), z(0) = z0(ξ).

It is parametrized by the vector ξ ∈ Rdξ , defining for example rate constants for the

dynamical system. This formulation also includes the multi-compartmental systems

introduced in the previous section. In biological systems, it is often not possible to

measure all individual occurring components of z. Instead they are only partially

observed. Therefore we define:

Definition 2.16 (observable). The l-th observable Yl of the dynamical system in

Equation (2.22) is

Yl(t, ξo) = hl(z(t), ξo), (2.28)

where the function hl : RD × Rdo → R is a link function relating the species of the

ODE to the observable of the system at time t, possibly parametrized with parameters

ξo ∈ Rdo . In the easiest case, a link function is just a projection on one component

of z, but in real biological application it is often only possible to measure e.g. sums of

species, their ratios or scaled versions, which can all be expressed by a link function
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hl, e.g. hl(z(t), ξo) = z1(t) + z2(t). It is also possible to consider an observable vector

Y = h(z(t), ξo), whose components are the Yl as defined above.

We can now define what we actually mean by a “model”:

Definition 2.17 (model). A model M with model parameters ψ = (ξ, ξo) is a com-

bination of

• dynamics dz(t)
dt = g(t, z(t), ξ,u(t)), z(0) = z0(ξ) and

• observables Yl(t, ξo) = hl(z(t), ξo), l = 1, . . . , L.

We now assume that the system has L observables, typically we will have that L < D,

meaning that there are fewer observables than species in the system. Nevertheless in

all applications presented later in this thesis, the aim is to infer the parameters of the

system from a set of given observations Y = {y1, . . . ,yN} ∈ RL×N . The individual

yn ∈ RL, n = 1, . . . , N usually correspond to measurements taken at time points tn ∈
[0, T ]. It is then assumed that the measurement data corresponds to the state of the

observables of the system, overlaid with measurement noise.

It should thus satisfy

yn,l = Yl(tn, ξo) + εn,l, l = 1, . . . , L, n = 1, . . . , N, (2.29)

or

yn,l = Yl(tn, ξo) · εn,l, l = 1, . . . , L, n = 1, . . . , N, (2.30)

for each data vector yn, in which the εn,l’s are independent realizations of the assumed

error distributions that have to be determined.

2.4.2 Least squares estimators

If we assume that εn,l ∼ N(0, σ2
n,l) with σn,l known, we can set up a cost function for

fitting the parameters from the least squares approach. We find the arg min of the

function

χ2(ψ) =
N∑
n=1

L∑
l=1

(yn,l − Yl(tn, ξo)))
2

σ2
n,l

. (2.31)

This function is bounded from below by zero. Still, for a nonlinear relationship between

the parameters and the observables, there usually exists no closed form solution and
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numerical schemes might face convergence issues. Furthermore, the set for which the

minimum is attained can contain more than one point. In this case, the parameter

vector ψ = (ξ, ξo) that minimizes the mean squared error does not have to be unique.

To find the arg min, various optimization techniques can be applied, in the nonlinear

case, this is not a trivial problem. Popular methods include nonlinear global (often

stochastic) optimization algorithms such as simulated annealing (Kirkpatrick et al.

[1983]), the genetic algorithm (Fraser & Burnell [1970]) or scatter search (Egea et al.

[2007]; Rodriguez-Fernandez et al. [2006]). However, we have found that often local,

gradient based optimization algorithms like trust-region or interior point (Byrd et al.

[1999, 2000]; Coleman & Li [1996]) perform better when combined with a meaningful

strategy for choosing initial points like Latin hypercube sampling (Iman [2008]). For a

nice comparison in the context of systems biology, we recommend Raue et al. [2013b].

Example 2.8 (Dimerization continued). We can now return to Example 2.6. There

we consider the dynamics of two species Z1 and Z2. If we now assume that we can

observe only the concentration z2, the product of the reaction, this can be defined as

the observable (if we only have one observable, we can skip the index l):

Y(t, ξo) = h(z(t), ξo) = z2(t). (2.32)

If we have obtained some measurement data for this observable with known normally

distributed noise of standard deviation σ = 0.05, we can then perform a least squares

fit, yielding the fit in Figure 2.8.

The question of how to fit a model to measurement data is considered in more detail

in the following chapter, as the method used in this thesis is Bayesian inference, the

topic of said chapter. Another approach for assessing parameter uncertainty is also the

profile likelihood approach, which will be introduced in Section 3.3.

2.4.3 Bootstrapping a goodness-of-fit statistic

In some cases, especially with newly proposed models, it is not clear initially if a model

explains the data at all. In this case, we can use a bootstrap procedure for assessing

a goodness-of-fit statistic, as introduced in e.g. Efron & Tibshirani [1993]; Stute et al.

[1993]. We follow the overview at von Davier [1997].

Generally speaking, we consider a goodness-of-fit function S of the observed data Y
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Figure 2.8: Dimerization: measurement data, observable and least squares fit.

The observable Y(t, ξo) = z2(t) (solid line) and the measurement data Y. The best param-

eter ξ was obtained by a least squares fit, such that the observable and the measurement

data agree well. The concentration of z1 (dashed) is in this case unobserved, but can of

course be computed from the model.

and a vector ψ of parameters, S(Y,ψ). This can for example be the least squares cost

function as introduced in Equation (2.31) or a likelihood function as introduced in the

following chapter. Through optimization of this cost function, we obtain an optimal

parameter value ψ̂ and thus a value s∗ = S(Y, ψ̂) for the goodness-of-fit statistic.

We now want to approximate the unknown distribution FS of S. We do this by a

bootstrap, i.e. by generating a sample of independent outcomes sj for j = 1, . . . , JBS

and thus construct an empirical distribution F̂s∗ .

This is achieved by generating JBS additional artificial data sets Yj from the model

with the estimated parameter vector ψ̂. Then parameters ψj are estimated based

on the simulated dataset, e.g. by re-optimization. Each dataset then yields one value

sj = S(Yj ,ψj).

If the model can in principle explain the original measurement data, the value s∗ should

not be significantly different from the bootstrap sample sj , j = 1, . . . , JBS. This can

for example be tested by computing a z-score (Kendall & Stuart [1979]) for s∗ by

z =
s∗ − µ
σ

, (2.33)

in which µ and σ are the mean and standard deviation of the sj , j = 1, . . . , JBS,

respectively.

It should be mentioned that performing a bootstrap for the goodness-of-fit statistic is
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Figure 2.9: Dimerization: bootstrapping the goodness-of-fit. Histogram for the

dimerization model’s log-likelihood values based on 500 bootstrap (BS) samples, with a

green line for the true maximum likelihood value.

usually associated with high computational costs, since for each generated data set, the

model has to be fitted. Of course this also crucially depends on the desired number of

bootstrap samples JBS.

Example 2.9 (Dimerization continued). We can now return again to Example 2.6. There

we have already obtained a least squares fit. Similarly, we can also obtain a likelihood

fit, as will be elaborated on further in the next chapter. We now draw JBS = 500

bootstrap samples for assessing the goodness-of-fit based on the log-likelihood. From

these bootstrap samples, we find a z-score of −0.28, indicating that the model can

indeed fit the data. This is not surprising, since the model was used to generate the

data. A histogram of the bootstrapped values together with the true value can also be

seen in Figure 2.9.

We have given all the preliminaries from mathematics and biology. We will now move

on to Bayesian parameter estimation, also called Bayesian inference, which will be

presented in the following chapter.
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Bayesian inference for dynamical

systems

In this chapter, we will give a very brief overview over the principles of Bayesian

inference. We will concentrate on introducing the posterior and prior distribution

and on the property of identifiability of the parameters of a distribution. The theory

for Bayesian inference is very rich, as is the discussion culture between frequentist

statisticians and Bayesian statisticians, however we feel that such ground-laying work

is better looked up elsewhere and we encourage our readers to delve into the literature

themselves (see e.g. Box & Tiao [2011]; O’Hagan et al. [2004]).

This chapter is based on some concepts introduced in Section 2.4, e.g. the definition of

a model. We here concentrate on inference of the posterior distribution, the inference

of the marginal likelihood for model selection will be the topic of Chapter 5.

3.1 Bayesian parameter inference of the posterior distri-

bution

The aim of Bayesian inference in our context is primarily to infer the distribution of the

parameter vector θ ∈ Rd for a given parametrized ODE model M, based on the set of

measurements Y = {y1, . . . ,yN}. By θ we here mean the combination of all relevant

parameters. This includes all parameters ψ associated with model M as defined in

Definition 2.17 in the previous section, which might be more than the parameters ξ by
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which solely the ODE is parametrized. Furthermore, as introduced in Equations (2.29)

and (2.30), θ often also includes error model parameters that have to be considered.

As presented in detail in Robert & Casella [2004], in a Bayesian view both the parameter

vector and every data point are seen as realizations of random variables. This means

for example that a parameter has a distribution in the Bayesian paradigm. For the

data points, the realizations come from a density function f(·|θ) conditioned on the

parameter vector θ. Given this density, the likelihood function or simply likelihood

for the data Y = {y1, . . . ,yN} is given by

p(Y|θ) = p(y1, . . . ,yN |θ) =
N∏
n=1

f(yn|θ), (3.1)

if the y1, . . . ,yN are independent. If the assumed error distribution is Gaussian and

for known parameters of this error distribution σ2
n,l, the likelihood coincides with the

least squared error of Equation (2.31).

Bayes’ theorem now combines the likelihood with existing prior knowledge about

the parameters p(θ), which is a distribution for the parameter, to yield the posterior

distribution p(θ|Y) of the parameter given the observed data:

p(θ|Y) =
p(Y|θ)p(θ)∫

Rd p(Y|θ̃)p(θ̃) dθ̃
. (3.2)

The posterior distribution is the core of Bayesian inference. It corresponds to the

probability distribution of the parameter θ taking into account both the information

provided by the measurement data Y as well as previously available information about

the parameters in form of the prior p(θ). Though the first task of the integral in the

denominator

p(Y) =

∫
Rd

p(Y|θ̃)p(θ̃) dθ̃ (3.3)

is to provide normalization in order for the posterior to be a true probability density

that integrates to one, it is in itself an important quantity known as the marginal

likelihood or evidence. This marginal likelihood is the key ingredient for Bayesian

model selection, as it provides the probability of the data. However, the integral is often

difficult to evaluate, since it is typically high dimensional and analytically intractable.

Instead, sophisticated numerical or sampling based methods have to be applied. For

more on this, see Chapter 5.

For inference of the posterior distribution, it is desirable to be able to skip the com-

putation of the marginal likelihood. This is often done by Markov chain Monte Carlo
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methods, see Chapter 4. These exploit the following fact. Since the marginal likelihood

only depends on the data and not on the parameter vector, and the data is considered

fixed, it is possible to base the inference on the relation

p(θ|Y) ∝ p(Y|θ)p(θ). (3.4)

This relation is one of the main reasons for the increasing popularity of Markov chain

Monte Carlo methods in the last few years.

We now go back to the non-Bayesian parameter estimation in Section 2.4. There we

defined a model to consist of the dynamical system

dz(t)

dt
= g(t, z(t), ξ,u(t)), z(0) = z0(ξ),

parametrized by the vector ξ and of the observables Yl(t, ξo) = hl(z(t), ξo) for l =

1, . . . , L. To fit the observables of the model to the measurement data Y, we have to

make assumptions on the error model. If we assume additive measurement noise, we

get

yn,l = Yl(tn, ξo) + εn,l, l = 1, . . . , L, n = 1, . . . , N (3.5)

where the εn,l’s are independent realizations of the assumed error distributions. The

functions hl are again the link functions, relating the species of the ODE to the l-th

observable of the system for each time point tn. Then the parameter vector for the

inference θ corresponds to ξ, ξo and all parameters of the error distribution, e.g. σ2
n,l.

Let f (n,l) be the probability density for εn,l. Then the posterior can be written as

p(θ|Y) ∝
N∏
n=1

L∏
l=1

f (n,l) (yn,l − Yl(tn, ξo)|θ)︸ ︷︷ ︸
p(Y|θ)

p(θ) (3.6)

The same is also possible with a multiplicative noise model. With the Bayesian ap-

proach it is thus straightforward to simultaneously infer both the parameters of the

dynamical system as well as the noise parameters, as they all together yield θ. In-

ference of the posterior distribution can for example be done with the Markov chain

Monte Carlo methods introduced in the following chapter.

The posterior p(θ|Y) and the likelihood p(Y|θ) in Equation (3.6) yield a key ingredient

for many analyses of a model. For one, we define the parameter vector θ̂ as the one

where the likelihood attains its maximum value and call θ̂ the maximum likelihood

estimate (MLE). Note that the maximum likelihood estimate does not have to exist
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and does not have to be unique, for example in case of a plateau in the likelihood. Cor-

respondingly, the vector where the posterior distribution p(θ|Y) achieves its maximal

value is called the maximum a posteriori estimate (MAP) estimate, if it exists.

It is often denoted by θ̂MAP. Obviously, the MAP and MLE are the same vector if

the maximum is unique, the prior distribution is uniform and its support contains the

MLE.

The Bayesian paradigm also leads to different uncertainty measures than frequentist

inference. Analogously to confidence intervals, but with different interpretation, the

Bayesian set-up yields credible sets or intervals for θ. For the desired confidence

level α, the 100%(1− α) credible interval is given by the set

CI = {λ; p(λ|Y) ≥ ζα}, (3.7)

where the coverage constraint ζα has to be determined such that

p(λ ∈ CI|Y) = 1− α. (3.8)

This credible set is usually viewed component-by-component to yield credible sets for

each individual component θs of θ. If the likelihood is “well-behaved”, the credible set

of each component is indeed one connected interval, but the credible set can also have

a more irregular shape (Marin & Robert [2007]).

Example 3.1 (Dimerization continued). We reconsider the dimerization example from

Section 2.3:

ż1(t) = −2ξz2
1(t) (3.9)

ż2(t) = ξz2
1(t) (3.10)

For a choice of ξ = 5 and z(0) = (z0,1, z0,2)> = (2, 0)>, we can generate artificial

data from the observable Y(t) = z2(t), with additive normally distributed noise with

standard deviation σ = 0.05. We use N = 26 time points equally spaced between t = 0s

and t = 5s and obtain Y = (y1, . . . , yN ). A visualization of the data was already given

in Figure 2.8. We now want to infer the parameters θ = (ξ, σ). The likelihood is given

by

p(Y|θ) =
N∏
n=1

φ (yn;Y(tn), σ) , (3.11)

in which φ(x;µ, σ) is the probability density function of the univariate normal distri-

bution evaluated at x with mean µ and standard deviation σ as introduced in Section
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Figure 3.1: Dimerization: maximum likelihood estimate. For the dimerization

introduced in Example 2.6, we obtain the maximum likelihood estimate of both the reaction

rate ξ and the noise parameter σ. The model fit according to the inferred reaction rate

ξ can be seen in green and shows good agreement with the measurement data (magenta

diamonds). Grey shading shows the probability density of the noise distribution with the

inferred parameter σ around the model fit.

2.2.1. Optimizing the likelihood yields an MLE of θ̂ = (5.2356, 0.0602)>, which is close

to the true value with which the data was generated. The fit and the error distribution

around the fit can be seen in Figure 3.1. Using MCMC as will be introduced in the

following chapter, we can also derive credible intervals.

3.2 Choice of prior distribution

For an overview on the prior distribution already introduced in the previous section, we

follow along the lines of Marin & Robert [2007]. As the name already suggests, the prior

information summarizes the information available on the parameter θ without knowing

the data Y. Ideally, this would be from previous experiments or based on independent

datasets. However, in practice such information is often not readily available. Then

other prior choices have to be made, for example based on practical grounds or rather

in the form of noninformative priors.

If genuine and quantitative prior information exists, it can and must be used for the

prior distribution. Otherwise, more generic solutions exist, like conjugate priors. Con-

jugate priors are chosen such that the prior and posterior distribution belong to the

same parametric family. All prior distributions can be parametrized themselves with

the so called hyperparameters, which could in turn have hyperpriors.
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For most applications in this thesis, the appropriate choice of conjugate priors is not

easy, as for example for a noise model based on the gamma distribution, the conjugate

priors exist, but are not of standard form. Furthermore, such a choice is often a

rather severe interference with the actual shape of the posterior. Thus instead of using

conjugate priors, we rather choose the prior distributions such that their influence on

the inference is weakened. Such prior distributions can be called noninformative

or vague. Marin & Robert [2007] take noninformative priors to mean extensions of

the uniform distribution. A standard choice for a noninformative prior would thus be

θs ∼ U[Bs] for a non-empty measurable set Bs for each parameter θs contained in θ.

In fact, it would be possible to choose any non-negative function π : Rd → R with∫
Rd

π(θ) dθ = c (3.12)

for some constant c ∈ (0,∞] as long as the marginal likelihood is finite almost surely.

In case c =∞, we call the prior improper (Robert [2001]). Note that also an improper

prior can lead to a proper posterior distribution, and a proper prior can still lead to an

improper posterior.

Often, it is rather straightforward to introduce uniform prior distributions in our ex-

amples, since biological rate constants have to be positive and are thus bounded below

by zero. Also upper boundaries are often easily chosen. In general, nothing is known

about the dependence structure of the parameters, we usually assume independence

and thus have p(θ) =
∏d
s=1 p(θs) for θ = (θ1, . . . , θd) ∈ Rd.

Asymptotically it can also be said that the influence of the prior distribution diminishes

as the number of data points increases. Then for example also the MAP recovers

asymptotic properties of the MLE.

3.3 Parameter identifiability

A related concept to Bayesian inference, yet different, is that of profile posteriors for

identifiability analysis in a computational model (Raue et al. [2013a]; Vanlier et al.

[2012]).

In layman’s terms, identifiability analysis of a parameter means to analyze if a param-

eter can be determined at all with finite confidence bounds. Identifiability as such is

thus a property of either the model on a global scale or the posterior on a local scale.
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Precise and detailed mathematical definitions of these different views of identifiability

can be found in Audoly et al. [1998, 2001]; Chis et al. [2011]; Little et al. [2010].

In a more measurement data oriented setting, we can distinguish structural and

practical non-identifiability. Both can have several reasons (Raue et al. [2009]).

Structural non-identifiability is independent of the measurement data and instead due

to some underlying fundamental redundancy in the parametrization of the model. A

structurally non-identifiable parameter can thus not be inferred at all, independent of

the quality of the measurement data. A typical example is a setting where only the

ratio of two parameters is determinable, but neither of the two individual parameters.

Practical non-identifiability depends on the amount and quality of the data: if the data

is insufficient, it is often only possible to derive either an upper or lower confidence

bound for the parameter, but not both.

Identifiability analysis is usually based on the maximum likelihood or, in our case,

maximum a posteriori estimate θ̂ of the parameters and can then be conducted with

the profile posterior approach.

The profile posterior approach is analogous to the profile likelihood approach introduced

by Raue et al. [2009]. The basic idea of the approach is to explore the parameter space

for each parameter separately in direction of the least decrease of the posterior p (θ|Y).

This can be done by calculating the profile posterior

ppp (θs) = max
θj 6=s

[p (θ|Y)] , (3.13)

re-optimizing the posterior with respect to all parameters θj 6=s, for each value of θs.

This is an extension of the originally used profile likelihood

ppl (θs) = max
θj 6=s

[p (Y|θ)] . (3.14)

The presence of local optima, i.e. multiple modes in the posterior (or likelihood), can

be detected by repeated optimization runs from different starting values. If such local

optima are detected, the profile calculation has to be initiated in each of the optima.

Note that the calculation of the profiles for different parameters can be performed

independently and simultaneously on different computer cores. For more details on

the implementation, see Raue et al. [2009]. A generalization of this approach to model

predictions by calculating prediction profiles was proposed in Kreutz et al. [2012]. All

profile posteriors in this thesis were computed with MATLAB, based on code from

either Hasenauer [2014] or Raue et al. [2013b].
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If the prior distribution of the parameters is uniform, the profile posterior yields a

scaled and bounded version of the profile likelihood. In the case of non-uniform priors,

the comparison of profile likelihood and profile posterior can also be used to assess

the information content of the data with respect to the parameters. Furthermore, this

comparison reveals if identifiability is only enforced by the prior distribution. This

comparison of the two profile types is thus related to a prior/posterior evaluation in a

Bayesian setting.

The profile posterior or rather the profile likelihood allows for the calculation of confi-

dence intervals which can be compared to the Bayesian credible intervals obtained from

MCMC sampling. More specifically, we consider likelihood-based confidence intervals

to a 95% confidence level. In contrast to the Bayesian view, this means that the true

value of the parameter θ∗s is expected to be inside the interval with 95% probability.

Following Raue et al. [2013a], we can derive point-wise intervals by using a threshold of

∆α = Q(χ2
1, α), which is the α quantile of the χ2-distribution with 1 degree of freedom.

The confidence intervals are then given by

{θs| − 2 log(ppl (θs) /p(Y|θ̂)) < ∆α}, (3.15)

in which ppl (θs) is the profile likelihood, see also Raue et al. [2013a], and θ̂ is the MLE.

Since profile posteriors are computationally often less expensive, they form an optimal

basis for any MCMC procedure for Bayesian inference and thus complement these

for gaining thorough insight into the dynamical system at question. Then also the

histogram of the marginalized samples can very well be compared with the posterior

profiles, as will be shown in the applications part.

A completely flat profile posterior is a necessary, yet not sufficient condition for a struc-

turally non-identifiable parameter. If the profile is flat, this does thus not automatically

mean that the parameter is structurally non-identifiable, though this is often the case.

A parameter is practically non-identifiable at confidence level α, if at least one bound-

ary of the corresponding confidence interval is infinite. This usually indicates a profile

that is flat in at least one direction. A nice visualization can be found in Raue [2013].

In this thesis, we focus on the detection of practical non-identifiabilities in our models.

Example 3.2 (Dimerization continued). We reconsider the dimerization example from

Section 2.3:

ż1(t) = −2ξz2
1(t) (3.16)

ż2(t) = ξz2
1(t) (3.17)
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Figure 3.2: Dimerization: profile likelihoods. For the dimerization introduced in

Example 2.6, we obtain the profile likelihoods of both the reaction rate ξ and the noise

parameter σ (magenta lines). We scale the profile likelihood with the maximum likelihood

value to obtain a maximum of 1 in the plot. Dashed lines are the point wise confidence

interval thresholds for 95% confidence derived from Equation (3.15).

For a choice of ξ = 5 and z(0) = (z0,1, z0,2)> = (2, 0)>, we generated artificial data

from the observable Y(t) = z2(t), with additive normally distributed noise with standard

deviation σ = 0.05. We use N = 26 time points equally spaced between t = 0 and t = 5

and obtain Y = (y1, . . . , yN ). A visualization of the data was already given in Figure

2.8. Optimizing the likelihood yielded an MLE of θ̂ = (5.2356, 0.0602)>, which is close

to the true value with which the data was generated. The fit and the error distribution

around the fit can be seen in Figure 3.1. We now computed the profile likelihood of the

parameters and find that both parameters are identifiable at a 95% confidence level.

We obtained 95% confidence intervals of [3.3, 10.5] for ξ and [0.047, 0.081] for σ. A

scaled visualization of the profiles can also be seen in Figure 3.2. The example will be

continued in Example 4.1 with the results of an MCMC algorithm for the model.

Bayesian inference as presented in this chapter is the basis for the Markov chain Monte

Carlo and Bayesian model selection methods presented in the next two chapters. Iden-

tifiability analysis will be important for the analysis of the application examples in the

second part of this thesis.
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4

Markov chain Monte Carlo

methods

In this chapter, we give a rather brief overview over the Markov chain Monte Carlo

(MCMC) algorithms that are applied in this thesis. The focus here is rather to provide

some hands-on experience of algorithms we have found useful and suitable for our prob-

lems from systems biology, and not so much to delve into the rich theory of MCMC.

The difficulty lies in tuning the algorithms to optimize performance for sampling dis-

tributions arising from ODE models. Most algorithms cannot be applied ”out of the

box” but have to be tuned, mostly due to issues relating to the scalability of MCMC

algorithms to higher-dimensional sampling spaces. We first present the respective al-

gorithms, starting with the well-known Metropolis-Hastings algorithm. Finally we also

show how to diagnose if the performance of the algorithms is satisfactory.

Generally speaking, MCMC algorithms are used for sampling from a probability dis-

tribution by constructing a Markov chain whose equilibrium distribution is the target

probability distribution. The samples from the Markov chain then give an approxi-

mation of the target distribution. MCMC algorithms are most commonly applied for

numerically calculating multi-dimensional integrals as will also be shown in Chapter 5

or for empirically estimating the statistical moments like mean or variance of the target

distribution, for example in order to describe the posterior distribution in parameter

inference problems. All presented algorithms are implemented in MATLAB.

This chapter introduces the new sampling algorithm Adaptive Metropolis Parallel Hi-

erarchical Sampling, a variant of the established Parallel Hierarchical Sampling from
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Rigat & Mira [2012]. It was already introduced in the following publication:

• S. Hug∗, A. Raue∗, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer

and F.J. Theis (2013). High-dimensional Bayesian parameter estimation: case

study for a model of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2),

293-304.

4.1 The Metropolis-Hastings algorithm

One of the most popular and widely applied MCMC algorithms is the Metropolis-

Hastings (MH) algorithm as introduced by Metropolis et al. [1953] and Hastings [1970].

Its properties and theoretical background have been studied extensively (Beichl & Sul-

livan [2000]; Robert & Casella [2004]; Roberts et al. [1997]). It has the advantage of

imposing only minimal requirements on the target density and is thus universally appli-

cable. The basis is the target density p(x) that we want to sample from, we often also

refer to the target distribution for the distribution with density p(x). We then need

a conditional density q(y|x), where the distribution with density q(·|x) is often called

the proposal distribution, suggesting a move from the current state x to a new state

y. The proposal has to satisfy only few conditions, e.g. symmetry (q(y|x) = q(x|y)).

Furthermore, we require that the ratio p(y)/q(y|x) is known up to a constant inde-

pendent of x. This requirement is not severe for our usual posterior distributions that

we want to sample from. The Metropolis-Hastings algorithm then generates a Markov

chain as follows: Given a current state X(j), draw a proposed next state X∗ ∼ q(·|X(j)).

The move to this next state is accepted with the Metropolis-Hastings acceptance

probability

α(X(j),X∗) = min

{
1,

p(X∗)

p(X(j))

q(X(j)|X∗)
q(X∗|X(j))

}
(4.1)

If the move is accepted, we set X(j+1) = X∗, otherwise X(j+1) = X(j). Pseudo-code

describing the method can be seen in Algorithm 1.

Theorem 4.1. Let X(j) be a Markov chain from the Metropolis-Hastings algorithm

where moves are accepted according to Equation (4.1). For every proposal distribution

q(y|x) whose support includes the support of p(x), it holds that

• the transition kernel of the chain satisfies the detailed balance condition with p;

• p is a stationary distribution of the chain.
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The proof can be found in Robert & Casella [2004].

An important criterion for the quality of the resulting Markov chain is its overall ac-

ceptance rate, the number of accepted moves divided by the number of total proposed

moves. Since it has been shown that for a d-dimensional Gaussian target distribution,

the optimal acceptance rate is 23% (Gelman et al. [1996b]; Roberts et al. [1997]), we

aim for acceptance rates of 15 − 35% in our applications by scaling the proposal dis-

tribution accordingly. In most applications, the proposal distribution will be a normal

distribution centered at the current state. The covariance matrix of the normal dis-

tribution however has to be tuned or determined, often by trial and error. In easy

cases, an identity matrix is sufficient, and the desired acceptance rate can be achieved

by scaling the matrix accordingly. In more involved cases, it is often not easy to find

a good proposal distribution. It is crucial to achieve good mixing of the chain. If the

proposed steps are very small, the acceptance rate might be very high, but convergence

is very slow. This means that a lot of samples are required until the sample distribution

is close to the target distribution. On the other hand, if the proposed steps are very

large, the acceptance rate usually suffers and the sampling gets ”stuck”. This leads

to high autocorrelation in the chain and thus also bad convergence properties. In our

experience, the MH algorithm needs some tuning by an expert in every application to

yield good results.

Algorithm 1: The Metropolis-Hastings algorithm

input : Initial sample X(0), sampling distribution p(x), desired number of samples J ,

proposal distribution q(y|x)

output: Samples X(j), j = 0, . . . , J from p(x)

for j ← 0 to J do

Generate a proposal X∗ ∼ q(·|X(j)) and draw u ∼ U[0, 1];

if u ≤ α(X(j),X∗) then

Set X(j+1) = X∗;

else

X(j+1) = X(j);

end

end
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4.2 The Adaptive Metropolis algorithm

The performance of regular Metropolis-Hastings algorithms strongly depends on find-

ing an adequate proposal distribution, which is not always an easy task. For this rea-

son, adaptive methods that refine the proposal distribution iteratively, have generated

quite a bit of interest. One popular and easy to use adaptive method is the Adaptive

Metropolis (AM) algorithm as introduced by Haario et al. [2001]. It is especially suit-

able for sampling higher-dimensional target distributions since its proposal function can

be continuously adapted to guarantee efficient sampling of the high-dimensional space.

This is a crucial factor for the convergence of the algorithm. In the AM algorithm,

the proposal function is a multivariate normal distribution whose covariance matrix

is updated with the information gained from the obtained samples by a recursion for-

mula. Newly proposed samples are then accepted or rejected according to a standard

Metropolis-Hastings acceptance scheme. This sampling process is strictly speaking

non-Markovian as the samples depend on the past of the sampling procedure and not

just on their immediate predecessor, however Haario et al. show that the algorithm has

the correct ergodic properties and is thus a valid method for sampling from a target

distribution. It is not straightforward to guarantee ergodicity in an adaptive sampling

scheme, but special care has to be taken, which is a good reason for applying the AM,

where ergodicity can be proven.

The AM scheme is based on a normal distribution as proposal with mean zero as usual

and an adaptively updated covariance matrix. For this update, an index s0 where the

adaption starts is chosen and the covariance matrix of the proposal is set to

Cj =

C0, if j ≤ s0

γdcov(X(1), . . . ,X(j)) + γdεId, if j > s0

(4.2)

Here, γd is a scaling parameter depending on the dimension d of the sampling space

and Id is the d-dimensional identity matrix. The constant ε > 0 may be chosen to be

very small, it ensures that the covariance matrix does not become singular. The initial

covariance matrix C0 has to be strictly positive definite and should represent the best

available prior knowledge. The empirical covariance matrix of the samples permits the

derivation of the following recursion formula for the proposal covariance matrix:

Cj+1 =
j − 1

j
Cj +

γd
j

(
jX̄j−1X̄

>
j−1 − (j + 1)X̄jX̄

>
j + X(j)X(j)> + εId

)
(4.3)

The computational cost for this recursion formula is moderate, since the mean X̄j =
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1
j

∑j
s=1 X(s) also follows an obvious recursion formula. The canonical choice for the

scaling parameter is γd = (2.4)2/d, adopted from Gelman et al. [1996b].

Theorem 4.2. The chain produced by the Adaptive Metropolis algorithm as described

above is ergodic for p and thus provides samples from the target distribution.

The proof of this theorem can be found in the original publication (Haario et al. [2001]).

It is quite technical and not straightforward since the adaptive algorithm yields strictly

speaking not a first order Markov chain, since the sampling depends on the previous

samples.

The algorithm is furthermore implemented in such a way that it also adaptively tunes

the acceptance probability to be within a desirable range. A basic pseudo-code imple-

mentation is provided in Algorithm 2.

Example 4.1 (Dimerization continued). We illustrate the Adaptive Metropolis algo-

rithm by showing some sampling results, again from the dimerization example 2.6. We

draw 10000 samples and use an appropriately scaled identity matrix as initial covari-

ance matrix. We find an acceptance rate of 38%. Figures 4.1(a) and 4.1(b) show the

output of the algorithm for the two parameters ξ and σ, respectively. Figures 4.1(c)

and 4.1(d) show the corresponding histograms for ξ and σ, respectively. From the

histogram, it is straightforward to derive sample-based 95% credible intervals for both

parameters. We find [3.6, 15.9] for ξ and [0.049, 0.089] for σ. The upper boundary for

ξ is larger than for the profile likelihood based confidence intervals derived in Example

3.2. This is due to the different natures of the cutoff.

4.3 Parallel Hierarchical Sampling

As will be seen in Chapter 8, single-chain sampling algorithms may perform insuffi-

ciently in high-dimensional settings. Thus sampling algorithms using multiple chains

(Gelman & Rubin [1992]) can be used in order to achieve better mixing properties of

the chain. This is often necessary because one single chain would have to be run for

an impractically long time in order to be sure to have captured the entire mass of the

posterior. This is particularly true for high-dimensional parameter spaces of over 100

parameters such as the one in Chapter 8.

Different varieties of multi-chain methods have been proposed in the literature such as
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Algorithm 2: The Adaptive Metropolis algorithm

input : Initial sample X(0), sampling distribution p(x), desired number of samples J ,

initial proposal covariance matrix C0, scaling parameter γd, small ε > 0,

index s0 for starting the adaption

output: Samples X(j), j = 0, . . . , J from p(x)

for j ← 0 to J do

if j≤ s0then

Generate a proposal X∗ ∼ N(0, C0) and draw u ∼ U[0, 1];

if u ≤ α(X(j),X∗) then

Set X(j+1) = X∗;

else

X(j+1) = X(j);

end

Set Cj+1 = C0;

else

Generate a proposal X∗ ∼ N(0, Cj) and draw u ∼ U[0, 1];

if u ≤ α(X(j),X∗) then

Set X(j+1) = X∗;

else

X(j+1) = X(j);

end

Update Cj+1 = j−1
j Cj + γd

j

(
jX̄j−1X̄

>
j−1 − (j + 1)X̄jX̄

>
j + X(j)X(j)> + εId

)
;

end

end
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Figure 4.1: Chains and histograms. (a) The chain for parameter ξ. (b) The chain for

parameter σ. (c) The histogram for parameter ξ. (d) The histogram for parameter σ.

parallel tempering (Neal [1996]), exchange Monte Carlo (Hukushima & Nemoto [1996])

or population-based reversible jump MCMC (Jasra et al. [2007]). While these methods

are also advocated for closely related problems, we applied Parallel Hierarchical

Sampling (PHS) from Rigat & Mira [2012]. Tempering approaches suffer from the fact

that the finiteness of the chain-specific temperature dependent normalizing constant is

difficult to check. Even if the tempered distributions are proper, Woodard et al. [2009]

have shown that their modes tend to be narrow and mixing is numbed.

These difficulties are overcome in Parallel Hierarchical Sampling in the following way:

several MCMC chains are run in parallel, each chain with any choice of single chain

MCMC algorithm, all in all M ones. One chain is selected to be the mother chain,

while the others are auxiliary chains. At each iteration, one auxiliary chain is randomly
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Figure 4.2: Comparison of histograms and profiles. (a) Histogram and profile

likelihood for ξ. (b) Histogram and profile likelihood for σ. (a-b) Magenta lines are the

profile likelihoods, grey bars the histogram for the Adaptive Metropolis output. Both

profile and histogram are scaled to obtain a maximum of 1. The agreement between both

approaches for this simple example is especially good for ξ.

chosen and its state is swapped with the mother chain. This move is always accepted.

All other auxiliary chains run a regular step in their chosen single chain sampling

procedure. More formally, this can be seen in Algorithm 3. We use the notation X(j,i)

for the j-th sample in the chain with index i.

Algorithm 3: Parallel Hierarchical Sampling

input : number of chains M, initial sample X(0,i), i = 1, . . . ,M, sampling distribution

p(x), desired number of samples J , individual proposals qi(·|·) for

i = 2, . . . ,M, symmetric chain-swap proposal distribution q′s(·|·)
output: Samples X(j,1), j = 0, . . . , J from the mother chain for p(x)

for j ← 0 to J do
• Randomly select an index mj+1 ∈ {2, . . . ,M} from the symmetric proposal

distribution q′s(mj+1|mj) and swap: X(j+1,1) = X(j,mj+1) and X(j+1,mj+1) = X(j,1);

• Update chains i = 2, . . . ,mj+1 − 1,mj+1 + 1, . . . ,M all targeting p(x) according

to their chain specific proposal distribution qi
(
·|X(j,i)

)
;

end

As opposed to a parallel tempering approach, the chains all target the posterior dis-

tribution, but differ by their starting points and proposal distributions. This strategy

fully exploits cross-chain swap transitions to maximize the mixing in the mother chain.

62



4.3 Parallel Hierarchical Sampling

One significant advantage of this sampling scheme is that there is no need to find a sin-

gle optimal proposal distribution. Every auxiliary chain can and should have a different

proposal distribution. Usually it should prove beneficial to have a few chains which

propose ”large jumps” in the parameter space for quick parameter space traversals as

well as a few chains with more local proposals for an adequate acceptance rate. The

mother chain plays a prominent role, hence the term ”hierarchical” in the name of the

algorithm. The use of different proposal distributions in the individual auxiliary chains

is what makes the algorithm especially suited to high-dimensional inference, since there

finding a single optimal proposal scheme would be especially difficult.

Furthermore the PHS algorithm separates between local mixing through the within-

chain updates of the auxiliary chains and global mixing through the swaps with the

mother chain. Thus unlike for parallel tempering algorithms, the competition between

local and global mixing is minimized.

Another important aspect in the context of this thesis is the fact that the PHS scheme

does not require the knowledge of the marginal likelihood as normalization constant

and is thus suited for inferring posterior distributions.

This can also directly be seen from the transition kernel, which takes for a Metropolis-

Hastings update accepted according to Equation (4.1) in the individual auxiliary chains

the form

kPHS

(
X(j),X(j+1)

)
(4.4)

=
M∑

mj+1

q′s(mj+1|mj)
M∏

i=2,i 6=mj+1

qi

(
X(j+1,i)|X(j,i)

)
· αi

(
X(j,i),X(j+1,i)

)

Theorem 4.3. Let the auxiliary chains {2, . . . ,M} be irreducible, aperiodic and re-

versible with respect to p(x) and let q′s(·) be a symmetric proposal distribution allowing

for swaps between chain 1 and any of the other chains. Then the PHS joint transition

kernel satisfies detailed balance with respect to the joint distribution π(X1, . . . ,XM) =∏M
i=1 p(X

i).

Rigat & Mira provide a proof for this theorem, which can be directly derived from the

form of the transition kernel. For this proof, it is only necessary that each of the single

chain transition kernels has the correct ergodic properties.
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4.4 Adaptive Metropolis Parallel Hierarchical Sampling

The parallel hierarchical sampling algorithm is designed to work with every available

single chain MCMC algorithm. Since the AM algorithm is usually superior to the

standard Metropolis-Hastings algorithm in our experience, we advocate the use of AM

for the single chains. We call this novel variant Adaptive Metropolis Parallel

Hierarchical Sampling (AMPHS).

Each auxiliary chain runs its own Adaptive Metropolis, such that the covariance matrix

for the proposal distribution is adapted to each chain individually. This ensures a good

sampling performance in each chain, while at the same time having excellent mixing

properties for the mother chain.

Algorithm 4: Adaptive Metropolis Parallel Hierarchical Sampling

input : number of chains M, initial samples X(0,i), i = 1, . . . ,M, sampling

distribution p(x), desired number of samples J , initial proposal covariance

matrices C i
0, scaling parameters γid, small εi > 0, indices si0 for starting the

adaption for i = 2, . . . ,M, symmetric chain-swap proposal distribution q′s(·|·)
output: Samples X(j,1), j = 0, . . . , J from the mother chain for p(x)

for j ← 0 to J do
• Randomly select an index mj+1 ∈ {2, . . . ,M} from the symmetric proposal

distribution q′s(mj+1|mj) and swap: X(j+1,1) = X(j,mj+1) and X(j+1,mj+1) = X(j,1);

• Update chains i = 2, . . . ,mj+1 − 1,mj+1 + 1, . . . ,M all targeting p(x) according

to their chain specific proposal distribution as defined in Algorithm 2;

end

We chose this approach since it is especially beneficial when the posterior is multimodal

or more generally non-standard shaped, as it increases mixing between the modes, even

though that naturally comes at higher computational costs. Furthermore, the use of

several different proposal settings is especially beneficial when it is difficult or impossible

to analytically derive an optimal proposal scaling. As pointed out by Rigat & Mira,

a single proposal kernel may for example not be optimal for exploring a distribution

with both very narrow and very wide peaks.

Corollary 4.1. The AMPHS transition kernel is ergodic for the joint distribution

π(X1, . . . ,XM) =
∏M

i=1 p(X
i).
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This can be seen directly from the shape of the transition kernel, the considerations

for PHS and the fact that the single AM transition kernels are ergodic, as proven in

Haario et al. [2001].

Example 4.2 (Dimerization continued). We again return to the dimerization example

2.6. We use AMPHS for sampling the posterior distribution of the parameters in

contrast to Section 4.2, where we used the Adaptive Metropolis algorithm. We now

use M = 5 chains, i.e. one mother chain and four auxiliary chains. We choose identity

matrices as initial covariance matrices and two different scaling factors, one for chains

two and three and one for chains four and five. We find that the mother chain of the

AMPHS shows excellent mixing, see Figure 4.3. While the mixing in the auxiliary

chains is not as good as for the mother chain, also sampling in the auxiliary chains is

acceptable, see Figure 4.4. The auxiliary chains still all target the posterior distribution.

Nevertheless, AMPHS uses only the samples from the mother chain, as these are the

ones with the best properties.

We can now also compute the effective sampling size (ESS) of the output as introduced

in Section 2.2.2 and Schmidl [2012] and compare with the ESS achieved for the AM.

For the AM output in Section 4.2, we find an ESS of 2597, meaning that about every

fourth sample of the 10000 can be considered independent.

For AMPHS, we find an ESS of 4235 for the mother chain, meaning that almost every

second sample in this very simple setting can be considered approximately independent.

This is an excellent value. For the four auxiliary chains, we find ESS’s of 1019, 958,

873 and 982, which is also in an acceptable range. We see that for the AMPHS, we

get 1.5 times as many independent samples as with the AM in this simple example.

The downside is the M = 5 times higher computational cost caused by the multi-chain

approach. This higher cost is nevertheless worth it for complex, high-dimensional target

distributions, see e.g. Chapter 8.

4.5 Copula-based independence Metropolis-Hastings

We have recently also introduced a copula based Markov chain algorithm (Schmidl et al.

[2013a,b]). Copulas are widely applied in finance and ecology (Min & Czado [2010];

Salvadori [2007]), but not yet in systems biology. Mathematically, they are a concept

from probability theory for assessing and sampling from multivariate distributions by

capturing dependence structures.
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Figure 4.3: Chains and histograms for the mother chain of AMPHS. (a) The

mother chain for parameter ξ. (b) The mother chain for parameter σ. (c) The histogram

for parameter ξ. (d) The histogram for parameter σ.

We can decompose any absolutely continuous multivariate cumulative distribution func-

tion (cdf) F (x1, . . . , xd) with marginal cdf’s Fi(xi), i = 1, . . . , d, joint density function

f(x1, . . . , xd) and marginal density functions fi(xi), i = 1, . . . , d into

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) · f1(x1) · . . . · fd(xd), (4.5)

where c (u1, . . . , ud) is a unique copula density function defined on [0, 1]d with values

in [0, 1] and uniformly distributed marginals on [0, 1]. The existence of such a copula

is guaranteed by Sklar’s theorem (Nelsen [2006]). This copula function covers the full

dependency structure of the variables. In other words, every joint distribution func-

tion can be decomposed into the marginal behavior of its individual variables and a

function covering its dependency structure (Kurowicka & Joe [2011]). The MH pro-
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Figure 4.4: Auxiliary chains of AMPHS. (a) Auxiliary chain 2 for parameter ξ. (b)

Auxiliary chain 3 for parameter ξ. (c) Auxiliary chain 4 for parameter ξ. (d) Auxiliary

chain 5 for parameter ξ.

posal function then generates problem specific proposals with an according dependence

structure drawn from the copula. The copula is a function on the d-dimensional unit

cube, but it can be efficiently decomposed using so called vines into combinations of

two-dimensional pair copula distributions, see e.g. Min & Czado [2010] for details.

The copula corresponding to the target distribution that we want to sample has to

be inferred. Inference in practice can be done on the basis of preruns from standard

Metropolis-Hastings sampling runs. Schmidl et al. [2013a] provide details on how the

copula can then be estimated and how samples are then generated.

The copula based MH approach is especially suited to deal with the dependence struc-

ture in a medium-dimensional sampling space of ca. 10-20 dimensions and allows for
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high proposal acceptance rates at simultaneously high ESS’s.

4.6 Convergence diagnostics

Sampling based algorithms are random by their nature. This results in the fact that

convergence is very hard to prove. Markov chain theory has provided detailed conver-

gence properties that sampling algorithms should fulfill, such as for example ergodicity.

In any case, convergence of the sample distribution to the target distribution is a

theoretical consideration for an infinite number of samples. In practice, it is however

only possible to look at a finite realization of the sampling algorithm. This means that

we can obtain samples whose distribution converges to the target distribution, but the

individual samples are in general never independently distributed and are identically

distributed only in the limit.

Most convergence diagnostics thus aim for providing proof that the sample distribution

has not yet converged in distribution to the target distribution. In recent years, there

were quite a few reviews on the topic of different convergence statistics (Brooks &

Roberts [1998]; Cowles & Carlin [1996]; Mengersen et al. [1999]).

In our applications, the target distribution for the sampling algorithms is usually the

posterior distribution of parameters given measurement data and a model as intro-

duced in Chapter 3. Unless stated otherwise, we started all sampling procedures in

the maximum a posteriori estimates obtained prior to sampling by optimization. For

the auxiliary chains in PHS and AMPHS, we sampled initial values randomly from the

prior distribution, and then let an optimization algorithm run in order to start in a re-

gion with substantial posterior values. This overall strategy minimizes the influence of

the starting point, which might in some cases be quite severe and should thus improve

convergence to the target distribution.

As pointed out by Geyer [1992], thinning the chain would increase the variance, thus

we usually use all samples from the Markov chain, except for a burn-in period. This

burn-in period is often necessary in spite of starting in the MAP estimate, naturally

especially when using adaptive sampling schemes. Furthermore, the MAP estimate

might lie at the boundary of the parameter space, which also hinders convergence of

the chain even though we start in a region of high posterior density. In real applications,

it is often very useful to inspect the Markov chains visually. Bad mixing properties or

a large burn-in period are often most easily detected that way. In the case of bad
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mixing, the proposal distribution or the parameters of the sampling algorithm have to

be tuned. The burn-in period is often chosen after inspecting the chain. It can then be

verified by the Geweke test (Geweke [1992]).

The Geweke test on a realization of a one-dimensional Markov chain {X(j)}j∈I works

by splitting the chain into two subsamples. In practice, it is most common to use the

first 10% and the last 50% of samples. Failure of convergence can be detected if the

mean of the two subsamples is very different. For verifying this, a z-score can be derived

and from the z-score also a p-value. The z-score is calculated by

z =
X̄1 − X̄2√
σ̂1 + σ̂2

. (4.6)

Here, X̄1 is the empirical mean of the first subsample and X̄2 the mean of the second

subsample. Furthermore, σ̂1 and σ̂2 are the empirical standard deviations of the first

and second subsample, respectively. This z-score can be used as the test statistic for

calculating a p-value by

pz = 2(1− Φ(z; 0, 1)), (4.7)

where Φ(z;µ, σ) is the cdf of the univariate normal distribution, evaluated at z with

mean µ = 0 and standard deviation σ = 1. For higher-dimensional Markov chains, the

same procedure is applied to each dimension separately.

We chose to apply the Geweke test because of its easy applicability and low computa-

tional cost. If several Markov chains for the same target distribution are available, we

propose to use the Gelman-Rubin statistic R̂ (Brooks & Gelman [1998]; Gelman & Ru-

bin [1992]). This statistic compares the variances between the different Markov chains

with the variance within each chain. Again, if the chains are all stationary, the two

variances should be very similar. Let thus L be the number of realizations {x(j)
l }j∈J

of the Markov chain {X(j)}j∈N. We assume that these chains start at different initial

values x
(0)
l , l = 1, . . . , L. Then, depending on the number of samples m, we define the

between-chain variance B as

B(m) =
J −m
L− 1

L∑
l=1

(x̄l(m)− x̄(m))2 . (4.8)

For this, we need the mean within a chain

x̄l(m) =
1

J −m

J∑
j=m+1

x
(j)
l (4.9)
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and the overall mean

x̄(m) =
1

L

L∑
l=1

x̄l(m). (4.10)

Furthermore, we define the within-chain variance W for index of samples m as

W (m) =
1

L

L∑
l=1

σ̂2
l (m). (4.11)

This definition includes the empirical standard deviation in the chain

σ̂2
l (m) =

1

J −m− 1

J∑
j=m+1

(
x

(j)
l − x̄l

)2
. (4.12)

The Gelman-Rubin statistic R̂ now compares the two variances by

R̂(m) =

√
σ̂(m)

W (m)
, (4.13)

where

σ̂(m) =

(
1− 1

J −m

)
W (m) +

1

J −m
B(m) (4.14)

The statistic R̂ is also called potential scale reduction factor. It can be interpreted as a

convergence diagnostic. If it is large, this suggests one of two cases: either the estimate

of the variance σ̂(m) can be further decreased with larger m (further simulations), or

secondly that larger m will result in a larger W (m), as the chains have not yet explored

the target distribution fully. If the statistic R̂ is however close to 1, it is generally

accepted that the L Markov chains indeed are stationary. In practice, often a cut-off

value of 1.2 for R̂ is used. It is also possible, but not overly common to apply the

Gelman-Rubin statistic to a single chain by splitting it into a number of subsamples of

equal length. In general, we follow the recommendation of Geyer [1992] that one long

Markov chain should be preferred over several shorter Markov chains with the overall

same number of samples, as shorter chains might not have reached convergence during

the sampling process. However, in some applications, a single Markov chain is too

slow at exploring the parameter space, in which case we advocate the use of parallel

hierarchical sampling.

Example 4.3 (Dimerization continued). To further illustrate the importance of assessing

the convergence of the sampling, we provide three illustrative examples, again from the

dimerization example 2.6. The first example shows a chain for the parameter ξ with very

good properties, see Figure 4.5(a), this is the same figure as Figure 4.1(a), put again for
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comparison. The Adaptive Metropolis algorithm here has an acceptance rate of 38%.

This yields a p-value of 0.94 of Geweke’s test. In Figure 4.5(b), we see a Markov chain

from the Metropolis-Hastings algorithm with very low acceptance rate of 1.2%. This

leads to not-so-good mixing and inefficient exploration of the parameter space. Note

that nevertheless the p-value for Geweke’s test is 0.98, which would indicate convergence

if the acceptance rate would not indicate otherwise. In the third panel (Figure 4.5(c)),

we see a Markov chain that is obviously not yet stationary, also indicated by a p-value

of 0.0056 from Geweke’s test. A high acceptance rate of 69% is due to a too small step

size in the proposal distribution.
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Figure 4.5: Markov chains. (a) A Markov chain with good mixing, good acceptance

rate and high p-value for Geweke’s test. (b) A Markov chain with not-so-good mixing, low

acceptance rate, but high p-value for Geweke’s test. (c) A Markov chain in the transient

phase, with high acceptance rate and low p-value for Geweke’s test.
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In this chapter, we introduced well-known and novel MCMC algorithms and how to

assess their convergence properties. All introduced algorithms will be applied in the

applications part of this thesis. The fact that each application example uses a different

sampling algorithm shows well that Bayesian methods always have to be tailored to

their target.

72



5

Model selection methods

Make everything as simple as possible,

but not simpler.

Albert Einstein

In this chapter, we present established model selection methods and their newly devel-

oped improvements that can be used to choose the best available model from a finite

candidate set, according to the selected method and on the basis of measurement data.

Among the presented indicators, the Bayes factor is often preferred, as it accounts for

uncertainty of parameters and intrinsically prevents over-fitting. However, the Bayes

factor is the ratio of two potentially high-dimensional integrals, the marginal likelihoods

of the models, and thus not easy to compute. A sophisticated method for evaluating

marginal likelihoods is thermodynamic integration, presented in Section 5.3.

In this chapter, we introduce a new adaptive variant for thermodynamic integration,

which computes marginal likelihoods more efficiently and with controlled accuracy. For

this, we apply the adaptive Simpson’s rule. This is a novel contribution.
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This chapter is in parts based on or even identical with the following two publications:

• S. Hug, M. Schwarzfischer, J. Hasenauer, C. Marr and F.J. Theis. An adaptive

method for calculating Bayes factors using Simpson’s rule, in revision

• S. Hug, D. Schmidl, W.B. Li, M.B. Greiter and F.J. Theis. Uncertainty in

Biology: a computational modeling approach, chapter Bayesian model selection

methods and their application to biological ODE systems, in revision

The need for model selection often arises naturally when modeling biological systems

as the structure of the system itself is uncertain. For example, this could mean that it

is not known if a reaction is actually present or not or if the steady state of the system

is zero or non-zero. Such competing hypotheses can be formulated as individual ODE

models. Typically, we then want to select the model from a candidate set that best fits

the measurement data.

The models that we deal with in this thesis are always parametrized, i.e. the exact

shape of the solution of a model depends on parameters. To check if a model fits the

measured data, the agreement between model and data has to be optimized by adjusting

the parameters. In our ordinary differential equation models, these parameters are for

example the rate constants in the ODEs or initial conditions. The shape of the ODE

solution will change depending on these parameters.

All model selection methods presented in the following take into account how good the

fit of the model to the data is. Furthermore, they consider the number of parameters

a model contains, or even the full parameter distributions. We now first present estab-

lished methods before we come to our novel adaptive variant. Finally, all methods are

evaluated on an analytically tractable example.

Also all methods presented in this chapter are implemented in MATLAB.

5.1 Likelihood based model selection methods

Quite a few rather easily accessible ways of doing model selection are based on the

maximum likelihood estimates (MLEs) of the parameters for each model. As introduced

in Chapter 3, the likelihood p(Y|θi,Mi), now conditioned explicitly on a model Mi, is a

measure for the agreement between data Y and model Mi from a candidate set Mν , ν =

1, . . . , I parametrized with parameters θi. The parameter vector which maximizes the

likelihood is called the maximum likelihood estimate, often written as θ̂
i
. It can
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be seen as the single best point estimate. To find the maximum likelihood estimate,

optimization techniques have to be applied. In high-dimensional models, this task

is far from trivial. We find that a strategy which combines a local optimizer with

multiple restarts performs best in our applications. While the optimization is surely

very important for the overall performance, it is not the special focus of our work,

interested readers should refer e.g. to Raue et al. [2013b]. We now briefly present

several methods that we applied to our specific problems. We focus on an overview

in the style of Kirk et al. [2013], for more detailed mathematical derivations of the

methods, we refer our readers to the provided references.

5.1.1 Akaike and Bayesian information criteria

Based on the MLE, several model selection criteria or tests have been proposed. Best

known among them might be the Akaike Information Criterion (AIC) (Akaike [1973,

1974]). The theoretical basis comes from information theory and is based on the loss

of information measured by the Kullback-Leibler divergence. The AIC is defined as

AIC(θ̂
i
) = −2 log p(Y|θ̂i,Mi) + 2di, (5.1)

where di is the number of independently adjusted parameters of model Mi, meaning

θi ∈ Rdi . The preferred model is the one with the minimal value for the AIC. The

AIC weighs the goodness of fit, given by the log-likelihood value, with the associated

number of parameters, preferring smaller models over large models. However, the AIC

does not give information about the quality of the models in an absolute sense, even

the best model might not fit the data at all, just better than the other models, see

also Section 2.4.3. The value of the AIC does not directly give any information about

a poor fit of all the models. The estimate is only valid asymptotically in the limit of

large numbers of data points.

Somehow closely related is the Bayesian Information Criterion (BIC) (Schwarz [1978]).

In contrast to the AIC, it also takes into account the number of data points on which

the choice is based:

BIC(θ̂
i
) = −2 log p(Y|θ̂i,Mi) + di log(N). (5.2)

Here, N is the number of data points in Y. Again, the model with the lowest BIC

value should be chosen.

Neither of the two criteria gives an absolute measure of how much one model is “better”

than another model.
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Yang [2005] has pointed out several more interesting considerations: under the assump-

tion that the exactly true model is not in the candidate set, the AIC is asymptotically

optimal in selecting the model with the least mean square error, the BIC not. However,

the AIC is not consistent while the BIC is.

5.1.2 The likelihood ratio test

While the AIC and BIC are rather closely related, a very different, yet also MLE based

model choice method between two models is the likelihood ratio test (LRT) (Kirk et al.

[2013]). This method requires the models to be nested, meaning that the smaller of the

models needs to be a special case of the larger model. The LRT is a hypothesis test

with the null hypothesis that the smaller model (without loss of generality from now on

model M1) is the true model that generated the data versus the alternative hypothesis

that the larger model M2 generated the data. As the models are nested, the ratio of

the logarithms of the maximum likelihood values is approximately χ2-distributed, with

degrees of freedom d1 and d2 corresponding to the numbers of parameters in the two

models:

− 2 log

(
p(Y|θ̂1

,M1)

p(Y|θ̂2
,M2)

)
∼ χ2

d2−d1 . (5.3)

For two nested models, the larger model always explains the data at least as well as the

smaller model, thus p(Y|θ̂1,M1)

p(Y|θ̂2,M2)
< 1. With the LRT, it is possible to determine if the

improvement is significant by deriving a p-value under the appropriate χ2-distribution.

Classical hypothesis testing then reveals if the null model can be rejected at the desired

significance level.

5.2 Bayesian model selection

5.2.1 The Bayes factor

The BIC (or Schwarz criterion) can be seen as a rough approximation to the logarithm

of a different model selection criterion, the marginal likelihood used for calculating a

Bayes factor (BF) (Kass & Raftery [1995]). The Bayes factor is derived from Bayes’

theorem. Here, the likelihood p(Y|θ) is complemented with prior information p(θ)

available for the parameters to yield the general posterior distribution p(θ|Y) of the
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parameters given the data:

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
(5.4)

An important quantity for the purpose of model selection is actually the marginal

likelihood p(Y) in the denominator of the posterior distribution.

With Bayes’ theorem once again, we get:

p(Mi|Y) =
p(Y|Mi)p(Mi)∑I
ν=1 p(Y|Mν)p(Mν)

, (5.5)

which is to compute the marginal likelihood p(Y|Mi) for the desired model Mi from the

candidate set Mν , ν = 1, . . . , I. It is important to notice that the marginal likelihood

is not straightforward to compute, since it is a usually high-dimensional, analytically

intractable integral:

p(Y|Mi) =

∫
Rdi

p(Y|θi,Mi)p(θ
i|Mi) dθi (5.6)

This integral has to be approximated, usually with sampling based approaches. Never-

theless, if we then want to compare two models M1 and M2, we can do so by computing

the ratio of the two marginal likelihoods, the so-called Bayes factor

B12 =
p(Y|M1)

p(Y|M2)
, (5.7)

where a value of B12 greater than 1 indicates a preference for model M1. Analogously,

a value less than 1 indicates a preference for model M2.

Harold Jeffreys established a widely used interpretation of the Bayes factor in Jeffreys

[1961]. It is based on a classification of the evidence in favor of model M1 in log10-half-

scale units as:

log10(B12) B12 Evidence in favor of model M1

0 - 0.5 1 - 3.2 Not worth more than a bare mention

0.5 - 1 3.2 -10 Substantial

1.0 - 1.5 10 - 32.6 Strong

1.5 - 2.0 32.6 - 100 Very strong

2.0 - ∞ 100 - ∞ Decisive

This has become known as Jeffreys’ scale of evidence. While it certainly can be chal-

lenged, it nevertheless is well established and widely used in the Bayesian community.
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The Bayes factor offers certain advantages over the presented point-based model selec-

tion methods. First, in contrast the likelihood ratio test, it provides evidence for either

of the models, since the Bayes factor in favor of model M2 can easily be interpreted

by the same Jeffreys’ scale by taking B21 = 1/B12. Secondly, it works for non-nested

models. Thirdly, point-based methods might not be appropriate in cases where the

MLE is not representative for the whole distribution, e.g. for multimodal likelihoods

or in the presence of non-identifiabilities as introduced in Section 3.3. Furthermore, by

taking into consideration the whole parameter space, the Bayes factor is more efficient

in preventing overfitting (Myung & Pitt [1997]) than the other introduced methods.

As already mentioned, the crux is that the marginal likelihood is computed by inte-

grating over the whole parameter space, which is computationally costly and also often

not straightforward. Because of this, standard methods for computing Bayes factors

are mostly sampling based. This can be seen e.g. from the following relationship:

p(Y|Mi) =

∫
Rdi

p(Y|θi,Mi)p(θ
i|Mi) dθi = Ep(θi|Mi)

[
p(Y|θi,Mi)

]
, (5.8)

as the approximation of expectations is a strength of MCMC algorithms.

5.2.2 The prior arithmetic mean estimate

The easiest approach for sampling any of the marginal likelihoods, here now simply

denoted p(Y|M) without an explicit model index, is the prior arithmetic mean. For this

approach, a total of J samples θ(1),θ(2), . . . ,θ(J) are drawn from the prior distribution

p(θ). From Equation (5.8) it can then be inferred that

p(Y|M) = Ep(θ) [p(Y|θ,M)] ≈ 1

J

J∑
j=1

p(Y|θ(j),M) (5.9)

The right hand side of this equation is known as the prior arithmetic mean estimate.

The strong law of large numbers guarantees (almost surely) convergence as the sample

number tends to infinity. However, in many practical applications, the prior does not

contain too much information about the actual shape of the posterior. Then many

samples might have very low likelihood values, thus a large number of samples might

be needed for accurate results.

78



5.2 Bayesian model selection

5.2.3 The posterior harmonic mean estimate

Slightly more involved is the approach by Newton & Raftery [1994] called the pos-

terior harmonic mean. As the name already implies, for this approach samples are

not drawn from the prior, but from the posterior distribution directly. Similarly to

the prior arithmetic mean, we draw a total of J samples θ(1),θ(2), . . . ,θ(J) from the

posterior distribution p(θ|Y,M). This then yields the following marginal likelihood

approximation:

p(Y|M) ≈

 1

J

J∑
j=1

1

p(Y|θ(j),M)

−1

(5.10)

The derivation can for example be found in Schmidl [2012]. However, already Neal

[2008] showed that this estimate suffers from severe issues. Newton & Raftery [1994]

also proposed a weighted combination of the prior arithmetic mean estimator and pos-

terior harmonic mean estimator called the stabilized harmonic mean estimator. This

helps to reduce the issues of the individual estimators.

5.2.4 Chib’s method

Also often mentioned is Chib’s method, which is originally also a point-based estimate.

In Chib & Jeliazkov [2001], Chib and Jeliazkov show how to apply the method to the

output of a Metropolis-Hastings sampling algorithm. The basic idea is to rearrange

Bayes’s theorem:

log p(Y|M) = log p(Y|θ∗,M) + log p(θ∗|M)− log p(θ∗|Y,M) (5.11)

with a suitable θ∗, for example the maximum likelihood estimate. While this might

yield an easily computable result, it might suffer from the same issues as other point-

based estimates. Furthermore, the posterior probability p(θ∗|Y,M) is often not read-

ily available, since sampling and optimization are mostly based on ”likelihood times

prior” instead of the posterior, ignoring the proportionality constant that is actually the

marginal likelihood at question here. For estimating the posterior value at the chosen

point estimate, Chib and Jeliazkov propose to use the output of a Metropolis-Hastings

sampler θ(1), . . . ,θ(J).

If q(θ,θ′|Y) denotes the proposal density of the Metropolis-Hastings algorithm for the

transition from θ to θ′, where the proposal density is allowed to depend on the data
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Y, and α(θ,θ′|Y) denotes the standard Metropolis-Hastings acceptance probability of

a move, then it can be shown that

p̂(θ∗|Y,M) =
S−1

∑S
s=1 α(θ(s),θ∗|Y)q(θ(s),θ∗|Y)

J−1
∑J

j=1 α(θ∗,θ(j)|Y)
(5.12)

is a simulation-consistent estimate of the posterior value. Here, the θ(s) are samples

drawn from the posterior, while the θ(j) are drawn from q(θ∗, ·|Y) with θ∗ fixed. This

can then be plugged into Equation (5.11) to yield an estimate for the marginal likeli-

hood.

5.3 Thermodynamic integration for the computation of

Bayes factors

Nowadays, the preferred method for calculating marginal likelihoods is often ther-

modynamic integration (TI). While it is computationally costlier than the other

methods, it yields more robust and numerically stable results, since its variance is well

controlled and sometimes significantly smaller than for the other introduced methods

(Gelman & Meng [1998]). Thermodynamic integration in a statistical context is based

on path sampling ideas (Gelman & Meng [1998]), and was then discussed for marginal

likelihoods in the papers by Lartillot & Philippe [2006] and Friel & Pettitt [2008]. It

has recently found increasing application in systems biology (Calderhead & Girolami

[2009]; Eydgahi et al. [2013]; Xu et al. [2010]).

Central to the method is the power posterior, a variant of the usual posterior of the

Bayesian setting,

pτ (θ|Y,M) =
1

pτ (Y|M)
p(Y|θ,M)τp(θ|M) (5.13)

where τ ∈ [0, 1] is a so-called temperature parameter and the denominator

pτ (Y|M) =
∫
Rd p(Y|θ,M)τp(θ|M)dθ is a normalization term necessary for making

the power posterior a probability density. For τ = 0, we get pτ=0(Y|M) = 1, since this

is the prior integrated over θ and thus simply 1. The power posterior is then equal to

the prior p(θ|M). For τ = 1, we get pτ=1(Y|M) = p(Y|M), the marginal likelihood,

and thus the power posterior is the regular posterior. Intuitively, a power posterior

with a low value of τ corresponds to a distribution closer to the prior, which is often

smooth and thus allows for more movement of the Markov chains through the param-

eter space. A higher value of τ corresponds to a distribution closer to the posterior,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Power posteriors. Visualization of the smooth transition from prior to

posterior through the power posterior. Shown is the power posterior of the two-parameter

model M2 introduced in Section 5.4, for six different temperatures.
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which might be e.g. spiky due to the influence of the likelihood. The power posterior

in total thus corresponds to a smooth transition from the prior to the posterior, which

can also be seen in Figure 5.1 with the example we will present later. We now derive

an expression for the log marginal likelihood with respect to the power posterior which

can be evaluated using MCMC methods. First we note that

d

dτ
log pτ (Y|M) =

d

dτ
log

∫
Rd

p(Y|θ,M)τp(θ|M)dθ

=
1

pτ (Y|M)

∫
Rd

dp(Y|θ,M)τ

dτ
p(θ|M)dθ

=
1

pτ (Y|M)

∫
Rd

dp(Y|θ,M)τ

dτ

p(Y|θ,M)τp(θ|M)

p(Y|θ,M)τ
dθ

=

∫
Rd

d log p(Y|θ,M)τ

dτ

p(Y|θ,M)τp(θ|M)

pτ (Y|M)
dθ

=

∫
Rd

log p(Y|θ,M)
p(Y|θ,M)τp(θ|M)

pτ (Y|M)
dθ

= Epτ {log p(Y|θ,M)} (5.14)

Integrating both sides with respect to τ yields the thermodynamic integral,

∫ 1

0
Epτ {log p(Y|θ,M)}dτ =

∫ 1

0

d

dτ
log pτ (Y|M)

= log pτ=1(Y|M)− pτ=0(Y|M)

= log p(Y|M) (5.15)

The integrand on the left hand side of Equation (5.15) is also called the expected log

deviance. The integral in Equation (5.15) can be solved numerically by choosing a

discretization (or temperature schedule) 0 = τ0 < τ1 < ... < τK−1 < τK = 1, then the

numerical approximation with the trapezoidal rule for quadrature is

log p(Y|M) ≈ 1
2

K−1∑
k=0

(τk+1−τk)
(
Epτk+1

{log p(Y|θ,M)}+Epτk{log p(Y|θ,M)}
)
. (5.16)

The expectation for a specific τ can be obtained by Monte Carlo estimates,

Epτk{log p(Y|θ,M)} ≈ 1

S

S∑
s=1

log p(Y|θ(s),M), (5.17)
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where θ(s) denotes a sample drawn from pτk(θ|Y,M). The individual τk are also called

temperature rungs. In most applications, the chosen quadrature method is the trape-

zoidal rule. However, the trapezoidal method is not the most sophisticated quadrature

method, as it is of very low approximation order. Secondly, the accuracy of the inte-

gration depends strongly on the location of the temperature rungs. Therefore, different

scheduling procedures have been introduced.

5.3.1 Fixed schedule

Already in the first papers about thermodynamic integration, the temperature schedule,

i.e. the discretization 0 = τ0 < τ1 < ... < τK−1 < τK = 1, has been discussed.

It is immediately clear that the schedule has a significant influence on performance

and numerical stability of the whole scheme. It is well known that the Bayes factor

is sensitive to the choice of prior, therefore most schedules try to concentrate more

temperature rungs near 0 = τ0. Thus already Friel & Pettitt [2008] recommend a

power law temperature schedule of the type τk = (xk)
q , where xk = k/K, k = 0, . . . ,K

is an equal spacing of K + 1 points in the interval [0, 1], and q > 1 is a constant.

This leads to temperature rungs that are chosen with higher frequency close to τ = 0.

Calderhead & Girolami [2009] advocate the choice of K = 30 and q = 5. It has been

shown that this is superior to uniform spacing.

5.3.2 Adaptive trapezoidal rule

Friel et al. [2013] have developed a first adaptive method for choosing the temperature

rungs. It is based on an interesting connection between the derivative of the expectation

that has to be calculated and the associated variance:

d

dτ
Epτ {log p(Y|θ,M)} = Epτ {log p(Y|θ,M)}2 − (Epτ {log p(Y|θ,M)})2 (5.18)

= Varpτ {log p(Y|θ,M)} (5.19)

Here, Varpτ {log p(Y|θ,M)} is the variance of the log deviance at temperature τ . Based

on this, Friel et al. suggest first estimating the curve at τ = 0 and τ = 1. By taking the

tangents to the curve at these two points and finding their intersection, they find the

next temperature rung. If thus fk and Vk are the estimated function and the gradient

at τk and the same respectively for τk+1, the new temperature τ∗ is set to

τ∗ =
fk+1 − fk + τkVk − τk+1Vk+1

Vk − Vk+1
. (5.20)
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This new temperature rung τ∗ can be outside the interval [τk, τk+1] if there is an

inflection in the interval. In this case, the authors propose to use a weighted average

instead:

τ∗ = τk +
Vk+1

Vk + Vk+1
(τk+1 − τk) . (5.21)

From the trapezoidal rule, error estimates are available, and a new τ∗ provides us

with the two new contributions. The following temperature rung is then placed in the

subinterval with the larger contribution. In practice, due to Monte Carlo error in the

sampling of the expectation, the function might not be strictly increasing, then the

interval with the biggest error estimate is picked. This strategy is cheap and follows a

reasonable idea, however, the placing will probably not be optimal.

5.3.3 Adaptive Simpson’s rule

In complex model selection tasks, it is very desirable to control the number of tem-

perature rungs and use only as many as necessary for achieving a predetermined error

tolerance in the marginal likelihood. The just introduced adaptive trapezoidal algo-

rithm determines the placing of the temperature rungs on the fly based on the already

chosen rungs and their function values. This is however based on a number of rungs

that has to be set beforehand.

We developed a different adaptive strategy for placing the temperature rungs. It is

based on classical integral approximation theory from numerical mathematics, and

uses Simpson’s rule instead of the trapezoidal rule as with both previous strategies.

Both quadrature methods were already introduced in Section 2.2.3.

Simpson’s rule provides a natural extension to an adaptive approximation of an integral.

Furthermore, Simpson’s rule is of approximation order four, while the trapezoidal rule

only has order two, thus we should gain two orders of accuracy. In practice, this is

however hard to assess, since the function evaluations are tainted by Monte Carlo error

and the analytical shape of the cost function is not available in all but the most simple

cases.

In principle, we apply the standard adaptive Simpson’s rule. It is based on the regular

Simpson’s rule and approximates the integral J(f) of a function f(x) on the interval

[a, b] as

J(f)[a, b] =
b− a

6

(
f(a) + 4f(

a+ b

2
) + f(b)

)
. (5.22)
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5.3 Thermodynamic integration for the computation of Bayes factors

This is combined as Simpson’s sum, which corresponds to subdividing the interval to[
a, a+b

2

]
and

[
a+b

2 , b
]
, applying Simpson’s rule to both and summing up. This yields

Ĵ(f)[a, b] = J(f)

[
a,
a+ b

2

]
+ J(f)

[
a+ b

2
, b

]
. (5.23)

Furthermore, we have the following error estimates: for Simpson’s rule, we get for

h = b−a
2 that J(f) = I(f) + h5f (4)(ξ)/90, where I(f) is the exact analytical value

of the integral and ξ some point in the interval [a, b]. For the Simpson sum, we get

Ĵ(f) = I(f) + 1/16 · (h5f (4)(ξ∗)/90) for again some ξ∗ ∈ [a, b]. Under the assumption

that the fourth derivative is reasonably flat, f (4)(ξ)=̇f (4)(ξ∗), we can formulate the

following iterative procedure called adaptive Simpson’s rule ( Lyness [1969]):

Algorithm 5: Adaptive Simpson’s rule for recursively calculating a definite inte-

gral with controlled accuracy.

input : error tolerance TOL, function f(x), interval borders a and b

output: value of the interval I(f)[a, b]

initialize J := J(f)[a, b] and Ĵ := Ĵ(f)[a, b];

Set

I(f)[a, b] :=

Ĵ if |J − Ĵ | < 15 · TOL

I(f)
[
a, a+b

2

]
+ I(f)

[
a+b

2 , b
]

otherwise
(5.24)

It is obvious from the proportionality of the error term to the fourth derivative f (4)(ξ)

for ξ ∈ [a, b] of the integrand that the adaptive Simpson’s rule is exact for cubic func-

tions. Until now, most applications use the trapezoidal rule, which is only exact for

linear functions, since its error term is proportional to the second derivative f ′′(ξ) for

ξ ∈ [a, b]. Switching from the trapezoidal rule to Simpson’s rule should thus lead to a

gain of two orders of accuracy. We expect a much smaller error for the same number

of function evaluation.

In contrast to classical quadrature problems, in our setting the integrand is a random

variable and thus its evaluation is tainted by Monte Carlo errors. If this Monte Carlo

error is large, it could cause convergence problems, therefore it should be controlled as

close as possible. Still, a few heuristics controlling the performance of the algorithm

and preventing infinite loops have to be introduced.
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5.3.4 Power law scheduling for the adaptive Simpson’s rule

As introduced in Section 5.3.1, a power law schedule like τk = (k/K)5, k = 0, . . . ,K

with K + 1 rungs performs well in standard non-adaptive thermodynamic integration

(Calderhead & Girolami [2009]). This lead us to considering this also for the adaptive

Simpson’s rule. One easy way to apply this is through integration by substitution. To

reproduce a power law rung placement, we choose a substitution function of the form

λ = ψ(τ) = τ1/q with some exponent q, e.g. q = 5. Integration by substitution leads

then to a thermodynamic integral of∫ 1

0
Epτ {log p(Y|θ,M)}dτ

=

∫ 1

0
Epλ{log p(Y|θ,M)} · qλq−1dλ. (5.25)

To this transformed function, i.e. the integrand on the right hand side of Equation

(5.25), we can then apply the adaptive Simpson’s rule as described in the previous

chapter. This might combine advantages of the adaptive refinement and advantages of

temperature scheduling heuristics to achieve the requested tolerance with even fewer

function evaluations and will be evaluated in Section 5.4.2.

5.4 An analytically tractable numerical example

In this section we evaluate all proposed methods, especially the newly proposed adaptive

Simpson’s rule for thermodynamic integration using an analytically tractable example

based on normal distributions. Here the Bayes factor can be computed analytically

and thus the error made by the presented approximations is accessible. It was already

introduced in Schmidl [2012]. We have found this possible with a very simple model

selection where we choose between the following two models:

• Model M1: a normal distribution with expected value µ and standard deviation

σ, with N data points drawn.

• Model M2: two normal distributions with expected values µ1 and µ2 = −µ1 and

standard deviation σ, with N1 data points drawn from the first normal distribu-

tion and N2 drawn from the second.

We generate artificial data from model M2, so that the analytical Bayes factor and the

results of thermodynamic integration should both point towards model M2 consider-
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ably, since this model selection problem is rather simple.

We draw N = 10 samples from model M2 in the following way to obtain the data

Y = (Y1, ..., YN )

• From the first normal distribution N1 points Y1, ..., YN1 ∼ N(µ1, σ
2) with N1 = 3

and µ1 = −2.

• From the second normal distribution N2 points YN1+1, ..., YN ∼ N(µ2, σ
2) with

N2 = N −N1 = 7 and µ2 = 2.

This is then compared to the hypothesis that the data comes from model M1 in such

a fashion that

• Y1, ..., YN ∼ N(µ, σ2) with N = 10.

A visualization of the data generated from model M2 can be seen in Figure 7.6(a).

To facilitate the computations, we choose a fixed σ, to which we assign the value

σ = 2 or σ = 1 in our implementation. This leaves us with one free parameter, µ, for

model M1 and two parameters µ1 and µ2 for model M2. For reasons of computational

convenience, we choose the following prior distributions for our parameters:

• µ ∼ N(0, σ2)

• µ1 ∼ N(−2, σ2)

• µ2 ∼ N(+2, σ2),

with µ1 and µ2 independent.

Of course it is also possible to generate data from the smaller model M1, see e.g. in

Figure 7.6(b). The following calculations are valid irrespective of which model the data

was generated from.

5.4.1 Analytical computation of the Bayes factor

The likelihood we obtain for both models is given by

p(Y|µ,M1) =

(
1√
2πσ

)N
exp

(
− 1

2σ2

(
N∑
n=1

(Yn − µ)2

))
(5.26)

87



5. MODEL SELECTION METHODS

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

data

de
ns
ity

(a)

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

data
de
ns
ity

(b)

Figure 5.2: Generated artificial data. (a-b) The two models M1 (green) and M2

(purple). (a) Artificial data generated from model M2 (magenta dots). (b) Artificial data

generated from model M1 (cyan dots).

and

p(Y|µ1, µ2,M2)

=

(
1√
2πσ

)N
exp

− 1

2σ2

 N1∑
n=1

(Yn − µ1)2 +
N∑

n=N1+1

(Yn − µ2)2

 . (5.27)

After some straightforward calculations we find that the posterior distributions for the

parameters within the two models are

• µ ∼ N
(

1
N+1

∑N
n=1 Yn,

σ2

N+1

)
for model M1

•

(
µ1

µ2

)
∼ N

((
1

N1+1(−2 +
∑N1

n=1 Yn)
1

N2+1(+2 +
∑N

n=N1+1 Yn)

)
,

(
σ2

N1+1 0

0 σ2

N2+1

))
for model M2.

In order to compute the Bayes factor, we need to compute the marginal likelihoods

p(Y|σ,M1) and p(Y|σ,M2). We will begin with model M1 and thus p(Y|σ,M1):
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p(Y|σ,M1) =

∫
R
p(Y|µ,M1)p(µ|M1) dµ

=

∫
R

(
1√
2πσ

)N+1
exp

(
− 1

2σ2

N∑
n=1

(Yn − µ)2 − 1
2σ2µ

2

)
dµ

=

∫
R

(
1√
2πσ

)N+1
exp

(
− 1

2σ2

(
N∑
n=1

Y 2
n − 2µ

N∑
n=1

Yn + (N + 1)µ2

))
dµ

=

∫
R

(
1√
2πσ

)N+1
exp

(
−N+1

2σ2

(
1

N+1

N∑
n=1

Y 2
n − 2µ N

N+1Ȳ + µ2

))
dµ

· exp

(
−N+1

2σ2

(
N
N+1Ȳ − µ

)2
)

dµ

=
(

1√
2πσ

)N
1√
N+1

exp

(
−N+1

2σ2

(
1

N+1

N∑
n=1

Y 2
n − ( N

N+1Ȳ)2

))

where Ȳ = 1
N

∑N
n=1 Yn is the sample mean. In a very similar fashion, we can also

calculate p(Y|σ,M2). For that, we introduce the notation Ȳ1 = 1
N1

∑N1
n=1 Yn and

Ȳ2 = 1
N2

∑N
n=N1+1 Yn:

p(Y|σ,M2) =

∫
R

∫
R
p(Y|µ1, µ2,M2)p(µ1|M2)p(µ2|M2) dµ1 dµ2

=

∫
R

∫
R

(
1√
2πσ

)N+2
exp

(
− 1

2σ2

(
N∑
n=1

Y 2
n + 8− 2(N1Ȳ1 − 2)µ1 − 2(N2Ȳ2 + 2)µ2

+ (N1 + 1)µ2
1 + (N2 + 1)µ2

2

))
dµ1 dµ2

=
(

1√
2πσ

)N
1√

N1+1
√
N2+1

exp

(
− 1

2σ2

(
N∑
n=1

Y 2
n + 8− (N1Ȳ1 − 2)2

N1 + 1
− (N2Ȳ2 + 2)2

N2 + 1

))
.

Having obtained the marginal likelihoods, we can now compute the Bayes factor B21

in favor of model M2:
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B21 =
p(Y|σ,M2)

p(Y|σ,M1)
(5.28)

=

√
N + 1√

N1 + 1
√
N2 + 1

exp

(
− 1

2σ2

(
(NȲ)2

N + 1
− (N1Ȳ1 − 2)2

N1 + 1
− (N2Ȳ2 + 2)2

N2 + 1
+ 8

))
(5.29)

Since B21 only depends on the data Y and the standard deviation σ, which we fixed,

we can easily evaluate the Bayes factor in our implementation.

In this simple example, also the expected log deviance as a function of temperature

is easily analytically tractable for model M1, meaning that the integrand in thermo-

dynamic integration is known. After some cumbersome, but straightforward computa-

tions, which can be found in Schmidl [2012], we find

Epτ {log p(Y|µ,M1)}

= − 1

2σ2

{(
N∑
n=1

(
Y 2
n + 2σ2 log(

√
2πσ)

))
+
Nσ2 − 2Ȳ2N2τ

Nτ + 1
+

N3Ȳ2τ2

(Nτ + 1)2

}
(5.30)

5.4.2 Comparison of methods

After the introduction of the model selection scenario, we now first want to focus on

the comparison of all presented methods on this example. In the following two sections,

we will then perform an in-depth analysis of the novel adaptive Simpson’s rule for TI,

first on the linear scale and later on the power law schedule introduced in Section 5.3.4.

All of the presented results were obtained from computations in MATLAB. For the opti-

mization based criteria AIC, BIC and LRT, we used 10,000 runs of a local optimization

routine in MATLAB. Starting values where drawn uniformly from the intervals [−5, 5]

for µ in M1 and from [−5, 0] and [0, 5] for µ1 and µ2 in M2, respectively, to find the

maximum likelihood estimates. Since the posterior distributions of the parameters in

the two models in the example are normal distributions, it is possible to compare the

optimization results to the true values of the maximum a posteriori estimates. We find

very good agreement, certainly due to the simplicity of the optimization task.

For the first three sampling based approaches (prior arithmetic mean, posterior har-

monic mean and Chib’s method), we drew 100,000 samples each from the required

densities. For the prior, sampling was directly available. For the posterior, we sam-

pled with the Adaptive Metropolis Sampler as introduced in Section 4.2. Since Chib’s
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method is in our opinion not tailored to accommodate adaptive sampling, we there

chose a regular Metropolis-Hastings algorithm with a normal distribution as proposal

distribution.

For the standard thermodynamic integration, we follow the recommendations of Calder-

head & Girolami [2009] and first choose a power law temperature schedule of τk =

(k/19)5 with K = 20 temperature steps as the example of a fixed schedule. For each

temperature, we draw 5000 samples, yielding also a total of 100,000 samples. For the

adaptive trapezoidal rule, we also used K = 20 temperature rungs with 5000 samples

each. The adaptive Simpson’s rule does not have a predetermined number of tempera-

ture rungs, but we also draw 5000 samples per temperature. As tolerance value TOL for

this initial comparison, we choose a value of TOL = 10−3. The effect of the tolerance

will be examined in more detail in the following section.

All sampling algorithms were initialized at the maximum a posteriori estimates found

for the AIC/BIC/LRT approaches, minimizing the influence of the starting point on

the sampling.

For the sampling based approaches, we ran the sampling 30 times on the same data to

correct for randomness. This takes less than an hour on a standard desktop computer.

These 30 runs yield mean results for the Bayes factor and the standard error. The

standard error does not provide a confidence interval for the value in this case, as

it incorporates both deterministic and MCMC errors of the methods. Furthermore,

the Bayes factor is the ratio of the two marginal likelihoods and thus the error is a

combination of the two single errors on the estimated quantities. Nevertheless the

Bayes factor is often the quantity of interest and the standard error provides an idea

about the spread of attained values.

We first study the situation where the artificial data as generated from model M2. The

AIC for model M1 is 49.58, while the AIC for the correct model M2 is 40.74, thus the

AIC makes the correct choice in this simple example. For the BIC we find that the

value for model M1 is 49.88, while the value for model M2 is 41.35, also indicating a

preference for the correct model. The likelihood ratio test rejects the smaller model

M1 with a p-value of 0.000956.

For the sampling based approaches, the results are given in Table 5.1. For the Bayes

factor, the analytical computation based on our drawn data shows a true value of 139.23

for model M2 over M1, i.e. decisive preference for model M2. This is based on log

marginal likelihoods of log p(Y|σ,M1) = −25.0582 and log p(Y|σ,M2) = −20.12. All
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Method Mean B21 s.e.

TRUE 139.23

Prior arithmetic mean 138.76 0.03

Posterior harmonic mean 149.37 1.85

Chib’s method 55.76 0.01

Fixed schedule TI 140.66 0.13

Adaptive trapezoidal TI (Friel) 141.24 0.14

Adaptive Simpson’s rule TI 140.62 0.10

Table 5.1: Bayes factors for model M2 versus model M1. Data was generated from

model M2. Given is the mean over 30 runs as well as the corresponding standard error for

all sampling bases methods.

sampling based approaches also find a preference for this model.

The posterior harmonic mean estimate overestimates the Bayes factor rather consider-

ably, also the standard error is very large compared to the other estimation methods.

Both indicates a rather bad approximation and reliability, which is in agreement with

the general issues of this sampling method. Chib’s method in our case performs worst.

While the Bayes factor is still very strong in favor of model M2, it underestimates

the true value by a factor of 2. This is mostly due to a systematic underestimation of

both log marginal likelihoods, e.g. for model M2, all sampling results were < −21.4

while the true value is log p(Y|σ,M2) = −20.12. Note that this difference between true

and sampled value is on a log scale, thus on the non-log scale of the Bayes factor, the

discrepancy is more drastic. This seems to be a systematic issue, since the sampling

passed Geweke’s convergence criterion with all p-values larger than 0.98. Furthermore,

the mean of the samples for model M2 for example can be compared to the analytical

posterior distribution. We find that the sample means of −2.3007 and 2.1318 agree very

well with the analytical values −2.2994 and 2.1260. Also the sample covariance matrix

[0.9915,−0.0053;−0.0053, 0.4974] agrees very well with the analytical one [1, 0; 0, 0.5].

We conclude that Chib’s method seems to suffer from severe numerical issues and should

thus only be used very carefully.

The prior arithmetic mean and the three variants of thermodynamic integration perform

best. The good performance of the prior arithmetic mean is certainly due to the

simplicity of the model selection problem, as well as the goodness of the prior. We

would not advice to use this result as an indicator of good performance of the estimator
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in larger model selection problems. Thermodynamic integration performs very well in

our scenario and we expect it to also perform well in other applications.

The three different temperature schedules for the thermodynamic integration perform

very similarly in this easy example. The adaptive Simpson needs between 17 and 29

function evaluations, on average over the thirty runs, it needs 19.3 evaluations for model

M1 and 22.1 evaluations for model M2. This shows that in this simple example, the

Simpson rule saves time for the simpler model due to its adaptivity, but invests a few

extra function evaluations for a good accuracy in the larger model compared to the 20

that the other two thermodynamic integration methods can use.

As further verification of our model selection methods, we also considered the reverse

scenario where the simpler model M1 is the true model used to generate the data.

We generated 10 data points from the model using µ = 0 as the true parameter and

choose σ = 1 and again apply all mentioned model selection methods. The theoretical

Bayes factor for our generated data is B21 = 0.0126. For ease of comparability to the

preceding model selection, we will instead refer to B12 = 1/B21 = 79.5958. We used

the same specifications as previously reported.

The AIC and BIC for model M1 are 26.83 and 27.14, the AIC and BIC for model

M2 are 28.26 and 28.86, thus both information criteria make the correct choice. The

p-value from the likelihood ratio test is 0.4468, thus model M1 can not be rejected at

reasonable confidence levels.

For the sampling based approximations of the Bayes factor, we find the results in Table

5.2.

Method Mean B12 s.e.

TRUE 79.5958

Prior arithmetic mean 79.2716 0.10

Posterior harmonic mean 28.7435 1.10

Chib’s method 111.8052 0.04

Fixed schedule TI 84.1115 0.13

Adaptive trapezoidal TI (Friel) 91.3555 0.35

Adaptive Simpson’s rule TI 79.1988 0.10

Table 5.2: Bayes factors for model M1 versus model M2. Data was generated from

model M1. Given is the mean over 30 runs as well as the corresponding standard error for

all sampling bases methods.
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As before, the posterior harmonic mean and Chib’s method perform worst. Due to

the simplicity of the problem and the quality of prior information, the prior arithmetic

mean again performs very well. For the three variants of thermodynamic integration,

the situation is more interesting. The adaptive Simpson’s rule needs an average 19.2

(between 17 and 25) function evaluations for model M1. For model M2, it uses 21

to 41 function evaluations, on average 29.5. This means that the adaptive Simpson

uses more function evaluations in all runs than are available for the other temperature

schedules. However, this pays off since we achieve significantly higher accuracy.

We believe the reason for the suboptimal performance of the adaptive trapezoidal rule

lies in the placing of the rungs. In model M1, it places for example only 4 rungs

between 0 and 0.2, but 8 rungs between 0.2 and 0.5, for model M2 the situation is

similar. This does not seem to be optimal.

We conclude that in both presented scenarios, thermodynamic integration methods

generally perform well and often superior to other methods. We will thus prefer this

general method in the model selection problems presented in the Applications part of

this thesis. While the prior arithmetic mean performed well, it is only an alternative if

the prior information is strong.

One reason for the improved performance of Simpson’s rule is that it approximates the

integrand with a parabola, which fits the typical shape of the expected log deviance

better than the straight lines from the trapezoidal approximation, when the same rungs

are used. This results in a improved convergence speed, even if three instead of two

function evaluations per subinterval have to be used. The quality of fit is also shown

for the analytically available expected log deviance as a function of the temperature

from model M1 in Figure 5.3. The formula for this expected log deviance is given in

Equation (5.30).

5.4.3 Numerical results for the adaptive Simpson’s rule

After the introduction of the model selection scenario and the comparison of methods,

we now want to present an in-depth evaluation of the adaptive Simpson’s rule on this

example on the linear scale.

As already mentioned, the adaptive Simpson’s rule does not have a predetermined

number of temperature rungs. We introduce one heuristic that sets a cut off after four

levels of refinement, meaning at most 65 function evaluations, i.e. 65 MCMC runs. If the
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Figure 5.3: Analytical expected log deviances. The analytical expected log deviance

of model M1 (grey), Simpson approximations (green) and trapezoidal approximations (ma-

genta). (a) First approximation based on the whole interval. (b) Approximation based

on the two intervals [0, 0.5] and [0.5, 1]. (c) Approximation based on the four intervals

[0, 0.25],[0.25, 0.5], [0.5, 0.75] and [0.75, 1]. Clearly, the Simpson approximation is always

better than the trapezoidal approximation.
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prescribed tolerance is not reached with these 65 evaluations, we instead take the best

available approximation. In this case, the integration error is larger than the tolerance

and thus has to be treated accordingly. We believe this is a reasonable setting, since

most thermodynamic integration implementations use about 30 function evaluations

(Calderhead & Girolami [2009]). In our implementation, only the number of function

evaluations necessary for the desired accuracy are used. Thus the number of function

evaluations varies between five, the minimum number necessary for a Simpson’s sum,

and 65.

It was already noted in the previous section that the adaptive Simpson’s rule performs

well irrespective of which model the data was generated from. When model M2 is

used to generate the data with a true value for the Bayes factor of 139.23 for model

M2 over M1, thirty runs of the adaptive Simpson on the same data yields a result of

140.62 with a standard error of 0.10, i.e. a very good fit. Also when data is drawn from

model M1, the smaller model, finding an analytical Bayes factor of B21 = 0.0126 or

B12 = 1/B21 = 79.5958. In this scenario, thirty runs of the adaptive Simpson yield a

result of B12 = 79.1988 with standard error 0.10, thus also a very good result.

We now focus on evaluating the effect of the single parameter controlling the perfor-

mance of the adaptive Simpson’s rule, the error tolerance TOL, on the number of required

function evaluations. Based on model M1 in the situation where model M2 is true, we

run the adaptive Simpson 50 times for varying tolerances. From this, we derive a mean

number of function evaluations as well as its spread, see Figure 5.4(a) and Figure 5.4(b).

The true value of the log marginal likelihood in this case is log p(Y|σ,M1) = −25.0582.

As expected, the accuracy of the estimate gets higher with lower error tolerances. Also

the required number of function evaluations rises with lower tolerances from the mini-

mum five to the maximum 65.

We find that the tolerance chosen in the example of TOL = 10−3 is a very good trade

off between accuracy and the required number of function evaluations. It is not trivial

to choose an appropriate tolerance for the adaptive Simpson’s rule in a general setting,

since the tolerance is an absolute error tolerance and has to be appropriate for the

achieved function values. The tolerance chosen here corresponds to a relative error in

the order of magnitude of 10−5, when divided by the expected log deviance at τ = 1.

Thus, we suggest taking TOL in this order of magnitude for other examples as well.
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Figure 5.4: Varying tolerances for the adaptive Simpson’s rule. (a) The effect of

the chosen tolerance TOL on the achieved integral value (the magenta line denotes the true

value), based on 50 runs of model M1 for each chosen tolerance. (b) The required number

of function evaluations rises with lower error tolerance. (a-b) The circles denote 50 runs

for each chosen tolerance, the black line their mean.

5.4.4 Evaluation of the power law schedule for the adaptive Simpson’s

rule

As we hypothesized in Section 5.3.4 that the combination of the heuristic power law

temperature schedules and adaptive Simpson’s rule might improve the performance

further, we analyzed this numerically. Therefore, we repeat the sampling from the

previous section for the adaptive Simpson, for values of the exponent q of 2, 3, 4 and 5

and compare this with the results from the previous section. We find that the power

law schedule performs well for both models, irrespective of chosen exponent, see Figure

5.5. It has to be noted that we applied the same TOL = 10−3 for all exponents, as

it represents a common requirement for all integrations, even though this might be

different for other convergence criteria.

We conclude that the power law scheduling does not immediately lead to significant

improvement. If an adaptive scheme and a high accuracy is used, the benefit from the

power law temperature scheduling seems to be negligible, in particular if the optimal

power is not known. However, we still feel that for a fixed schedule version of thermo-

dynamic integration like in Calderhead & Girolami [2009], a power law schedule should

be used since it has been shown to perform well then.
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Figure 5.5: The effect of the power law schedule. The effect of the power law

schedule for model M1 (Panel (a)) and model M2 (Panel (b)) for different values of the

exponent, compared with the true values (magenta lines) and the results for the original

sampling (left-most column of markers in each plot). It can be clearly seen that the power

law schedule performs well for both models.

5.5 Conclusions

In this chapter, we have presented several more or less involved methods for doing

(Bayesian) model selection, using methods introduced in the previous chapters like

MCMC. When we are now faced with a model selection task on a more complex exam-

ple than the one presented in this chapter, the example can be used as a guideline as

to which method should be preferred. In a general setting with unknown prior quality,

we advocate the use of thermodynamic integration methods over the prior arithmetic

mean despite the good performance of the prior arithmetic mean. Thermodynamic in-

tegration is state-of-the-art. With the newly introduced adaptive Simpson’s rule, it can

be used efficiently and with controlled accuracy. This scheme adaptively determines

the number of function evaluations that are necessary for achieving a required accuracy.

Furthermore, it possesses a higher approximation order than the usually applied trape-

zoidal rule. We expect this to be important especially in high-dimensional problems,

for example the one in Chapter 6. In more medium-sized applications like in Chapter

7, the standard thermodynamic integration can be expected to yield good results.

In general, thermodynamic integration can be combined with sequential sampling

from the tempered distributions, or population-based MCMC (Calderhead & Girolami

[2009]). This is of course also possible with the adaptive Simpson’s rule and could in-
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crease sampling efficiency, especially in examples that might be more difficult to sample

than the examples presented in this thesis.

We have provided a nice, analytically tractable example for model selection, comparing

normal distributions. Since there the expected log deviance is analytically assessable,

it can be clearly seen that there is a gain in approximation order when using Simpson’s

rule instead of the trapezoidal rule. We propose that the example be used for evaluating

new methods also in the future.

For the power law scheduling of the adaptive Simpson’s rule, we find that the potentially

best choice for the exponent q is not obvious from setting the error tolerance TOL alone.

The computation of the ideal q might be an important step also for fixed schedule

thermodynamic integration, on a way towards an optimal temperature schedule.
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6

Model selection of models for

single-cell dynamics

In this chapter, we apply model selection with the adaptive Simpson’s rule for the

thermodynamic integration to two simple models. These two compared models are low-

dimensional in their individual parameter dimensions with three and four parameters,

respectively. However, they represent single-cell time courses and should thus be fitted

individually to a rather large number of individual data sets in parallel. This parallel

single-cell inference is applied to measurement data from two different cell types and

represents the second methodological challenge presented in this chapter.

The two models represent two possibilities for protein degradation in the presence of

cycloheximide. In living cells, proteins are continuously produced and degraded. It is

experimentally possible to block protein synthesis to observe degradation isolated by

treating cells with the cycloheximide. This gives protein half-lives which are impor-

tant prior knowledge for experiments or models where proteins are both produced and

degraded (Eden et al. [2011]; Schwanhäusser et al. [2011]).

This chapter is based on and in part identical with the following two publications:

• S. Hug, M. Schwarzfischer, J. Hasenauer, C. Marr and F.J. Theis. An adaptive

method for calculating Bayes factors using Simpson’s rule, in revision

• M. Schwarzfischer, O. Hilsenbeck, B. Schauberger, S. Hug, A. Filipczyk, P.S.

Hoppe, M. Strasser, F. Buggenthin, J.S. Feigelman, J. Krumsiek, D. Loeffler, K.D.

Kokkaliaris, A.J.J. van den Berg, M. Endele, S. Hastreiter, C. Marr, F.J. Theis
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and T. Schroeder. Single-cell quantification of cellular and molecular behavior in

long-term time-lapse microscopy, in preparation

6.1 Biological setup

To assess the performance of the adaptive Simpson’s rule for thermodynamic integration

for more complex problems than presented in the previous chapter, we used the method

to study time-lapse microscopy data of single cells, as introduced in Section 2.1.

Proteins produced by the cells decay with to-be-determined half-life. However, these

protein half-lives are important for assessing all models based on protein expression in

cells. To assess protein stability, cells are treated with cycloheximide to block protein

translation (Halter et al. [2007]), allowing to observe the protein decay of fluorescently

labeled proteins over time in individual cells. The protein stability following cyclohex-

imide treatment can be assessed on the basis of measurement data for two very different

cell types.

The first cell type was measured by Halter et al. [2007]. This data set provides au-

tomatically quantified single-cell time-lapse fluorescence microscopy data for fibroblast

cells. A fibroblast is a connective tissue cell that secretes proteins which are important

for the structural framework of cells. Genetically modified fibroblasts produce an en-

hanced, destabilized green fluorescent protein (GFP) reporter. All in all, over 500 cells

were quantified. Of these, we randomly chose 200 as the basis for our inference. These

200 cells were automatically measured every 15 minutes for 12 hours, yielding 49 data

points for each cell. Measurement data of ten representative cells is depicted in Figure

6.1.

The second data set was obtained through computer-assisted single-cell time-lapse mi-

croscopy by Schwarzfischer et al. [2014] as introduced in Section 2.1. Here, primary

murine granulocyte/macrophage progenitor (GMP) cells are observed. The protein

PU.1 is thought to play an important role in the decision making process of the cell

(Scott et al. [1994]). In (genetically modified) GMPs, the protein PU.1 is produced in

a fluorescent variant (PU.1eYFP) and can thus be observed through fluorescence mi-

croscopy (Kirstetter et al. [2006]). GMPs are observed in three replicate experiments

with 45, 46 and 48 cells, respectively. A visualization of this data can also be seen in

Figure 6.2. Already a first look at the data reveals that the data is rather heteroge-

neous. The data for some cells shows a much more pronounced decay than for other
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Figure 6.1: Fibroblast cell trajectories. Trajectories of 10 randomly chosen fibroblast

cells, each gray scale indicates one cell. Cells are aligned such that cycloheximide was

added at time t = 0. The fluorescence intensity decays with time, however it does not

decay completely in the observed time frame. Cells were automatically imaged every 15

minutes for 12 hours.

cells. Furthermore, some cells can be observed only briefly after cycloheximide treat-

ment, while others live up to 40 hours after treatment. This yields a variable amount

of data points for each cell, between 11 and 77. It is noteworthy that for experiment 3,

the observation was stopped after about 20 hours. We summarize the properties of our

data in Table 6.1. The heterogeneity of the GMP data here might indicate a system-

atic heterogeneity in the GMP population, which is the topic of current research, as

these are primary cells which might actually belong to several subgroups (Hoppe et al.

[2014]).

Cell type # cells # of data points

Fibroblasts 200 49

GMP Replicate # cells # of data points (mean, [min, max])

Replicate 1 45 25.3, [11, 66]

Replicate 2 46 35.6, [11, 77]

Replicate 3 48 23.1, [10, 40]

Table 6.1: Overview of available measurement data. Number of cells and number

of data points for each cell in all available data sets. For the fibroblasts, all cells have the

same number of data points. For the GMPs, we give the mean, minimum and maximum

number of data points measured for the individual cells.

Experiments like the presented ones, where the decay of the protein can be observed
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Figure 6.2: GMP cell trajectories. Fluorescence of PU.1 in GMPs for three replicates

(color-coded). Cells are aligned such that cycloheximide was added at time t = 0. The

fluorescence intensity decays over time, but does not decay completely in the observed time

frame. Measurements for individual cells are taken as long as possible, yielding different

observation times for each cell. Note the differences between replicates, e.g. in experiment

3, all measurements were stopped after about 20 hours.

isolated for one protein in single cells are an important basis for more complex models,

where several proteins may interact with each other. A rigorous statistical evaluation as

presented in the following sections cannot distinguish hidden biological mechanisms, but

gives insights into the behavior of the system and is thus a very important cornerstone

for further inference in even more complex systems.

6.2 Model selection task

The conducted experiments allow us to observe the protein decay over time in individ-

ual cells. By fitting a simple exponential decay model to the decreasing fluorescence

intensity of every cell, Halter et al. [2007] infer protein half-lives in the fibroblasts.

Interestingly, the original contribution here poses a model selection problem: it was

shown that a simple exponential model fits rather well at early time points, however,

at the end, the curves seem to be systematically too low to fit the data properly, see also

Figure 6.1 for 10 exemplary single-cell data trajectories. This encourages the following

model choice problem:

• The fluorescence intensity decays completely (model M1)

• There exists a non-zero steady state level for the fluorescence intensity (model
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M2).

Both models can be formulated as ordinary differential equations (ODEs), which can

be solved analytically.

Also for the GMPs in Figure 6.2, we observe that many of the single-cell time courses

do not seem to decay to zero, in neither of the three replicates. Thus we are faced

with the same model selection problem also for the GMPs, so that we can use the same

models as for the fibroblasts.

If we let z(i)(t) be the time dependent fluorescence intensity according to model Mi,

the ODEs for the model can be written down as follows. The first model M1 for the

fluorescence intensity z(1)(t) is ż(1)(t) = −ρz(1)(t), z(1)(0) = α. Solving the ODE yields

z(1)(t) = α exp (−ρt). The ODE for the second model M2 is ż(2)(t) = −ρ(z(2)(t) −
γ), z(2)(0) = α̃. Solving this leads to z(2)(t) = α exp (−ρt) + γ, where α = α̃ − γ.

In both models, ρ is the decay rate. We reformulate both models: the parameter

β = log(2)
ρ is the half-life time of the proteins which are degraded. Knowing this

half-life is of biological relevance. In model M2 we have an additional parameter γ

corresponding to the steady state level of fluorescence intensity, as z(2)(t → ∞) → γ.

In model M1, the parameter α controls initial intensity. In model M2, the initial

value is z(2)(0) = α̃ := α + γ, to facilitate the comparison of parameter values with

model M1. As previously suggested for fluorescence intensities (Harper et al. [2011]),

we assume multiplicative gamma distributed noise distributed according to Γ(k, 1/k)

for both models.

The analytical solutions for the two models then read:

• z(1)(t) = α exp
(
− log(2)t

β

)
for model M1,

• z(2)(t) = α exp
(
− log(2)t

β

)
+ γ for model M2.

In the case at hand, we actually have a fully observed system, since the time courses

from the models are directly observed, meaning that

Y(i)(t) = z(i)(t), i = 1, 2 (6.1)

for the observable Y(i)(t) of model Mi.
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6.3 Single-cell inference

In this section, we formulate the likelihoods and posteriors for the chosen models. This

includes specifying a noise model and prior distributions. Furthermore, we use a boot-

strapping approach to verify that the models can in principle explain the measurement

data.

6.3.1 Set-up of likelihood and posterior

For the fibroblasts, we randomly selected 200 cells from Halter et al. [2007]. It is

apparent from the data in Figure 6.1 that the individual cells show different decay

properties, e.g. initial intensities. To address this, we considered cell-to-cell variability

and assume that all parameters can differ between individual cells. We thus use have

a cell-specific likelihood in model Mi

p(Yr|θir,Mi) =

Nr∏
n=1

φΓ
(
Yr,n; kr, (Y(i)(tr,n)/kr)

)
, (6.2)

where r is the index of the cell, Yr the data for cell r consisting of the individual data

points Yr,n taken at tr,n for n = 1, . . . , Nr, where Nr is the number of measurements for

cell r. As introduced in Section 2.2.1, φΓ
(
x; k, λ

)
is the probability density function of

the univariate gamma distribution evaluated at x with shape k and scale λ. The special

form in Equation (6.2) corresponds to multiplicative noise of mean 1 as introduced in

Equation (2.30). The noise parameter kr is also specific for each cell r. The parameter

vectors θ1
r = (αr, βr, kr) or θ2

r = (αr, βr, γr, kr) are the parameters for cell r within the

respective model.

Thus the individual cells do not actually share any parameters, but are considered

independent. This is preferable, since we want to make use of the availability of single-

cell measurement data. We apply uniform priors of biologically reasonable upper and

lower bounds for all parameters. More precisely, we assume prior distributions as shown

in Table 6.2. The prior distributions for α and γ for fibroblasts and GMPs differ due to

the different scales of fluorescence intensities in the two data sets as seen in Figures 6.1

and 6.2, since these two parameters have to match the scale of fluorescence intensity.

This also means that α and γ have the same unit as the fluorescence intensity, in our

case thus [au], while β has the unit hours, [h], and k does not have a unit. We assume

no prior dependence between the individual parameters.
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Cell type Model Parameter Prior distribution Unit of parameter

Fibroblasts M1,M2 α U[0, 3 · 106] [au]

Fibroblasts M1,M2 β U[0.1, 150] [h]

Fibroblasts M2 γ U[0, 1 · 105] [au]

Fibroblasts M1,M2 k U[0, 5000] -

GMPs M1,M2 α U[0, 10] [au]

GMPs M1,M2 β U[0.1, 150] [h]

GMPs M2 γ U[0, 10] [au]

GMPs M1,M2 k U[0, 5000] -

Table 6.2: Overview over used prior distributions.

Each of the resulting three- or four-dimensional single-cell posterior distributions

p(θir|Yr,Mi) can be inferred by Adaptive Metropolis sampling from Section 4.2.

If we want to make general statements about protein stability after cycloheximide

treatment, it is desirable to consider the information for all cells from one data set at

the same time, because in this case, we get one answer based on the consensus of the

single-cell analyses. Since the cells are considered independent, we can easily define a

likelihood for the ensemble of cells by

p(Y|θi,Mi) =
R∏
r=1

p(Yr|θir,Mi), (6.3)

where p(Yr|θir,Mi) is the individual likelihood of each cell as defined in Equation (6.2),

Y = (Y1, . . . ,YR) is the collection of all the data in this data set, θi = (θi1, . . . ,θ
i
R)

is the parameter vector obtained by concatenating all individual cell parameter vec-

tors and R is the number of cells in the data set. Assuming the prior p(θi|Mi) =∏R
r=1 p(θ

i
r|Mi) leads then also the posterior distribution p(θi|Y,Mi).

For the fibroblast data, we have R = 200 and thus 600 parameters are inferred for

model M1 and 800 parameters for model M2. The ensemble of all single-cell sampling

results is then the sampling result for p(θi|Y,Mi). This can also be done accordingly

for sampling from the power posterior.

For the GMPs, each of the three replicates is considered separately, but the cells within

the replicate are considered together just as for the fibroblasts. Thus the likelihood
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reads

pκ(Yκ|θi,Mi) =

Rκ∏
r=1

p(Yκ,r|θir,Mi), (6.4)

where κ = 1, 2, 3 is the index of the replicate and Rκ is the number of cells within this

replicate. Yκ = (Yκ,1, . . . ,Yκ,Rκ) is the data of replicate κ. Also here, specifying the

prior as p(θi|Mi) =
∏R
r=1 p(θ

i
r|Mi) leads to the posterior distribution p(θi|Y,Mi). We

treat the three replicates separately, since already the raw data in Figure 6.2 showed

differences between the replicates which we do not want to neglect. Coinciding results

for the model selection in the three replicates are then a stronger argument than just

one model choice.

6.3.2 Assessing the goodness-of-fit

Since at least model M2 has not yet been used on similar measurement data, a desirable

sanity check for this model, but also for model M1, is the bootstrap of the goodness-of-

fit as introduced in Section 2.4.3. We thus want to investigate if the chosen models can

fit the individual single-cell data at all. We thus consider the MLE θ̂ir for each cell ob-

tained by multi-start local optimization. From this we obtain s∗i,r = log p(Yr|θ̂ir,Mi),

the maximum value of the log-likelihood in model Mi for cell r as a goodness-of-fit value.

For each cell, we then generate JBS = 500 artificial single-cell measurements from the

model parametrized with θ̂ir. Re-optimization then yields the parameter vector best

fitting this new data set, θir,j with j = 1, . . . , JBS. This then yields new log-likelihood

values sji,r, j = 1, . . . , JBS. From these bootstrap values from the unknown distribution

of the log-likelihood, we can then calculate the z-score of s∗i,r in the empirical distribu-

tion of the sji,r, j = 1, . . . , JBS as introduced in Equation (2.33), indicating if model Mi

is able to fit the data of cell r in principle. A low absolute value of the z-score shows

that the true log-likelihood value is in the range of the bootstrap samples. For this the

distribution of the sji,r, j = 1, . . . , JBS should be unimodal, which has to be checked

and is fulfilled in our case.

Due to the high computational costs for generating artificial data and re-optimizing

the parameters for all cells in the data set, we restrict our analysis to Replicate 3 of

the GMP data. We present our findings in Table 6.3. The distribution of all computed

z-scores can also be seen in Figure 6.3.

As all absolute values of the z-scores are less than one, we conclude that the true value

is well within the range of the bootstrapped values, which can also be seen in Figure
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Figure 6.3: Single-cell z-scores from the bootstrap. (a) Z-scores for model M1 for

the single cells computed individually based on 500 bootstrap samples each. (b) Z-scores

for model M2 for the single cells computed individually based on 500 bootstrap samples

each. (c) True log-likelihood values (diamonds) and range of bootstrap sample values (grey

lines) for all 48 cells individually for model M1. (d) True log-likelihood values (diamonds)

and range of bootstrap sample values (grey lines) for all 48 cells individually for model

M2.
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Model mean value of z-score min. and max. of z-score

M1 −0.43 [−0.71, 0.64]

M2 −0.56 [−0.88, 0.53]

Table 6.3: Overview of z-scores from the bootstrap for the goodness-of-fit. For

all 48 cells in Replicate 3 of the GMP data, we generate 500 new datasets, refit them and

compute log-likelihood values. From these 500 samples, we compute a z-score for the true

log-likelihood value of the MLE for each cell. This table shows the mean of the absolute

values of the z-score as well as its minimum and maximum values.

6.3(c) and (d) and thus both models can in principle fit the data observed for individual

cells. This illustrates the need for thorough model selection. It should be noted that

model M1 assumes a higher level of measurement noise for fitting the data.

We take a closer look at one cell, cell 39, whose individual z-scores are close to the mean

z-scores in both models. We see in Figure 6.4 that the histogram of the bootstrapped

log-likelihood values is unimodal and the true log-likelihood values of the MLEs are

well contained in the range of samples. Thus both models can fit the data, which is

also shown in the last panel of Figure 6.4 for this cell.

Furthermore, only two cells have a positive z-score, while 46 have a negative z-score

for both models. We take a closer look at these two cells that have positive z-scores,

cells 33 and 46. We find that the fits for model M1 and M2 are indistinguishable for

both cells, as the MLE for γ in model M2 is very close to zero for both cells, see also

Figure 6.5(a) and (b). Furthermore, both cells are observed only very shortly, with ten

time points covering just over 5h. This leads to a situation where both models tend

more to overfitting the data than underfitting as for the other 46 cells, as indicated

by the histograms of the bootstrapped samples in Figure 6.5(c)-(f). However, the bulk

of the data has a negative z-score, indicating that both models have a tendency to

underfitting.

6.4 Parameter distributions and identifiability analysis

In this section, we infer the posterior distributions of both models and conduct an

analysis of the resulting parameter distributions as well as identifiability analysis on

the likelihood.
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Figure 6.4: A single-cell example for the bootstrap. (a) Histogram for model M1

for cell 39 based on 500 bootstrap (BS) samples, with a green line for the true maximum

likelihood (ML) value. (b) Histogram for model M2 for cell 39 based on 500 bootstrap (BS)

samples, with a purple line for the true maximum likelihood (ML) value. (c) Maximum

likelihood (ML) fits (solid lines) to cell 39 (magenta dots) for both models.
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Figure 6.5: Single-cell examples for positive z-scores. (a) Maximum likelihood

(ML) fits (solid lines) to cell 33 (magenta dots) for both models. (b) Maximum likelihood

(ML) fits (solid lines) to cell 46 (magenta dots) for both models. (c) Histogram for model

M1 for cell 33 based on 500 bootstrap (BS) samples, with a green line for the true maximum

likelihood value. (d) Histogram for model M1 for cell 46 based on 500 bootstrap (BS)

samples, with a green line for the true maximum likelihood value. (e) Histogram for

model M2 for cell 33 based on 500 bootstrap (BS) samples, with a purple line for the true

maximum likelihood value. (f) Histogram for model M2 for cell 46 based on 500 bootstrap

(BS) samples, with a purple line for the true maximum likelihood value.
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6.4 Parameter distributions and identifiability analysis

6.4.1 Parameter distributions

For the fibroblasts, a mean half-life of the protein of 2.8h was reported in the previous

analysis (Halter et al. [2007]). This was however not based on a full Bayesian approach,

but on a χ2-fit for each cell. We have inferred a full distribution of half-lives for each

cell, since this comes naturally from the posterior samples drawn for thermodynamic

integration. For model M1, we find a mean half-life of cells of 3.6h, taken over all

posterior samples for the half-lives, with a 90% credible interval of [2.84h, 4.69h]. For

model M2 in contrast, we find a lower half-life than in the previous paper, namely 2.3h,

with a 90% credible interval of [1.49h, 3.30h].

For the GMPs, we find from model M1 protein half-lives of 25.00h, 18.29h and 13.60h,

taken over all posterior samples in the replicates. We pool all posterior samples from

the three replicates, i.e. 139 sample-based distributions of 50000 samples each. This

is an unweighted sum of sample distributions. From this we find a mean half-life of

18.94h with a 90% credible interval of [9.4h, 36.2h].

For model M2, we find mean half-lives of 6.02h, 7.17h and 9.98h, taken over all posterior

samples in the three replicates. When pooling all posterior samples from the three

replicates, we find a mean of 7.78h, with a 90% credible interval of [2.1h, 19.5h]. This

agrees with the maximum likelihood fit of Schwarzfischer et al. [2014], where we reported

9.2h±7.7h (median ± standard deviation) and also with Nutt et al. [2005], who reported

5.5h, but from Western blot data. The large discrepancy between the credible intervals

derived from the two models illustrates the need for model selection to clarify which

results are a better representation of the measurement data.

Since the intervals for the GMPs are rather broad, we now inspect the distributions

and the time courses they induce. We focus on model M2, the situation for model M1

is similar. Figure 6.6 shows two versions (truncated and untruncated) of the histogram

of all available MCMC samples from model M2 for PU.1 half-life, showing a clear

unimodal distribution, with a long tail to longer half-lives.

We can also compute for each single cell the empirical coefficient of variation cv for

posterior samples from model M2 of the half-life in this cell. The coefficient of variation

is a normalized measure of dispersion of a distribution (Klipp et al. [2008]), defined by

cv =
σ

µ
. (6.5)

Here µ is the mean of the distribution and σ its standard deviation. Since we here

look at sample distributions, we use the sample mean and sample standard deviation.
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Figure 6.6: Histogram of all obtained MCMC samples from model M2 for

PU.1 half-life. This histogram is based on all available MCMC samples for PU.1 half-

life, truncated at 30h for better visualization, showing a clear unimodal distribution. The

small inset figure shows the untruncated histogram where it can be seen that small numbers

of samples reach all the way to 150h, the boundary of the prior distribution.
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6.4 Parameter distributions and identifiability analysis

We find values from 0.03 to 1.07, with a mean of 0.31, indicating that the distribution

of half-lives within a cell is not too broad. We visualize this by looking at a cell with

posterior samples for the half-life with a low cv of 0.09, Figure 6.7(a), and a cell with

posterior samples for the half-life with a high cv of 1.07, Figure 6.7(b).
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Figure 6.7: Single-cell histograms of MCMC samples of model M2 for the half-

life of PU.1. (a) Posterior samples for a cell with low parameter uncertainty (cv = 0.09)

for the half-life. (b) Posterior samples for a cell with high parameter uncertainty (cv = 1.07)

for the half-life. Note that in this histogram noticeably more samples for half-lives > 50h

exist than in (a). (a-b) Both histograms are based on 50000 posterior samples each.

The posterior samples also confirm what the first look at the data in Figure 6.2 already

hinted at: that the three replicates show somewhat different behavior. We can look

at the histograms for the pooled MCMC samples for the half-life in each replicate

separately, Figure 6.8 shows the situation for model M2. We immediately see that

replicate 3 has a much narrower distribution than the other two replicates, with fewer

samples in the tail towards longer half-lives. This can also be seen in the lower coefficient

of variation from the pooled samples of replicate 3 of cv = 0.42 compared with cv = 0.78

for replicate 1 and cv = 0.96 in replicate 2. This is certainly due to the fact that in

replicate 3, observation stopped after about 20 hours. Table 6.4 shows that also the

single-cell coefficients of variation and the credible intervals for the protein half-lives

differ between the replicates, for both models. We thus treat each replicate separately

in the coming model selection in the following section.

For the time courses we find that model M2 fits rather well, but the fit can look very

different due to the highly different data. Figures 6.9(a) and 6.9(b) compare two fits for

a cell where the posterior samples for the half-life have a high cv and a cell where these
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Figure 6.8: Histograms of MCMC samples from model M2 for the half-life

of PU.1 from the three replicates. (a) Pooled samples for the half-life from the first

replicate. (b) Pooled samples for the half-life from the second replicate. (c) Pooled samples

for the half-life from the third replicate. (a-c) Note that replicate 3 has a lower coefficient

of variation cv from the pooled samples of 0.42 compared with 0.78 for replicate 1 and 0.96

in replicate 2, which is also visible in the histogram.
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Model Replicate cv, mean, [min, max] Half-life, mean & 90% CI

M1 Replicate 1 0.17, [0.03, 0.87] 25.0h, [10.8h, 49.9h]

M1 Replicate 2 0.11, [0.03, 1.19] 18.3h, [9.4h, 30.0h]

M1 Replicate 3 0.05, [0.02, 0.14] 13.6h, [9.0h, 19.4h]

M2 Replicate 1 0.46, [0.12, 1.07] 6.0h, [1.6h, 25.12h]

M2 Replicate 2 0.22, [0.04, 0.54] 7.2h, [2.6h, 13.6h]

M2 Replicate 3 0.23, [0.08, 0.76] 10.0h, [2.8h, 11.1h]

Table 6.4: Overview of differences between replicates for the GMPs. For all three

replicates of the GMP data and both models, we give the mean coefficient of variation (cv)

and its minimum and maximum value as well as the mean and 90% credible interval (CI)

for the protein half-life based on the posterior samples for the individual cells.

posterior samples have a low cv. We note that the credible interval is frayed at the

ends of the time line in the first case. Figures 6.9(c) and 6.9(d) compare two cells with

very short mean half-life and very long mean half-life, based on the posterior samples.

We note that the cell with short half-life of 0.36h has been observed only for ca. 5h,

while the cell with long half-life of 26.0h has been observed for over 28h. Nevertheless,

the model fit shows a good agreement with the measurement data for all the different

cells.

6.4.2 Comparison of GMPs with other stem cells

The credible intervals for the GMPs are very broad, which is biologically surprising.

We thus conducted several sanity checks by comparing with results for other stem cells.

In Schwarzfischer et al. [2014], we showed that the GMPs there showed a half-life of

9.2h ± 7.7h (median ± standard deviation), as already mentioned. This median and

standard deviation are based on single-cell maximum likelihood fits of model M2. In

this contribution, several other types of hematopoietic stem cells were also analyzed

with the same methods, yielding results for the half-life of PU.1 of 7.3h± 2.0h (HSCs),

7.9h± 4.7h (MPP cells) and 7.0h± 2.4h (Gatamid cells), for median ± standard devi-

ation, respectively. This already shows that the GMP data shows a broader range of

decay values than other cells. The high standard deviation of the GMPs is an indicator

for high biological variability, since it is based on single-cell analyses. This indicates

increased heterogeneity, as was also recently suggested in Hoppe et al. [2014].

The Gatamid cells of Schwarzfischer et al. [2014] also provide another interesting ver-
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Figure 6.9: Time-courses of PU.1 intensity from model M2. (a) Data and fit for

a cell with high coefficient of variation cv. Note the broadening of the credible interval at

both ends of the time line. (b) Data and fit for a cell with low coefficient of variation cv,

where the credible interval is quite narrow. (c) Data and fit for a cell with a very short

half-life of 0.36h. Note that only few time points (12) are available. (d) Data and fit for

a cell with a very long half-life of 26.0h. This cell has been measured for 57 time points.

(a-d) All time courses come from model M2. Magenta dots are the measurement data,

purple lines the mean fit, green lines the boundaries of the 90% credible intervals derived

from the posterior samples of the respective cell. Note that the mean and credible interval

represent only the uncertainty in the parameters, in contrast to measurement uncertainty

(not shown).
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ification of results. In these cells, not only PU.1 is fluorescently expressed, but also

another important protein, namely Gata1. Both proteins have been given different col-

ors of fluorescence and can thus be imaged in the same cells simultaneously, for details

see Schwarzfischer et al. [2014]. If the broad distribution of half-lives for the GMPs was

due to some damaging influence of the cycloheximide in these cells, we would expect

to also see this effect in both the PU.1 and Gata1 intensities in the Gatamid cells.

More precisely, we would expect the half-lives of PU.1 and Gata1 to be significantly

correlated. We obtained the MLE of the half-lives from model M2 for each single cell.

Fortunately though, we find that for all three available replicates of Gatamid cells, the

Kendall’s τ between the half-lives of PU.1 and Gata1 are rather small (0.31, −0.22

and 0.16). We thus conclude that the half-life distribution of the GMPs cannot be

solely due to some undesirable side-effects of cycloheximide treatment. Still the model

choice to be performed in the following section asks if cycloheximide treatment works

perfectly or not, as this could be a biological reason for the fluorescence intensity to

decay to zero or not, respectively.

We also find in Schwarzfischer et al. [2014] that no correlation can be found between

cell cycle time at the time of cycloheximide treatment and protein half-life. This data is

unfortunately only available for the protein Nanog in embryonic stem cells. However,

we also find no significant correlation between initial intensity of the cells and their

half-life in the GMPs, which can be taken as an indicator that also in GMPs, there is

no correlation between cell cycle time and half-life.

6.4.3 Uncertainty analysis for credible intervals

To see if the credible intervals are dominated by outliers, we also did a bootstrap

resampling of the credible intervals (Davison & Hinkley [1997]). We concentrate on

model M2. For this, we sampled uniformly a 1000 times with replacement the indices

of cells from all 139 cells contributing to the credible interval of [2.1h, 19.5h], which is

at question, and recomputed the credible intervals based on the MCMC samples for

the half-lives of the chosen bootstrap cells. This yields 90% confidence intervals for the

lower boundary of the original credible interval of [1.51h, 2.46h] and [17.86h, 23.00h] for

the upper boundary of the original credible interval, computed according to Equation

5.6 in Davison & Hinkley [1997]. We thus see that both boundaries are well-contained

in the respective bootstrapped confidence intervals. Also for our reported mean 7.78h,

we find a bootstrap confidence interval of [7.23h, 8.52h], which obviously contains 7.78h.
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6.4.4 Identifiability analysis

The question of the credible intervals leads directly also to the question of identifiability,

i.e. if the credible intervals or the corresponding confidence intervals are at all finite

for each individual parameter. We performed in-depth identifiability analysis for the

parameters of each cell individually for both cell types based on profile posteriors as

introduced in Section 3.3 and compare the resulting profiles with the histograms of the

obtained posterior samples.

For the fibroblasts, we find that in model M1 about a third of all cells show local optima

in the profile for the half-life β. Still, the parameter is practically identifiable for a con-

fidence level of 95%, since the confidence interval is finite. Thus, this does not present

a serious issue for the inference process. Two typical examples of the resulting profiles

can be seen in Figure 6.10, one where all parameters are identifiable and one where the

half-life shows local optima. Furthermore, we see quite good agreement between the

histogram of the posterior samples (marginalization) and the profiles (optimization)

in most cases. For the identifiable cell without local optima in the profiles, we see a

slightly broader distribution in the histogram than in the profile and for the cell with

the local optima, we do not clearly see the local optima in the sampling results. Still

the resulting confidence intervals/credible intervals agree very well.

For model M2, for about two thirds of cells, the parameter for the half-life possesses

local optima, but all with finite confidence intervals for a confidence level of 95%.

Furthermore, 13 of the 200 cells show a practical non-identifiability for the parameter γ,

the steady state level, for which the profile posterior does not drop below the thresholds

defined in Section 3.3 for a confidence level of 95% before the parameter reaches zero and

thus the boundary of the uniform prior. All in all, we note that the biologically most

interesting parameter, the half-life, is identifiable in both models for the fibroblasts,

while it is not possible in a small number of cells to give a confidence interval for the

fluorescence intensity steady state level.

For the GMPs, we find that all parameters of model M1 are identifiable for all cells in all

three replicates for a confidence level of 95%. For model M2, the situation is different.

Here, about half of the cells in each replicate show a practical non-identifiability for a

confidence level of 95% for the parameter γ, the steady state level, for which the profile

posterior does not drop below reasonable thresholds before the parameter reaches zero,

again the boundary of the uniform prior. Figure 6.11 shows two typical examples, one

for a cell where all parameters in model M2 are identifiable and one where the steady
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Figure 6.10: Typical results for identifiability analysis in fibroblasts. (a) A cell

where all parameters are identifiable in model M1. (b) A cell where the half-life β shows

local optima, but still has a finite confidence interval in model M1. (a-b) Magenta lines

are the profile posteriors obtained through optimization, in grey the respective histograms

of the posterior samples. The histograms have been scaled such that their maximum value

is also one, as for the profiles.

state level’s lower confidence bound is practically non-identifiable at a confidence level

of 95%. Here the agreement between posterior samples and profile posteriors is even

better than for the fibroblasts.

We can call a cell non-identifiable, if the steady state level γ is practically non-identifiable

at a confidence level of 95% and identifiable otherwise. As can be seen from Figure

6.12, a rather clear separation between identifiable and non-identifiable cells can be

seen when plotting the MAP values of the half-life versus the initial condition α + γ,

with only few outlier cells. Cells with low initial concentrations, i.e. with little pro-

tein that can decay and long half-lives tend to have practically non-identifiable steady

state levels, which seems reasonable. The practical non-identifiability manifests as non-

determinable lower bounds, meaning that for these cells it can not be identified if the

protein in the cell decays completely (γ = 0) or not at a confidence level of 95%. We

find similar behavior in all three replicates. Note that the initial condition α + γ of

the ODE for model M2 is well-determined from the data. We use the MAP for illus-

trative purposes, of course the MAP does not have to be representative in the case of

non-identifiability.

This shows that identifiability analysis can lead to new insights in settings with a large

number of biologically meaningful parameters. In our case, identifiability analysis shows
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Figure 6.11: Typical results of identifiability analysis in GMPs. (a) A cell in which

all parameters are identifiable in model M2. (b) A cell in which the steady state level γ

in model M2 is practically non-identifiable. (a-b) Magenta lines are the profile posteriors

obtained through optimization, in grey the respective histograms of the posterior samples.

The histograms have been scaled such that their maximum value is also one, as for the

profiles.
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Figure 6.12: Identifiability of the single-cell parameters depends on single-cell

properties. (a) Shown are the MAP values based on model M2 of replicate 1 of each

individual cell, color coded according to identifiable (purple dots) or non-identifiable (green

diamonds) for the value of half-life β versus the initial condition of the cell α+γ. A rather

clear separation is visible: The steady state level γ can usually not be identified if the

half-life is large and the initial condition rather low. (b) The according model trajectories,

also color-coded for identifiable (purple, continuous) or non-identifiable (green, dashed).
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6.5 Model selection based on data for an ensemble of single cells

that the parameters of cells with low initial concentrations and long half-lives are harder

to determine from measurement data and mostly lead to practically non-identifiable

parameters. Combining posterior samples and profile posteriors as in Figures 6.10 and

6.11 can be very worthwhile, which will also be demonstrated in Chapter 8.

6.5 Model selection based on data for an ensemble of sin-

gle cells

After thorough analysis of the posterior distributions, we can now come back to the

original main question, which is whether the fluorescence intensity in the cells decays

to zero or to a non-zero steady state level. In this section, we thus present the results

of model selection through thermodynamic integration on all data sets, the fibroblasts

and the three replicates of GMPs. For calculating the respective marginal likelihoods

with thermodynamic integration, we applied the adaptive Simpson’s rule as introduced

in Chapter 5. One could ask why we do not resort to simpler model selection methods

such as AIC and BIC. However, only the Bayes factor considers the whole distribu-

tion of parameters. As the previous section reveals that one parameter is practically

non-identifiable in many cells, the whole distribution has to be considered for reliable

inference. We thus compute Bayes factors.

For both cell types, we try to do inference as similarly as possible for comparability.

We first discuss the fibroblasts, and then the GMPs.

6.5.1 Model selection for GFP decay in fibroblasts

For distinguishing the two models of GFP decay in the fibroblasts, we calculated the

Bayes factor with thermodynamic integration with Simpson’s adaptive rule. For the

MCMC, we used the Adaptive Metropolis algorithm as introduced in Section 4.2. We

drew 1000 samples with a thinning factor of 50 (i.e. 50,000 samples) after a burn-in of

also 50,000 samples for each temperature and each parameter and verified convergence

by the Geweke test (Geweke [1992]). Due to high computational cost (caused by the

bulk of individually fitted data), the sampling was run only once.

As already mentioned in Section 5.4.3, some care should be taken when choosing a

tolerance for the adaptive Simpson’s rule. Thus we first obtain samples from the pos-

terior distributions, which are later needed anyway and determine their expected log
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deviance values. Here we find e.g. Epτ=1{log p(Y|θ1,M1)} = −1.05 · 105. We then

choose TOL = 1, since this then corresponds to a relative approximation error of 10−5

which performed well on the analytical example.

We find that the adaptive Simpson’s rule then uses 29 function evaluations for model

M1 and 25 for model M2. As Figure 6.13 shows, the adaptive Simpson’s rule places

more rungs close to zero for both models, where the curvature of the expected log

deviance is highest.

We also see that the marginal likelihood is sensitive to choice of prior. Uniform

priors lead to problems when sampling from them for the value at τ = 0. For

our scenario, model M1 yields values of Epτ=0{log p(Y|θ1,M1)} = −5.63 · 1034 com-

pared to Epτ=1{log p(Y|θ1,M1)} = −1.05 · 105, a difference of 29 orders of magni-

tude. For model M1 we therefore find that many samples from the prior possess

a low log-likelihood value, which significantly increases the variance at τ = 0. The

results for model M2 are numerically not as drastic, but with the same tendency,

Epτ=0{log p(Y|θ2,M2)} = −4.51 · 107 versus Epτ=1{log p(Y|θ2,M2)} = −9.43 · 104.

The reason for the more stable behavior of model M2 is the offset parameter γ to-

gether with the fact that we have multiplicative gamma distributed noise, as both

together prevents having to evaluate the probability density function of the univariate

gamma distribution for a scale parameter close to zero in Equation (6.2), since this

causes very negative values of the log-likelihood. Already for small non-zero values

of τ , the situation improves, e.g. Epτ=1/64
{log p(Y|θ1,M1)} = −1.32 · 105, which is

in the order of magnitude of the τ = 1 value. Still, the error approximation for the

adaptive Simpson’s rule is larger than TOL in the leftmost subintervals even after the

last refinement due to the high difference in function values.

We find log marginal likelihood values of log p(Y|M1) = −2.9 ·1032 and log p(Y|M2) =

−3.30 · 105, where we see that the value of the log marginal likelihood for M2 is nu-

merically negligible compared with the one for model M1 when forming a Bayes factor.

Altogether, we find a Bayes factor of B21 = exp(2.9 · 1032) from this. Furthermore, we

see that also all expected log deviances except the one for τ = 0, which is 1034, are

numerically negligible for the computation of log p(Y|M1) as only these two values are

in such high orders of magnitude.

To ensure that our conclusion for the Bayes factor is not influenced by the numerical

problems with the prior, we looked at an approximation. We checked what happens

when replacing the value at τ = 0 with the value for the smallest non-zero τ , here
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Figure 6.13: Expected log deviances for the fibroblasts. Function value of the

expected log deviance over the temperature τ , in green diamonds for model M1, in purple

dots for model M2. The function values for τ = 0 were truncated for the plots. A

clear tendency of higher function values for model M2 can be seen. Note that function

evaluations for both functions are mostly monotonically increasing, as they should be,

indicating that the MCMC error is on an acceptable level.

τ = 1/64, for both models. Obviously, this introduces a bias, as {log p(Y|M1)}app >
log p(Y|M1) for the approximated log marginal likelihood {log p(Y|M1)}app, as the

function within the thermodynamic integral is monotonically increasing. We do not

propose to regard this approximation as a correct Bayes factor, but rather as an inter-

pretation aid for the marginal likelihoods.

We thus compute B̂21 = exp({log p(Y|M2)}app − {log p(Y|M1)}app). For this, we find

that B̂21 = exp(1.01 · 104), based on log marginal likelihoods of {log p(Y|M1)}app =

−9.65 · 104 and {log p(Y|M2)}app = −8.64 · 104. While this might not be a remedy

for all model selection tasks, in this application, the approximate Bayes factor B̂21 is

numerically more robust, since both approximate marginal likelihoods are now in the

same order of magnitude and thus contribute equally to the final result. We conclude

that overall the applied model selection method demonstrates a decisive preference for

model M2.

6.5.2 Model selection for PU.1 decay in GMPs

For the decay of PU.1 in the GMPs, we looked at each replicate separately, since the

data from these replicates is visibly different as seen in Figure 6.2. Also the analysis

of the posterior samples revealed differences between the replicates, see Figure 6.8 and

Table 6.4.
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We calculated marginal likelihoods with thermodynamic integration with Simpson’s

adaptive rule. Again we used the Adaptive Metropolis algorithm for the MCMC from

Section 4.2. We drew 50,000 samples with a burn-in of 50,000 without thinning for

each temperature and each parameter and verified convergence by the Geweke test

(Geweke [1992]). Even though the parameter number is here only maximally 192

(which are inferred separately in sets of three or four, as introduced before, for each

cell), computational cost is still high and thus the sampling was run only once in each

replicate.

As already presented in Section 6.4, we first obtain samples from the posterior distribu-

tions and determine their expected log deviance values. Here we find e.g.

Epτ=1{log pκ=1(Yκ=1|θ1,M1)} = 1539.7 for the first replicate. We then choose TOL =

0.1, since this then corresponds to a relative approximation error in the order of mag-

nitude of 10−5 for all three replicates. This leads to 25 function evaluations being used

in all three replicates for both models. This is comparable to the number used for the

inference in the fibroblasts.

As for the fibroblasts, we also see that the marginal likelihood is sensitive to choice of

prior in all three replicates. Uniform priors lead to problems when sampling from

them for the value at τ = 0. For the first replicate, model M1 yields values of

Epτ=0{log pκ=1(Yκ=1|θ1,M1)} = −2.01 · 1082, which have to be compared to

Epτ=1{log pκ=1(Yκ=1|θ1,M1)} = 1539.7, a difference of 85 orders of magnitude, and

similarly for the other two replicates.

This is caused for model M1 by many samples from the prior possessing a low log-

likelihood value, which significantly increases the variance at τ = 0. The results for

model M2 are with the same tendency, for example Epτ=0{log pκ=1(Yκ=1|θ2,M2)} =

−3.28 · 106 and Epτ=1{log pκ=1(Yκ=1|θ2,M2)} = 1681.0 in the first replicate, and sim-

ilarly for the other two replicates.

For small non-zero values of τ , we find Epτ=1/64
{log pκ=1(Yκ=1|θ1,M1)} = −1423 in the

first replicate, which is much closer to the τ = 1 value. The situation of the expected

log deviances as functions of temperature can also be seen in Figure 6.14.

Since the differences in order of magnitude are even larger than for the fibroblast data,

we only show the approximate Bayes factors as introduced in the previous section. The

results are shown in Table 6.5.

Also for the GMPs in all replicates, the model with a non-zero steady state level of

fluorescence intensity is decisively favored. We conclude that this model, model M2,
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Figure 6.14: Expected log deviances for the GMPs. Expected log deviance as

function of the temperature τ , in green diamonds for model M1, in purple dots for model

M2. The function values for τ = 0 were truncated for the plots. (a) Replicate 1, (b)

replicate 2, (c) replicate 3 of the experiment for the decay of PU.1 in GMPs. A clear

tendency of higher function values for model M2 can be seen. Note that the function

evaluations for both functions are mostly monotonically increasing. This indicates that

the MCMC errors are on an acceptable level.

Replicate κ {log pκ(Yκ|M1)}app {log pκ(Yκ|M2)}app app. BF in favor of M2

Replicate 1 1245.03 1326.77 3.15 · 1035

Replicate 2 1083.97 1697.99 4.60 · 10266

Replicate 3 1584.52 1853.64 7.48 · 10116

Table 6.5: Overview over achieved approximate marginal likelihoods and Bayes

factors.
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is favored for both cell types examined here. This indicates that fluorescence intensity

does not decay completely, but only to a certain level. The biological reasons for this

should be more thoroughly examined in the future.

6.6 Conclusions

In this chapter, we presented inference results based on single-cell time-lapse microscopy

data. We showed what insights can be gained from parameter distributions and iden-

tifiability analysis.

Model M2 is decisively favored for both cell types. This means that fluorescence inten-

sity does not decay completely, but only to a certain level. The biological mechanism

behind this mathematical result is yet unknown. The non-zero steady state might be

due to a fraction of stable proteins which cannot decay, e.g. because they are bound to

some other protein in the cell and thus shielded. Cycloheximide treatment might not

work completely, but only to a certain percentage. A third possible biological reason

might also be that cells that are stressed can become more autofluorescent. Further

experiments are necessary to elucidate the underlying biological mechanism.

The single-cell applications presented in this chapter are a practical example for the in-

fluence of weak prior information on the computation of Bayes factors and the numerical

problems this might pose, which do however not influence the validity of the method-

ology. An alternative approach for weak priors might be the approach of Behrens et al.

[2012], which resorts to importance sampling for low temperature values, discarding

poor samples.

We also see that e.g. in the fibroblast data set, the Bayes factor at B21 = exp(2.9 ·1032)

is much larger than the 100 that should be achieved to classify the selection process as

decisive in Jeffrey’s scale. This is also due to the large number of almost 10,000 data

points available.

For the GMPs, we see that their shared sample-based posterior distribution is broad.

While the width of this distribution is a combined effect of parameter uncertainty

and biological variability, this is still an indication for a large heterogeneity of the cell

population, which was also recently suggested in Hoppe et al. [2014]. Since the GMPs

are primary cells and not a cell culture like the fibroblasts, it is clear that the GMPs are

more heterogeneous than the fibroblasts, which is clearly visible in the pooled credible

intervals for the protein half-lives from both cell types. Also Schwarzfischer et al. [2014]
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showed that the GMPs are more heterogeneous than related cells in the hematopoietic

differentiation tree. We see differences between the three different replicates of the

experiment at hand, however all three replicates decisively favor model M2, such that

the mechanism behind the decay to a non-zero steady state seems to be the same

between all three replicates.

We have fitted all cells individually to answer if their intensity decays to zero or not.

However, if the bootstrap of the goodness-of-fit is done for all cells in a replicate at

the same time, we arrive at a z-score of < −3 for model M2. This indicates under-

fitting on the population level. While the Bayes factor still asserts that model M2

explains the data better than model M1, more involved models might be needed to

take a more thorough look at the situation. One possible approach might be multi-

experiment fitting (Maiwald & Timmer [2008]), where cells share some parameters.

Also approaches where some parameters of the cells are considered to come from a

shared distribution can be considered (Hasenauer et al. [2011, 2014]; Zechner et al.

[2012]). Our analysis nevertheless is an important fist step for the analysis of single-cell

data.

Protein half-lives are important for assessing all models based on protein expression

in cells (Eden et al. [2011]; Schwanhäusser et al. [2011]). Thus experiments like the

presented ones, where the decay of proteins can be observed isolated for one protein

in single cells are an important basis for more complex models, where several proteins

may interact with each other. A rigorous statistical evaluation as presented in this

thesis is thus very important as cornerstone for further inference.
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7

Model selection for the

processing of zirconium in the

human body

In this chapter, we present a medium sized model selection problem. The example com-

pares a model with 12 parameters to one with 15 parameters on the basis of 16 data sets.

Both models are linear ordinary equation systems representing multi-compartmental

models as introduced in Chapter 2. They come from radiation protection where bioki-

netic ODE models are of crucial importance in dose estimation and further risk analysis

for humans exposed to radioactive substances. More concretely, we examine the pro-

cessing of zirconium in the human body after intake by ingestion. The models in

question provide limiting values of detrimental effects and build the basis for applica-

tions in internal dosimetry, the prediction for radioactive zirconium retention in various

organs as well as retrospective dosimetry.

This chapter is based on and in part identical with the following two publications:

• D. Schmidl∗, S. Hug∗, W.B. Li, M.B. Greiter and F.J. Theis (2012). Bayesian

model selection validates a biokinetic model for zirconium processing in humans.

BMC Systems Biology, 6(1), 95.

• S. Hug, D. Schmidl, W.B. Li, M.B. Greiter and F.J. Theis. Uncertainty in

Biology: a computational modeling approach, chapter Bayesian model selection

methods and their application to biological ODE systems, in revision
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The content of the first of these papers is also in part contained in another thesis

(Schmidl [2012]), as this was a joint first author work. Dr. Schmidl is responsible

for the copula-based sampling of the models and the insights that can be gained from

the posterior distribution, while the author of this thesis performed the analysis of the

thermodynamic integration and the identifiability analysis of the models. Furthermore,

the author contributed the analysis of an additional model variant.

7.1 Experimental data and model setup

7.1.1 Experimental data

Mathematically, the models for zirconium processing are multi-compartmental mod-

els, corresponding to linear ODE systems as introduced in Section 2.3.2. In a multi-

compartmental model for radiation science, all major human organs are represented

as separate compartments representing a kinetically homogeneous amount of radionu-

clides (ICRP [1989]; Jacquez [1985]). Transfer between these compartments is governed

by the law of mass balance and described by time-constant transfer rates, which are

the parameters that have to be inferred to fit the model to the data. More precisely,

the multi-compartmental models considered here are autonomous, linear and closed.

However, determining the exact interaction mechanisms is a challenging task. In the

present case, there exist two competing models as suggestions for these interaction

mechanisms. For the first time, experimental data with measurements in humans from

blood plasma and urine were now available, taken in vivo (Greiter et al. [2011a]).

Applying thermodynamic integration for the computation of Bayes factors, we could

establish dominance of one model over the other.

The first model is well established in the community and was put forward by the Inter-

national Commission on Radiological Protection (ICRP) (ICRP [1989]). The transfer

rates for this model were mostly derived from animal data and yield extensive prior

information for our inference. The Helmholtz Zentrum München (HMGU) recently pub-

lished another, physiologically more plausible biokinetic model (Greiter et al. [2011a]).

It is the first model based on measurement data in humans, taken in 16 investigations

from 12 healthy human subjects, meaning that four subjects were measured twice com-

pletely independently. In vivo measurements were taken from blood plasma and urine

of up to 100 days after ingestion by application of the double tracer technique. More

details on the measurement process as well as a global statistical uncertainty and sen-
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sitivity analysis of this HMGU model can be found in the respective publications (Li

et al. [2011a,b]).
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Figure 7.1: Models for zirconium processing. (a) ICRP model. This model contains

eleven compartments z1,. . . ,z11 and 15 time-constant transfer rates θ1,. . . ,θ8,θ13,. . . ,θ19.

(b) HMGU model. This model contains ten compartments z1,. . . ,z10 and twelve transfer

rates θ1,...,θ12. (a-b) In both models zirconium enters the body in the stomach compart-

ment z9 and is processed through the system until it reaches either one of the two final

compartments urine, z7, or feces, z8. The gray-shaded compartments z1 and z7 are corre-

sponding to those where measurements are taken.

The first of the two compartmental models under examination here was recommended

by the ICRP in ICRP [1975, 1989, 1993] (Figure 7.1(a)). The model contains eleven

compartments, which are linked through 15 transfer rates. Since zirconium is ingested,

it enters the body through the stomach compartment z9 and is processed until it reaches

one of the two final compartments urine, z7, or feces, z8. The HMGU model (Greiter

et al. [2011a]) differs from this model: it contains only ten compartments and twelve
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transfer rates, since the physiologically questionable distinction between the two bone

compartments of the ICRP model, trabecular bone surface and cortical bone surface,

was abolished in this model (Figure 7.1(b)). Furthermore, most mass transfers are now

mediated by the transfer compartment representing the blood plasma instead of direct

transfers, which is physiologically more plausible. To better represent that some rates

are shared between the models, we use the following notation. We introduce a general

parameter vector θ. Both models share eight transfer rates, which are thus denoted

θ1, . . . , θ8. The additional rates present in only one of the models then have a unique

index θ9, . . . , θ19, beginning with the HMGU model specific rates, since the HMGU

model is smaller. Thus we assign the model designation M1 to the HMGU model and

M2 to the ICRP models. This also means that the parameters for the model M1 are

θ1 = (θ1, . . . , θ12) and for model M2 they are θ2 = (θ1, . . . , θ8, θ13, . . . , θ19).

7.1.2 ODE model and model likelihood

Both multi-compartmental models correspond to systems of coupled linear first-order

ordinary differential equations. For the time-dependent concentrations z(t), we have in

model Mi as introduced in Section 2.3.2

dz(t)

dt
= ai(θi)z. (7.1)

The matrix ai(θi) is specific for model Mi and contains θi as entries. Initial concentra-

tions are needed for a unique solution of the ODEs, thus we choose z9(0) = 100% and

zd 6=9(0) = 0%, since we assume that all zirconium is in the stomach compartment at the

beginning of the investigation. The detailed ODEs and thus the matrices ai(θi), i = 1, 2

can straightforwardly be derived and can be found in Appendix A.

Zirconium was measured in plasma and urine through the double tracer technique in

16 investigations (Greiter et al. [2011a,b]). The raw data tracer concentrations were

then normalized to the respective investigation-specific tracer amount to yield 100% at

t = 0 in the stomach compartment z9. For the development of the model, the transfer

compartment was taken to be identical with blood plasma, the measured concentrations

were then expressed as % per kg plasma. Absolute concentrations were obtained by

scaling with the total amount of plasma in the body (Alberts et al. [2002]). The

measurements in urine correspond to an excretion rate in % per day.

This corresponds to two observables of the system, which are the same for both models.
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The first observable is the concentration in the transfer compartment,

Y1(t) = h1(z(t)) = z1(t). (7.2)

The second observable is the excretion rate in the urine compartment,

Y2(t) = h2(z(t)) =
dz7(t)

dt
. (7.3)

The data for investigation r is given by the measurements in plasma and urine

Yr = (yr,11 , yr,21 , . . . , y
r,Nb

r
1 , ẏr,17 , ẏr,27 , . . . , ẏ

r,Nu
r

7 ) (7.4)

While yr,nb1 indicates the nb-th measurement in plasma in investigation r, i.e. for ob-

servable Y1(t), ẏr,nu7 designates the nu-th measurement of the excretion rate in the urine

compartment and thus for observable Y2(t). There are nb = 1, . . . , N b
r measurements

in plasma and nu = 1, . . . , Nu
r measurements in urine for investigation r.

For each of the R investigations r = 1, . . . , R = 16, we find the likelihood by assuming

Gaussian noise on both observables for any of the two models M1 or M2 and the

corresponding parameter vector θi, where the model index i ∈ {1, 2}.

The likelihood is then given for each investigation r and for model Mi by

p(Yr|θi,Mi) =

Nb
r∏

α=1

φ

(
yr,α1 ;Y1(tα), σbr

)
︸ ︷︷ ︸

p(b)(Yr|θi,Mi)

Nu
r∏

β=1

φ
(
ẏr,β7 ;Y2(tβ), σur

)
︸ ︷︷ ︸

p(u)(Yr|θi,Mi)

. (7.5)

Here, φ(x;µ, σ) is the probability density function of the univariate normal distribu-

tion evaluated at x with mean µ and standard deviation σ as introduced in Section

2.2.1. Also, Y1(tα) is the observable for the transfer compartment z1 at time point tα,

corresponding to the measurement at yr,α1 . Accordingly Y2(tα) is the observable for

the urinary excretion rate at time point tβ, corresponding to the measurement ẏr,β7 .

The standard deviations of the normal distributions for plasma (observable Y1), σbr,

and for urine (observable Y2), σur , are fitted for each investigation separately by ap-

plying the simulated annealing algorithm (Kirkpatrick et al. [1983]) before starting the

MCMC sampling process. This error model corresponds to the combined strength of

all deviations from the “true” ODE solution, which include (possibly amongst others)

measurement error as well as natural internal fluctuations not considered by an ODE

approach. With this assumptions, both models are able to fit the data in principle, jus-

tifying our ODE approach with additive normally distributed noise, see also Figure 7.3.
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It is however still important to account for biological variability between the individual

investigations, for which we account by fitting different σbr and σur for each investiga-

tion r and thus get investigation-specific likelihoods. This leads to individual credible

intervals for each parameter in each investigation in the MCMC sampling procedure

later on.

In contrast to this individual treatment, it also makes sense to consider the com-

plete (i.e. concatenated) data. Then the likelihood is given by pALL(Y|θi,Mi) =∏16
r=1 p(Yr|θi,Mi), with Y = {Y1, . . . ,Y16} and fitting investigation independent σb

and σu.

For the calculation of the likelihood, the ODE has to be solved depending on θi. As

already mentioned in Section 2.3.2, in our special case the ODEs can be solved easily

with the matrix exponential, see also Appendix A.

This now enables us to compute a Bayes factor for each investigation r

Br
12 =

p(Yr|M1)

p(Yr|M2)
. (7.6)

as well as an overall Bayes factor

B12 =
pALL(Y|M1)

pALL(Y|M2)
. (7.7)

7.2 Prior information and algorithmic setup

7.2.1 Prior information

Models for zirconium processing have been used for a few decades already, and quite

a large number of animal studies has been held. From these, comprehensive prior

information for both models can be curated. The priors for each single transfer rate

are given as triangular, normal or lognormal distributions with known hyperparameters.

Of the eight transfers present in both models, only θ8 has different prior distributions in

the ICRP and HMGU model. Each univariate prior distribution was truncated at zero.

The prior information is naturally the same for each investigation, since it represents

information from a large number of preceding examinations and is not specific to the

present investigations.
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7.2.2 Summary of prior distributions

Table 7.1 provides an overview of the prior distributions and distribution parameters

used for parameter inference in the HMGU and ICRP model. The prior distributions

for the ICRP model are directly derived from the recommendations of the ICRP and

thus well-established over the years. The priors for the HMGU model are also in

part derived from these recommendations, plus information gained from additional

experiments based on injected zirconium doses (Li et al. [2011a]).

A keen reader might notice the difference in orders of magnitude for the σ’s of the

HMGU model and the ICRP model. However, these stem mostly from the fact that

the HMGU model has lognormally distributed priors where the ICRP model has nor-

mally distributed ones, both models assume a coverage factor of 3 to represent 99.7%

confidence intervals (ISO [1995]) for normal and lognormal distributions.

7.2.3 Algorithmic setup

In order to be able to do model selection via thermodynamic integration, we need to be

able to sample from the model, investigation and temperature specific distribution. For

this we use the copula-based independence/random walk Metropolis-Hastings approach

(CIMH) (Schmidl et al. [2013a]) as introduced in Section 4.5. The necessary fitting of

the copula distribution was done on the basis of preruns containing 1,000,000 unthinned

samples each. These were generated for each investigation and model separately with a

standard Metropolis-Hastings with a normal distribution proposal. The required back-

and-forth conversion of the prerun samples and proposals was done with the according

prior distributions of the models at hand.

We use simulated annealing to find the maximum a posteriori estimate and use this

as starting point for the sampling, enabling us to skip the burn-in phase. For this

application, we chose to apply thinning by the autocorrelation based effective sample

size (ESS) (Neal [1993]). Though generally not necessary, we used this as an additional

quality insurance. Our sampling algorithm CIMH is able to provide a high ESS at

simultaneously high acceptance rates. From all required distributions we generated

30,000 proposals.
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HMGU model

Par. Compartments Median (d−1) 99.7% CI distr. µ or a σ or b c

θ1 TC → Bone 0.10 [0.013, 0.8] LN(µ, σ) -2.3026 0.6931

θ2 TC → Other 1.35 [0.17, 10.8] LN(µ, σ) 0.3001 0.6931

θ3 UBC → Urine 12.0 T(a, b, c) 6.0 8.0 24.0

θ4 UpLI → LoLI 1.8 T(a, b, c) 0.9 1.2 3.6

θ5 LoLI → Feces 1.0 T(a, b, c) 0.3 1.0 1.7

θ6 Stomach → SI 24.0 T(a, b, c) 12.0 16.0 48.0

θ7 SI → TC 0.03 [1.11 · 10−3, 0.81] LN(µ, σ) -3.5066 1.0986

θ8 SI → UpLI 17.21 [0.64, 464.67] LN(µ, σ) 2.8455 1.0986

θ9 TC → UBC 0.031 [0.0011, 0.8370] LN(µ, σ) -3.4738 1.0986

θ10 TC → UpLI 0.0062 [0.0002, 0.1674] LN(µ, σ) -5.0832 1.0986

θ11 Bone → TC 6.93 · 10−5 [8.66 · 10−6, 5.55 · 10−4] LN(µ, σ) -9.5769 0.6931

θ12 Other → TC 0.53 [0.066, 4.24] LN(µ, σ) -0.6349 0.6931

ICRP model

Par. Compartments Median (d−1) 99.7% CI distr. µ or a σ or b c

θ1 TC → CBS 0.69 [0.086, 5.52] LN(µ, σ) -0.3711 0.6931

θ2 TC → Other 1.39 [0.174, 11.12] LN(µ, σ) 0.3293 0.6931

θ3 UBC → Urine 12 T(a, b, c) 6 8 24

θ4 UpLI → LoLI 1.8 T(a, b, c) 0.9 1.2 3.6

θ5 LoLI → Feces 1 T(a, b, c) 0.3 1 1.7

θ6 Stomach → SI 24 T(a, b, c) 12 16 48

θ7 SI → TC 0.06 [0.0075, 0.48] LN(µ, σ) -2.8134 0.6931

θ8 SI → UpLI 6 T(a, b, c) 3 4 12

θ13 TC → TBS 0.69 [0.086, 5.52] LN(µ, σ) -0.3711 0.6931

θ14 CBS → UBC 5.78 · 10−5 [5.78 · 10−6, 1.1 · 10−4] N(µ, σ) 5.78 · 10−5 1.73 · 10−5

θ15 CBS → UpLI 1.16 · 10−5 [1.16 · 10−6, 2.2 · 10−5] N(µ, σ) 1.16 · 10−5 3.48 · 10−6

θ16 Other → UBC 0.083 [0.0083, 0.158] N(µ, σ) 0.083 0.025

θ17 Other → UpLI 0.0165 [0.00165, 0.0314] N(µ, σ) 0.0165 0.00495

θ18 TBS → UBC 5.78 · 10−5 [5.78 · 10−6, 1.1 · 10−4] N(µ, σ) 5.78 · 10−5 1.73 · 10−5

θ19 TBS → UpLI 1.16 · 10−5 [1.16 · 10−6, 2.2 · 10−5] N(µ, σ) 1.16 · 10−5 3.48 · 10−6

Table 7.1: Overview of priors. The tables are based on Li et al. [2011a], where the

confidence intervals and the medians are given. From these the derivation of the parame-

ters of the normal and lognormal distributions are straightforward. The abbreviation are:

N(µ, σ): normal distribution with mean µ and standard deviation σ, LN(µ, σ): lognormal

distribution with location parameter µ and scale parameter σ, T(a, b, c): triangular distri-

bution with lower limit a, upper limit c, and mode b. Par. = parameter, CI = confidence

interval, distr. = distribution type, TC= Transfer compartment; CBS = Cortical Bone

Surface; Other = Other Tissues; UBC = Urine Bladder Contents; UpLi = Upper Large

Intestine; LoLI = Lower Large Intestine; SI = Small Intestine; TBS= Trabecular Bone

Surface.

140



7.3 Inference results

7.3 Inference results

7.3.1 Parameters are investigation specific

Since the experimental data as basis for the model selection comes from 16 investi-

gations, one can ask if the models should be compared based on the complete data,

yielding one overall Bayes factor, or on each dataset separately, yielding 16 Bayes fac-

tors, which cannot be directly compared. When taking a closer look at the data (Fig-

ure 7.2), we see that all investigations exhibit a pulse-like time course in the plasma

measurements, while the excretion rates in urine point more to an exponential decay

behavior. Despite these shared characteristics, the actual zirconium tracer concentra-

tions showed up to a 50-fold difference between maximum plasma concentrations, i.e.

for investigation r = 10 (1.616%) and r = 6 (0.033%).

This already suggest that the investigations should be treated separately, since the

differences in the concentrations propagate to differences in the transfer rates. To verify

this, we did a pairwise comparison of the posterior samples marginal (corresponding to

the temperature τ = 1) by the Kolmogorov-Smirnov test. Since this test is univariate,

we picked parameter θ7 in the ICRP model as example, as it directly affects the observed

concentrations in plasma (Li et al. [2011b]). Except for one pair, all obtained p-values

were < 6 · 10−8. We take this as a strong indication that all investigations should be

treated separately.

However, for many applications of the models, reference values for an average subject

are needed. This is why we also included the Bayes factor for the complete data in our

analysis. The differences between the overall Bayes factor and the investigation specific

ones can also be the basis for the study of influence factors like gender or weight.

7.3.2 Analysis of sampling results

The obtained posterior samples yield credible intervals for the parameters at hand as

well as a maximum a posteriori estimate based on the complete data, which can be used

if single parameter values for an average subject are required. If we now propagate these

posterior samples to the ODE solution, we see in Figure 7.3 that both models are in

principle able to fit the measurement data, justifying our approach. While no rigorous

model selection is possible merely from these fits, especially the plasma data already

hints at a better suitability of the HMGU model. In the urine data the difference
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Figure 7.2: The experimental data. (a) Plasma concentrations and (b) excretion rate

in urine for all 16 investigations on log-log-scale.

between the two models is not as pronounced. We want to point out that the credible

intervals in Figure 7.3 represent only the uncertainty coming from the parameters, in

contrast to the measurement uncertainties accounted for by the noise parameters σbr
and σur , which are not shown.

7.3.3 Identifiability analysis

We performed an identifiability analysis for the HMGU and ICRP model based on the

according posterior distributions for each of the 16 investigations. The identifiability

analysis was done as introduced in Section 3.3 using profile posteriors. For all investi-

gations every model was clearly identifiable at a 95% confidence level as can be seen

in Figure 7.4 and Figure 7.5. Of course this is only true when using the posterior

distribution and not the data likelihood in a profile likelihood, since then alternative

routes through the system could not be distinguished. The identifiability of the models

induces a valid estimate of the maximum a posteriori estimate as well as the credible

regions for the parameter estimates.

It can also be noted that some parameters have very similar profiles in all individuals,

such as θ4 and θ5 in both models. Especially for these two parameters, this is due to

142



7.3 Inference results

10−2 10−1 100 101 102

10−4

10−2

100

co
nc

en
tra

tio
n 

[%
]  

time [d]

   Time course plasma, complete data   

10−2 10−1 100 101 102

10−4

10−2

100

(a)

10−2 10−1 100 101 10210−6

10−4

10−2

100

ex
cr

et
io

n 
ra

te
 [%

/d
]  

time [d]  

   Time course urine, complete data   

10−2 10−1 100 101 10210−6

10−4

10−2

100

(b)

10−2 10−1 100 101 102

10−4

10−2

100

co
nc

en
tra

tio
n 

[%
]  

time [d]  

   Time course plasma, investigation 10   

10−2 10−1 100 101 102

10−4

10−2

100

(c)

ex
cr

et
io

n 
ra

te
 [%

/d
]  

time [d]   100 101 10210−6

10−4

10−2

100

   Time course urine, investigation 10    

 100 101 10210−6

10−4

10−2

100

(d)

Figure 7.3: Posterior time courses. Sample median (solid line) and 90% point-wise

credible interval (CI, borders as dashed lines) drawn from the time courses based on the

τ = 1 HMGU (purple) and ICRP (green) MCMC samples for (a) the complete plasma

data, (b) the excretion rate in urine over time of the complete data, (c) as a single example

the plasma data of investigation 10, and (d) the corresponding urinary excretion rate over

time of investigation 10, all plotted on a log-log scale. The plasma plots were truncated at

1 · 10−5[%] and urine plots at 1 · 10−6[%/d]. Note that the median and CI represent only

the uncertainty in the parameters, in contrast to measurement uncertainty (not shown).

Colored markers are the raw experimental data points. At each time point the median and

the 90% credible interval were computed point-wisely over all MCMC based solutions.
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the fact that they connect unobserved compartments and are only identifiable due to

the stringent prior information and not due to the data likelihood.
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Figure 7.4: Identifiability for the HMGU model. Profile posteriors are color-coded

for investigation. All parameters in all investigations are identifiable at a 95% confidence

level. Where there is only one line visible for a parameter, all profiles are coinciding.

7.3.4 Bayesian model selection for the two proposed models

For the actual model selection, we now compared the HMGU and ICRP models based

on both the complete data as well as the individual investigations, yielding 17 Bayes

factors. This task is medium sized with respect to the parameter dimensions. Fur-
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Figure 7.5: Identifiability for the ICRP model. Profile posteriors are color-coded

for investigation. All parameters in all investigations are identifiable at a 95% confidence

level. Where there is only one line visible for a parameter, all profiles are coinciding.
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thermore, we are encouraged to consider all 17 data scenarios separately. For this

reason, we abstain from using the adaptive Simpson’s rule and apply the standard

power law trapezoidal rule. This leads to all individual marginal likelihoods being

computed on the same grid and thus better comparability. We use a schedule of

τk = (k/29)5, k = 0, 1, . . . , 29 with K = 30 rungs for computing the marginal like-

lihoods in all 17 scenarios. We found that all Bayes factors favor the HMGU model, 14

out of 17 even decisively (Table 7.2).

Table 7.2: Bayes factors for the HMGU versus the ICRP model (Br
12) for the individual

investigations as well as for the complete data (ALL,B12) and the according Bayes factors

for the blood plasma (Bb,r
12 and Bb

12) and urine (Bu,r
12 and Bu

12) data. Green color indicates

a Bayes factor in favor of the HMGU model and red color a Bayes factor in favor of the

ICRP model. The HMGU model is favored substantially, when the Bayes factor is > 3 and

decisively, when it is > 100.

Inv. r Br12 & B12 Bb,r12 & Bb12 Bu,r12 & Bu12
1 7.17 · 101 7.12 · 101 1.05

2 1.15 · 102 2.93 · 102 3.94 · 103

3 5.95 · 104 5.23 · 104 1.34

4 1.07 · 103 2.64 · 103 3.47 · 101

5 2.19 · 102 4.73 · 102 1.34 · 102

6 4.64 · 103 3.93 · 103 2.38 · 103

7 2.18 · 102 2.30 · 102 1.34 · 103

8 3.75 · 101 1.28 · 102 0.22

9 4.62 · 102 2.32 · 102 0.18

10 8.62 · 102 1.16 · 102 0.20

11 1.17 · 105 1.81 · 101 2.94 · 103

12 1.78 · 102 5.48 1.14 · 101

13 7.19 · 102 1.41 · 101 4.41

14 3.58 · 101 7.43 9.77

15 6.29 · 103 2.17 · 101 1.60 · 102

16 6.22 · 102 1.34 · 101 1.20 · 104

ALL 1.20 · 1011 3.43 · 104 4.73 · 107

As the time courses already indicated that the HMGU model might be more suitable

since it fits the plasma data better, we computed additional Bayes factors based on

either only the plasma or urine data. This corresponds to considering either only

“the plasma likelihood” p(b)(Yr|θi,Mi) or “the urine likelihood” p(u)(Yr|θi,Mi) from

Equation (7.4), where i = 1, 2 and r = 1, . . . , 16 and accordingly for the complete data.

The Bayes factors support our theory that the plasma is fitted better by the HMGU

model: all 17 Bayes factors based on the plasma data favored the HMGU model, in

ten cases again decisively (Table 7.2, 3rd column). For the urine data, the situation

is slightly more ambivalent, as here three investigations favor the ICRP model (Table
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7.2, 4th column), but not decisively, while still eight Bayes factors favor the HMGU

model decisively. All in all, we assert that all decisive Bayes factors are in favor of the

HMGU model, meaning that the ICRP model was decisively rejected in the majority

of cases. Thus we conclude that the HMGU model is superior to the ICRP model for

representing zirconium processing in the human body, both on an individual level as

well as for an average subject represented by the complete data.

We can now take again a closer look at the expected log deviances from the two models.

It can clearly be seen in Figure 7.6 that the expected log deviance has a similar func-

tional shape for all investigations in both models. However, function values differ due

to differences in the quality of fit to the data. One can also note that the ICRP model

reaches lower values of the expected log deviance at τ = 0 than the HMGU model,

which can be taken as a hint that the prior information for the HMGU model is of

higher accuracy. All in all, the sampled expected log deviances show largely monotonic

behavior, as can be expected from theory. This indicates that the sampling process is

well-behaved.
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Figure 7.6: Model-specific expected log deviances for the zirconium models.

(a) Expected log deviances depending on the temperature τ for all investigations for the

HMGU model. (b) Expected log deviances for all investigations for the ICRP model.

Individual investigations are color-coded. It can be seen that all show similar behavior

with respect to function shape, if not with respect to function value.

A close look can be taken at the expected log deviances stemming from the combined

data in Figure 7.7. A clear tendency can be seen that the HMGU model has higher

expected log deviance almost everywhere in the interval. Accordingly the integral value

for the log marginal likelihood of the HMGU model is 271.0 and for the ICRP model

147



7. MODEL SELECTION FOR THE PROCESSING OF ZIRCONIUM IN
THE HUMAN BODY

we get a log marginal likelihood of 245.5. This is also the reason for the resulting large

Bayes factor of 1.20 · 1011 = exp(25.5).
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Figure 7.7: Expected log deviances for the zirconium models. Expected log

deviances depending on the temperature τ for the combined data. Here the green circles

represent the HMGU model, and purple diamonds the ICRP model.

If we look at the same plot for the 16 individual investigations (Figure 7.8), the differ-

ence can not be seen as easily. This is because the plots are on log scale, so that for

a Bayes factor of 100 a difference in log marginal likelihoods of only log(100) = 4.6 is

required. Thus the integrals from the function evaluations in Figure 7.8 do not need

to be very different. A clear visual example is nevertheless given by Investigation 11,

where a strong tendency for higher values for the HMGU model can be seen, which

results in a Bayes factor of 1.17 · 105.

7.3.5 Dismissing a more complex model variant

Inspired by the clear superiority of the HMGU model over the ICRP model with re-

spect to the provided human data, one could think about further improving the HMGU

model. This could correspond to even better physiological plausibility of the model.

One such hypothesis would be to introduce a new compartment to the model, repre-

senting the urinary path. The resulting model can be seen in Figure 7.9 and will be

designated M3. It has eleven compartments and 15 parameters like the ICRP model,

but with a different model topology. The initial concentration in the new compart-

ment z12 is assumed to be zero the same as for all compartments except the stomach

compartment in the original HMGU model. From literature, prior distributions for the

three new parameters can be derived, see Table 7.3.
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Figure 7.8: Investigation-specific expected log deviances for the zirconium

models. Expected log deviances depending on the temperature τ for the all individ-

ual investigations. The green circles represent the HMGU model, and purple diamonds the

ICRP model.
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Figure 7.9: Extended HMGU model M3 for zirconium processing.

This model contains now eleven compartments z1,. . . ,z10, z12 and 15 transfer rates

θ1,...,θ12, θ20, θ21, θ22. Zirconium enters the body in the stomach compartment z9 and

is processed through the system until it reaches either one of the two final compartments

urine, z7, or feces, z8. The gray-shaded compartments z1 and z7 are corresponding to those

where measurements are taken. The red compartment z12 represents the newly added uri-

nary path compartment. It is connected to the transfer compartment and the urinary

bladder contents compartment through three reactions with rates θ20, θ21, θ22.
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Table 7.3: Additional prior information for the extended HMGU model

Par. Compartments Median (d−1) distr. µ σ

θ20 TC → UP 0.02 LN(µ, σ) -3.6535 1.0986

θ21 UP → TC 0.14 LN(µ, σ) -1.9661 0.6931

θ22 UP → UBC 1.25 LN(µ, σ) 0.2231 0.6931

Also for this model, marginal likelihoods and thus Bayes factors comparing to either

of the other two models can be computed in the same fashion as before. We focus

on the comparison with the original HMGU model to see if there is a quantitative

improvement. The results can be seen in Table 7.4. We observe that there are only few

decisive Bayes factors for this comparison, and all of them are in favor of the original

HMGU model. Since the extended HMGU model was designed to better reproduce the

urine data, especially the last column in Table 7.4, where we use only the urine data

for computing Bayes factors, is interesting. Here we see that all but three Bayes factors

actually favor the original model, two of them even decisively. We conclude that the

extended HMGU model does not yield any gain for representing the measurement data.

Therefore the original HMGU model should be preferred. This is also a good example

that not always a more complex model is really better than a simpler one.

Table 7.4: Bayes factors for the HMGU versus the extended HMGU model (Br
13 and B13)

for the individual investigations as well as for the complete data (ALL) and the according

Bayes factors for the blood plasma (Bb,r
13 and Bb

13) and urine (Bu,r
13 and Bu

13) data. Green

color indicates a Bayes factor in favor of the original HMGU model and red color a Bayes

factor in favor of the extended HMGU model.

Inv. r Br13 & B13 Bb,r13 & Bb13 Bu,r13 & Bu13
1 1.1582 0.9758 1.1019

2 1.1557 1.0307 34.8195

3 0.9283 1.3681 1.3446

4 0.7688 1.6415 14.7689

5 1.4955 1.1345 55.4583

6 1.7465 1.0266 1030.8867

7 0.1836 0.7113 793.4081

8 0.8293 2.5451 0.5550

9 0.1030 0.1407 0.2851

10 0.2548 0.4999 0.7125

11 38.7192 0.7661 13.9183

12 1.6931 0.6516 2.8094

13 12.6123 2.4175 4.6281

14 2.9665 1.1759 2.5476

15 1.0935 2.3948 2.5774

16 274.8282 0.7980 2.4061

ALL 17.6047 0.9893 13.8294

150



7.4 Conclusions

7.4 Conclusions

In summary, we could show that the newer HMGU model was unequivocally superior

with 14 of 17 Bayes factors being decisive when compared to the well-established ICRP

model. Also, when restricting the data on plasma and urine measurements only, we

found that the HMGU model was clearly favored.

We also tested a variant of the original HMGU model, an extended model with an

additional compartment for the urinary path. However, the Bayes factors for the com-

parison of the original versus the extended model favor the original model.

Closer looks at the expected log deviances show that the integration for obtaining the

log marginal likelihoods is well-behaved as the function values are mostly monotonically

increasing as can be expected from theory.

We also conducted identifiability analysis for our two main models and find that all

parameters of the posterior distribution are identifiable. The analysis can yield confi-

dence intervals for the parameters if these are desired. Of course credible intervals can

also be derived from the posterior samples obtained through the copula-based sampling

in the thermodynamic integration and are given in Appendix A.
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8

Inference in high dimensions: A

signaling pathway example

In this chapter, we present a proof of principle that parameter inference through MCMC

is possible even in dynamical systems with over 100 parameters. Usually MCMC is

only applied in systems of circa ten parameters, even though Eydgahi et al. [2013]

have recently presented a sampling of 78 parameters. Nevertheless, it is well known

that scalability of MCMC algorithms is an issue, which makes our proof of principle

even more important. We thus focus on MCMC sampling and not on model selection.

Special care has to be taken to verify convergence, as convergence diagnostics like the

Geweke test might be misleading. We show how this can be done with a multi-chain

sampling approach in combination with identifiability analysis.

The dynamical system under consideration is the JAK2/STAT5 signaling pathway,

which is important for erythropoiesis, the production of red blood cells. This system

has 27 dynamic and initial condition parameters, however the system is blown up to

113 parameters by scaling and offset parameters that also have to be estimated, thus

providing a very challenging example.

This chapter is based on and in part identical with the following publication:

• S. Hug∗, A. Raue∗, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer

and F.J. Theis (2013). High-dimensional Bayesian parameter estimation: case

study for a model of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2),

293-304.
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The content of this paper is also to a small part contained in another thesis (Raue

[2013]), as this was a joint first-author work. The contribution by the author of this

thesis is the MCMC and its interpretation and evaluation, while Dr. Raue provided

the profile posteriors.

8.1 Problem description

Here we examine a model for qualitative inference in the JAK/STAT pathway. Signal

transduction models are often high-dimensional and possess a large number of unknown

parameters, thus the uncertainty evaluation can pose severe computational challenges.

In this chapter, we illustrate that a rigorous statistical assessment is feasible for nonlin-

ear high-dimensional dynamical models with over 100 parameters. For this we consider

Epo-induced JAK2/STAT5 signaling, a process which has been studied extensively in

recent years (e.g. Aaronson & Horvath [2002]; Swameye et al. [2003]).

As introduced in Section 2.1.2, the hormone erythropoietin (Epo) regulates erythro-

poiesis, the production of red blood cells. Figure 8.1 shows again an illustration of the

model. The quantitative link between the integral STAT5 response in the nucleus and

survival of erythroid progenitor cells has recently been elucidated (Bachmann et al.

[2011]). The broad dynamical range of Epo concentrations up to 1000-fold in vivo

(Becker et al. [2010]) requires a stringent regulatory system. In Bachmann et al. [2011],

it was shown that STAT5 responses are controlled by a dual feedback consisting of two

inhibitory proteins, CIS and SOCS3. The two proteins adjust STAT5 phosphorylation

levels over the entire range of Epo concentrations, where CIS regulates predominantly

the lower concentrations range and SOCS3 the upper range. Model predictions showed

that the absence (knock-out) of CIS resulted in an increase of STAT5 phosphorylation

at low Epo concentrations, whereas the absence of SOCS3 caused an increase in the

phosphorylation level at high Epo concentrations. This observation revealed division

of labor by the two feedback proteins as the key property to control STAT5 responses.

8.2 Description of model and experimental data

The ODE system for the JAK2/STAT5 signaling pathway as in Figure 8.1 is described

by 25 dynamical components and was solved by using the Data 2 Dynamics software

(Raue et al. [2013b]). This software enables efficient simulation and optimization of
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cell membrane

nuclear membrane

Figure 8.1: Dynamical model of the Epo induced JAK2/STAT5 signal trans-

duction pathway, adopted from Bachmann et al. [2011]. The hormone Erythropoietin

(Epo) binds to its membrane receptor (EpoR) and subsequently leads to receptor phospho-

rylation (pEpoR) and to phosphorylation of its associated Janus kinase (JAK2, pJAK2).

Receptor phosphorylation is balanced by activation of a phosphatase (SHP1, SHP1act).

Active EpoR/JAK2 complexes lead to phosphorylation of the Signal Transducer and Ac-

tivator of Transcription (STAT5, pSTAT5) that transmits the signal to the nucleus (np-

STAT5). In the nucleus, STAT5 leads to target gene expression that induces pro-survival

signals and self-regulating negative feedbacks. In this case, two regulator proteins and

their respective mRNAs are involved, Suppressor Of Cytokine Signaling (SOCS3) and the

Cytokine-Inducible SH2-containing protein (CIS).
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ODE models by solving the sensitivity equation together with the original ODE. This

is done by using a CVODES solver (Serban & Hindmarsh [2005]) with an absolute

and relative accuracy of 10−8. The ODE equations and the solver were compiled into

C-executable files for MATLAB. They can also be found in Appendix A. Note that the

JAK2/STAT5 system is actually a DDE equation that is transformed to an ODE with

the linear chain trick.

Experimental data is available for 24 different experimental conditions, corresponding

to different observables, which was described in detail in the supplementary material

for Bachmann et al. [2011]. As the evaluations of the ODE systems for different exper-

imental conditions are independent, they could be parallelized for numerical efficiency.

After all suitable transformations etc. described in more details in Bachmann et al.

[2011], 115 unknown parameters remain, of these two more could be fixed to a scale.

All in all, like for the analysis in Bachmann et al. [2011], 113 parameters are sampled

by our approach. The experimental data for the dynamics of the system consists of 541

data points which are the basis of our inference. Optimization of the parameters can

then be performed with MATLAB optimizers with user supplied derivatives from the

sensitivities, the results of this can be found in Raue et al. [2013b].

The likelihood of the model is obtained by assuming normally distributed measurement

noise on the logarithmically transformed model output and experimental data, since it

is known that in immunoblotting experiments, which are predominant here, the mea-

surement noise is lognormally distributed (Kreutz et al. [2007]). Also the parameters

can be logarithmically transformed for computational convenience. From this point on,

we will always assume that these transformations took place. The likelihood then takes

the form already introduced in Equation (3.6).

For one of the parameters, the absolute concentration of the EpoR JAK complex, we

found a literature value that could be included as prior information for the concentration

scale of the receptor complex into the sampling. For all other parameters, uniform priors

in logarithmic parameter space were used. The range of these priors was determined

already for the optimization done in Bachmann et al. [2011]. It is especially important

for those of the parameters that were already shown there to be non-identifiable. The

prior in this case prevents the sampler from going to infinity in these parameters which

would be detrimental for the complete exploration of the parameter space.
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8.3 MCMC for the JAK/STAT model

In this section, we present our results for the high-dimensional model of Epo-induced

JAK2/STAT5 signaling. Using this application we illustrate problems which can arise

when studying high-dimensional models and outline potential solutions. In this case

study 113 parameter have to inferred, 27 parameters of interest which are the dynamical

parameters and initial conditions and 86 nuisance parameters. The parameters of

interest determine the model predictions, while the nuisance parameters have to be

estimated to compare model observables to the experimental data.

8.3.1 Limitations of single-chain sampling

To evaluate the identifiability of the individual parameters we perform at first a profile

posterior analysis as introduced in Section 3.3. The results are depicted in Figure 8.3

and Figure 8.4. Indeed, most parameters are well determined, but there are also a few

which are practically non-identifiable, e.g. CISRNATurn and SOCS3Turn. A closer in-

spection of the profile posteriors reveals that two parameters, namely SOCS3RNADelay

and SOCS3RNATurn, do exhibit a secondary mode, see in Figure 8.3. The higher mode

of these is the MAP estimate found by optimization, while the secondary mode is close

to the threshold that defines a 95% confidence region (Raue et al. [2009]). To take a

closer look at this potential second mode, we used MCMC.

To sample the posterior distribution of the Epo-induced JAK2/STAT5 signaling path-

way we first employed a single-chain method. In particular we started with Adaptive

Metropolis (AM) sampling as introduced in Section 4.2. When initializing the AM at

the MAP estimate, we found that the MCMC chain converged according to the com-

monly used Geweke’s test after 500,000 samples (100,000 burn-in and 400,000 retained

samples).

To validate the sampling result, we started a second AM chain in the secondary mode

detected using the profile posterior method, as explained above. It turned out that also

this second AM run seems to converge after 500,000 samples, according to Geweke’s

test. However, the sample distributions of the two runs differed severely. The difference

was particularly pronounced in the parameters SOCS3RNADelay and SOCS3RNATurn

for which we observed the bimodality in the posterior profiles. This indicated that the

individual chains indeed sufficiently sample the modes in which they were started, but

failed to cover the bimodality of the posterior, see Figure 8.2. We further confirmed
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Figure 8.2: Single MCMC chains and profiles for SOCS3RNATurn. The top

row displays the chain and histogram for the AM run started in the MAP estimate of

exemplary parameter SOC3RNATurn, while the bottom row shows the AM run started

in the secondary mode. Both chains show nice mixing, however both the chains and the

histograms reveal the totally different marginal distributions.

the non-convergence with the Gelman-Rubin statistic. For the two aforementioned

parameters, the values of R̂ were 2.28 and 2.65 respectively, indicating that the two

chains were not sampling from the same distribution.

To unravel the source of the convergence problems, we analyzed the distribution of

the MCMC samples obtained when starting the chains in the two different modes. In

particular we studied whether or not the MCMC samples from the two chains are non-

overlapping. This would indicate that not only the posterior profiles are bimodal but

also that the corresponding modes of the posterior distribution are separated.

While this was already visible from the marginalized one-dimensional samples, we quan-

tified the overlap of the samples with support vector machines (SVMs) (Vapnik [1995]).

The SVM allowed us to assign the samples to the two modes in the high-dimensional

space and thus visualize them accordingly, which will be shown in Figure 8.4.

Our findings raised doubts concerning the sampling performances in high-dimensional

parameter spaces. Although the single adaptive MCMC chains achieved a good sam-

pling performance within the modes and although the modes were connected, the sam-
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pling of the true posterior distribution was very inefficient. To improve upon this

and to ensure good mixing of the chain, we applied the Adaptive Metropolis Parallel

Hierarchical Sampling (AMPHS) as introduced in Section 4.4.

8.3.2 Multi-chain sampling

For the AMPHS we used 20 auxiliary chains, each with 500,000 samples. The AMPHS

was initialized with the mother chain and ten auxiliary chains in the MAP estimate,

while the other ten auxiliary chains were initialized in local optima, also some which

are close to the secondary mode found in the profile posterior.

Furthermore, the AMPHS requires the specification of a starting covariance matrix.

We found it sufficient to take an identity matrix in each auxiliary chain. Alternatively,

one could run a short chain initialized with an identity matrix and then calculate an

initial covariance matrix from these prerun samples. Since it is a special advantage of

the Parallel Hierarchical Sampling scheme that different proposals can be used in each

chain, we chose different scaling factors for the identity matrix ranging from 10−6 to

10−9.

After visual inspection of the mother chain for the dynamical parameters, we set the

burn-in period to be the first 100,000 samples, so that the further evaluation could be

based on 400,000 samples. Convergence of the chain was again verified by Geweke’s

test. Although the test p-values were very good, that alone does not ensure convergence

of the sampling procedure. However, convergence is supported by the good agreement

of marginal distributions and the profile posterior, as will be shown in the following

section. Note that the Gelman-Rubin statistic is not easily applicable to the outcome

of a single run of AMPHS due to the specific structure of the chains.

By analyzing the mother chain we found that mixing is much enhanced in this al-

gorithm, as clearly the mother chain mixes very well between the two modes. Fig-

ure 8.3 depicts the sampling results for the two parameters SOCS3RNADelay and

SOCS3RNATurn, which were chosen here because of the bimodality expected from the

profile posterior. The bottom and right panels clearly show that the chain mixed very

well in the single dimensions. When looking at the samples in two dimensions, the

middle panel indicates that they visit both modes, although the main mode obviously

has more weight. AMPHS correctly estimated the weight assigned to each mode, see

also Rigat & Mira [2012] for additional examples. This can be observed from the fact

that the initialization was in a weighting of 50 % of the auxiliary chains near the main
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mode and 50 % near the secondary mode. Using the SVM trained from the single

chains (Section 8.3.1), we found that about 84% of the final samples in the mother

chain belong to the main mode around the MAP estimate and 16% of samples are

classified as belonging to the secondary mode. Hence, the masses of the modes seem

to have a weight ratio of ca. 5 : 1. This was significantly different from the initial

weighting of 1 : 1 and thus together with the convergence of the sampling indicated

correct weighting of the modes. A more systematic evaluation of the weighting of the

modes depending on the initialization of the chains should be the focus of future work.

To evaluate the AMPHS, we considered all chains, even though for all further analysis,

we only used the samples from the mother chain. Each of the auxiliary chains had

at the end an acceptance rate of about 6.5%, the mother chain had per definition an

acceptance rate of 100%, since the swap with an auxiliary chain was always accepted.

While 6.5% might sound suboptimal, we believe that for the AMPHS sampling scheme

the acceptance rate is adequate, since the swaps with the mother chain perturb the

adaption of the covariance matrix in the auxiliary chains. This is the price that has to

be paid for the excellent mixing in the mother chain.

We did not thin the Markov chains, but saved all generated samples. Thus the com-

putational cost for such a large system was quite heavy, the sampling run took about

three days on a standard AMD Opteron 2.4 GHz multi-core machine using 5 cores.

Higher degrees of parallelization are possible and would reduce the run time.

8.4 Comparison of sampling and profile posterior results

To compare the profile posterior and the AMPHS sampling results, Figure 8.4 shows the

histograms of the individual parameters against the corresponding profile posteriors.

For most of the parameters, we found an excellent agreement between the shape of the

profile posterior and the marginalized samples, cf. exemplary parameters CISEqc or

CISEqcOE in Figure 8.4. However, especially for SOCS3RNADelay, we saw a much

more pronounced bimodality in the samples than in the profile posterior alone. The

same, though not as clearly, held true for SOCS3RNATurn. The difference between

sampling result and posterior profile arises from the fact that the height of the modes –

as determined by the posterior profile (maximization) – does not necessarily correspond

to the mass of the mode (marginalization) – as determined by the MCMC samples.

Interestingly, for this example, the ratio between the masses of the modes was rather

similar to the ratio of the maximum posterior probability density in the individual

160



8.4 Comparison of sampling and profile posterior results

−1 0 1 2 3
0

0.5

1
sc

al
ed

 p
ro

fil
e 

po
st

er
io

r

00.51
−2.5

−2

−1.5

−1

−0.5

0

0.5

scaled profile posterior

lo
g 10

 (S
O

C
S3

R
N

AT
ur

n)

0 1 2 3 4
x 105

−2.5

−2

−1.5

−1

−0.5

0

0.5

chain index

−1 0 1 2 3
0

1

2

3

4 x 105

log10 (SOCS3RNADelay)

ch
ai

n 
in

de
x

−1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

*

*

*

*

*

*

ï
2

0
2

012
lo
g 1

0(
S
O
C
S
3R

N
A
T
ur
n)

ï1 0 1 2 3
0

0.5

Figure 8.3: MCMC chains and profiles for SOCS3RNADelay and

SOCS3RNATurn. The middle panel shows the estimated posterior density over the

two parameters in grey. The magenta line is the two-dimensional profile, the magenta

stars the two modes. The left and top panels show the one-dimensional profiles, while the

bottom and right panels show the MCMC chain for the two parameters. All panels imply

a separation of the two modes in the parameter space, although they are connected by a

banana-shaped ridge of high posterior density.

161



8. INFERENCE IN HIGH DIMENSIONS: A SIGNALING PATHWAY
EXAMPLE

modes, which is also roughly 5 : 1.

When taking a closer look at Figure 8.3, again of the two parameters SOCS3RNADelay

and SOCS3RNATurn against each other, one can see that the region of high posterior

density is not one with two clear modes with deep valleys in between, but rather a

banana-shaped ridge with one global and one local maximum. This highly non-elliptical

shape also explains the failure of the single chain AM runs to switch between the two

modes adequately fast and often. Obviously, an elliptically-shaped normal distribution

was not ideally suited as a proposal distribution for inferring a bimodal banana-shaped

distribution. However, in combination with the AMPHS scheme, it was sufficiently

efficient.

8.5 Model predictions of inhibitory effects

In Bachmann et al. [2011], it was already shown that SOCS3 and CIS act as a dual neg-

ative feedback on the level of nuclear phosphorylated STAT5, thus providing regulation

over a broad range of Epo concentrations. The effect of SOCS3 is more pronounced for

high Epo levels, while CIS primarily works as a negative feedback at low Epo levels.

In addition to confidence intervals estimated from the profile posterior (see Bachmann

et al. [2011]) the obtained MCMC samples now also allow computing the posterior

density of the prediction, see Figure 8.5.

Regarding the previously observed modes in the parameter posterior distribution we

found that the differences between the corresponding predictions for pSTAT5 are minor,

see Figure 8.5. This can be explained by the fact that the two modes mainly differ in the

parameters SOCS3RNADelay and SOCS3RNATurn which primarily influence SOCS3.

As the effect of SOCS3 on pSTAT5 is indirect, the bimodality has negligible effect on

the level of pSTAT5 predictions. The results confirm the role of the dual negative

feedback. However, the advantage of the sampling-based approach only becomes fully

apparent when considering SOCS3 itself.

When we analyzed the predicted dynamics for SOCS3 we found that these indeed

depend on the mode, as shown in Figure 8.6. For the parameters in the main mode,

the model predicted that after stimulation SOCS3 goes directly to a steady state. In

contrast, for the parameters in the secondary mode we observed an overshoot. This

overshoot was caused by the increased delay in the SOCS3 RNA export from the

nucleus, SOCS3RNADelay. Based on this prediction it would be sufficient to have a
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Figure 8.4: MCMC samples and profile posteriors for all 27 inferred dynamical

and initial condition parameters. Shown are the histograms of the marginalized MCMC

samples, color-coded for mode membership. The height is scaled such that the area of all

bars in each histogram is one. In magenta: profile posterior pdf, scaled so as to minimize

distance to histogram.
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better resolved measurement of SOCS3 between 0 and 100min to distinguish between

the two modes.

In summary, the obtained MCMC samples allow for a detailed evaluation of the model.

Furthermore, new experiments that allow to further characterize the model and improve

the explanatory power were designed.

8.6 Conclusions

Statistical inference for high-dimensional problems is a challenging issue. In this chap-

ter, we provide a proof of concept that Bayesian inference in high-dimensional dy-

namical systems is feasible. MCMC sampling of over 100 parameters is nevertheless a

challenging task. Special care has to be taken when checking and verifying the results.

In line with results obtained for smaller applications (Raue et al. [2013a]; Vanlier et al.

[2012]), we advocate the combination of MCMC sampling with the profile posterior

approach to ensure the robustness and reliability of the results.

We have shown that single-chain algorithms can run into severe problems in high-

dimensional systems, which are furthermore not easily diagnosed from the MCMC run

alone. In the single-chain case, the Geweke test could not detect that the chains get

locked in local modes of the posterior. If single chains are run repeatedly from differ-

ent starting points, the Gelman-Rubin statistics can detect non-convergence. However,

this relies on a representative set of starting points that have to be determined before-

hand. For the multi-chain approach, the selection of representative starting points is

important to ensure convergence to the posterior distribution, i.e. correct weighting of

the posterior modes, in acceptable time. Once reliable results of MCMC sampling are

obtained, uncertainties can easily be projected on any model prediction including the

high-dimensional correlation structure.

In high-dimensional systems it is important to have excellent mixing in the Markov

chain to ensure exploration of the whole parameter space. Multi-chain approaches are

clearly superior to single-chain sampling schemes from the Metropolis-Hastings family

with respect to the mixing. Alternatively, other sampling schemes that provide good

mixing could be employed, for example an independence walk, however it is unclear

what kind of problems one could run into when using these. Additionally, the shape of

the parameter space with dynamical and nuisance parameters could be exploited for a

blocked update in the sampling.
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Figure 8.5: Uncertainty in prediction of the cellular response. Simulation of the

steady-state level of phosphorylated STAT5 in the nucleus, with only one transcriptional

negative regulator, CIS or SOCS3, being present and their combined effect. The increase of

pSTAT5 steady-state levels was calculated relative to wild-type cells (black dashed line) in

steady state. Grey shading indicates the density calculated from the posterior samples, the

magenta line represents the solution belonging to the MAP estimate. Left column based

on main mode samples, right column based on secondary mode samples.
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Figure 8.6: Differences in SOCS3 dynamics. Experimental data for SOCS3 (red

stars) and density of the trajectories corresponding to the MCMC samples for main mode

(left) and secondary mode (right). Grey shading indicates the density calculated from the

posterior samples classified as belonging to the respective mode. For the parameters in

the main mode, the model predicts that after stimulation SOCS3 goes directly to a steady

state. In contrast, for the parameters in the secondary mode we observe an overshoot.

Using the sampling results we could show that the posterior distribution is bimodal and

that the two modes correspond to alternative parameterizations of the model. Either

the turnover rates of SOCS3 RNA can be high and the RNA export in the cytosol

low, or vice versa. By inspection of the predictions corresponding to the individual

modes it would be possible to verify one of the scenarios experimentally. The sampling

results were used for the prediction of the inhibitory effect of SOCS3 and CIS for

different Epo levels, as well as for the dynamics of SOCS3. The two modes of the

posterior clearly manifest in the SOCS3 dynamics. This is due to the fact that the two

parameters showing the bimodality most prominently, namely SOCS3RNADelay and

SOCS3RNATurn, are directly linked to SOCS3.
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Discussion and outlook

In this thesis, we presented novel Bayesian methods for the inference and model se-

lection in ODE models as well as three challenging application examples from systems

biology.

In this chapter, we give a short review of the methods and applications that were

discussed, with a focus on the occurring issues, how to overcome them and what insights

could be gained. Furthermore, we provide some cues for targets of further research.

9.1 Summary

For Markov chain Monte Carlo sampling of high-dimensional distributions, we intro-

duced the Adaptive Metropolis Parallel Hierarchical Sampling based on the concept

by Rigat & Mira [2012]. Exchanging multi-chain algorithms are clearly superior to

single-chain algorithms for covering large sampling spaces. Since scalability of MCMC

algorithms is a well-known and much discussed issue, it is especially worthwhile to have

a proof of principle that MCMC can work reliably in over 100 dimensions.

We furthermore introduced an adaptive method for thermodynamic integration. Ther-

modynamic integration is nowadays usually the method of choice for computing marginal

likelihoods. Its strength is the transformation of the marginal likelihood to a one di-

mensional integral over the so called temperature parameter.

The new method introduced in this thesis is based upon solving this one dimensional

integral with Simpson’s rule. This scheme adaptively determines the number of function
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evaluations that are necessary for achieving a required accuracy. This is especially

important since every function evaluation corresponds to a full MCMC run and is thus

computationally costly. Furthermore, Simpson’s rule possesses a higher approximation

order than the usually applied trapezoidal rule.

We elaborated on an analytically tractable example for model selection, based on nor-

mal distributions. Knowing the expected log deviance is especially beneficial for com-

paring the different model selection indicators.

Additionally to the presented purely Bayesian methods, we have also discussed iden-

tifiability analysis with profile likelihoods or profile posteriors. In line with results

obtained for smaller applications (Raue et al. [2013a]; Vanlier et al. [2012]), we advo-

cate the combination of MCMC sampling with the profile posterior approach to ensure

the robustness and reliability of the inference results, as shown in all three examples.

Especially for the JAK/STAT pathway in Chapter 8, the combination of profiles and

MCMC was worthwhile. Here agreement between the profile posteriors and the MCMC

samples makes us more confident that both methods yield reliable results.

In the single-cell application of Chapter 6, we find that thermodynamic integration with

the adaptive Simpson’s rule works well. Nevertheless, the application is a practical

example of the detrimental effects of weak prior information on the computation of

Bayes factors and the numerical issues that arise.

Protein half-lives derived from the best model are important for assessing all exper-

iments in which proteins are observed in living cells. The measurement data in our

application represents the decay of the protein that can be observed isolated for one

protein in single cells. This is an important basis for more complex models where several

proteins may interact with each other. A rigorous statistical evaluation as presented in

this contribution is an important cornerstone for further inference.

For the processing of zirconium in the human body in Chapter 7, we could show that the

physiologically more plausible HMGU model indeed better represents the measurement

data than the previously used ICRP model. However, a more complex variant of the

HMGU model could be repudiated on the basis of Bayes factors. In this application,

we showed identifiability analysis and Bayes factors for both the sixteen individual

investigations as well as for the combined data.

To check the convergence of MCMC schemes in high-dimensional parameter spaces or

multimodal problems in the JAK/STAT pathway or in general we used a combina-

tion of approaches. During our studies we found that the complementation of classical
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convergence criteria (Brooks & Roberts [1998]) with information about the modes is

beneficial. This information can be obtained using e.g. multi-start optimization algo-

rithms. If a multi-chain sampler like the AMPHS is initialized distributed across all

detected modes and the convergence diagnostics indicates convergence, it is more likely

that all modes of the posterior distribution have been adequately sampled, compared to

the single-chain approach. As multi-start optimization is often used to determine the

MAP estimate (Bachmann et al. [2011]), all necessary information is readily available

and does not require additional computational effort.

The sampling of high-dimensional posterior distributions is methodologically and com-

putationally challenging. However, obtaining the full distribution of parameters is

worth the effort, especially when the likelihood is not strictly unimodal such as the one

in Chapter 8. Using the sampling results we could show that the posterior distribution

is bimodal and that the two modes correspond to alternative parameterizations of the

model.

9.2 Outlook

In general, we see three main targets for future research following up from this thesis:

1. Further improvements to thermodynamic integration,

2. MCMC in high-dimensional systems and

3. Inference for single-cell data.

We now elaborate on each of the three points.

This thesis presents the first application of the adaptive Simpson’s rule for thermo-

dynamic integration. The promising results are a motivation to study further sophis-

ticated quadrature methods, like e.g. Romberg’s method, Gaussian quadrature or

Clenshaw-Curtis quadrature. However, for all of these methods, many function evalua-

tions might be necessary. Thus alternative quadrature methods should be chosen very

carefully.

The quadrature methods applied to the thermodynamic integral in this thesis only con-

trol the integration error, not the Monte Carlo error on the function evaluations them-

selves. As both the trapezoidal and the adaptive Simpson’s rule are relatively simple,

error propagation is straightforward. A simultaneous estimation of both quadrature
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and Monte Carlo error should yield better estimates of the error and refine the inte-

gration strategy further.

In some applications, thermodynamic integration was combined with sequential sam-

pling from the tempered distributions, or population-based MCMC (Calderhead &

Girolami [2009]). This is of course also possible with the new adaptive Simpson’s

rule and might increase sampling efficiency, especially in examples that might be more

difficult to sample than the examples presented in this thesis.

The analytical example in Chapter 5 also shows that determining a sensible exponent

for a power law schedule is not straightforward and further research should go into

this, since this could lead to schedules close to the optimal temperature schedule as

described in Calderhead & Girolami [2009].

In this thesis, we have established a proof of principle that MCMC is possible in over

100 dimensions. This is highly relevant, since increasing biological knowledge leads to

larger and larger models being proposed. One relevant application for high-dimensional

inference are for example PBPK (Physiologically based pharmacokinetic) models, which

are mechanistic models used for predicting the absorption, distribution, metabolism

and excretion of a substance in the human body (Gelman et al. [1996a]; Shargel et al.

[2005]). These models are often fitted to several patients’ data simultaneously, creating

high-dimensional problems. Since these models sometimes show specific characteristics

such as oscillatory solutions, e.g. in the cardiovascular system, they require specific

MCMC algorithms.

High-dimensional sampling spaces require specially tailored MCMC algorithms. Fur-

ther possible improvements include the use of gradient information for multi-chain

algorithms, or more generally using local curvature information for the sampling pro-

cedure. Also parallel hierarchical sampling in combination with copula information as

in the CIMH algorithm might be a worthwhile research target.

A prominent example for high-dimensional systems are signaling pathways. Here an in-

teresting target for future research is MCMC sampling results for the signaling pathway

based on variable types of data, e.g. integrating Western blot data with data for cell

morphology. This induces interesting dependence structures in the parameters which

should be exploited for efficient sampling.

Thirdly, single-cell data poses an interesting target for method development. In this

context especially ODE-constrained mixture models can be of interest (Hasenauer et al.

[2014]. Also hierarchical models like in Woodcock et al. [2013] might be extended to
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fluorescence intensity, where copy numbers of molecules are large.

Another interesting research project would be model selection between an ODE model

for single-cell dynamics like presented in this thesis and a stochastic differential equation

(SDE) model, where each cell can be regarded as one realization of the stochastic

process described by the SDE. Such a model selection should be based on information

theoretic approaches instead of Bayesian ones due to the very different natures of the

two likelihoods, e.g. along the lines of Chehreghani et al. [2012].

All methods presented in this thesis are applicable to many dynamical systems, not only

from systems biology. Especially in nonlinear and high-dimensional systems special care

has to be taken when doing model inference or model selection. All methods in this

thesis and their combinations aim at obtaining reliable and robust results. Overall,

these are vital for the holistic understanding of biological processes.
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Appendix A

Ordinary differential equations

for the presented examples

A.1 Zirconium models

A.1.1 HMGU model

The model for biokinetics of zirconium put forward by the Helmholtz Zentrum München

(HMGU) consists of ten compartments z1,. . . ,z10 and twelve reaction rates θ1,...,θ12

(Greiter et al. [2011a]). The extended HMGU model additionally contains the com-

partment z12 and the reaction rates θ20, θ21 and θ22. In either model zirconium enters

the body in the stomach compartment z9 and diffuses through the system until it

reaches either one of the two final compartments urine, z7, or feces, z8.

Mathematically, the original HMGU model is described by the following system of
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coupled ODEs:

dz1(t)

dt
= (−θ1 − θ2 − θ9 − θ10) z1(t) + θ11z2(t) + θ12z3(t) + θ7z10(t)

dz2(t)

dt
= θ1z1(t)− θ11z2(t)

dz3(t)

dt
= θ2z1(t)− θ12z3(t)

dz4(t)

dt
= θ9z1(t)− θ3z4(t)

dz5(t)

dt
= θ10z1(t)− θ4z5(t) + θ8z10(t)

dz6(t)

dt
= θ4z5(t)− θ5z6(t)

dz7(t)

dt
= θ3z4(t)

dz8(t)

dt
= θ5z6(t)

dz9(t)

dt
= −θ6z9(t)

dz10(t)

dt
= θ6z9(t) + (−θ7 − θ8) z10(t)

with initial conditions

z1(t = 0) = 0%

z2(t = 0) = 0%

z3(t = 0) = 0%

z4(t = 0) = 0%

z5(t = 0) = 0%

z6(t = 0) = 0%

z7(t = 0) = 0%

z8(t = 0) = 0%

z9(t = 0) = 100%

z10(t = 0) = 0%.

The extended HMGU model is identical to the original HMGU model except for the

174



A.1 Zirconium models

following changes (the additional reaction rates and compartment are depicted in red):

dz1(t)

dt
= (−θ1 − θ2 − θ9 − θ10−θ20) z1(t) + θ11z2(t) + θ12z3(t) + θ7z10(t)+θ21z12(t)

dz4(t)

dt
= θ9z1(t)− θ3z4(t)+θ22z12(t)

dz12(t)

dt
= θ20z1(t) + (−θ21 − θ22) z12(t)

with initial conditions

z1(t = 0) = 0%

z2(t = 0) = 0%

z3(t = 0) = 0%

z4(t = 0) = 0%

z5(t = 0) = 0%

z6(t = 0) = 0%

z7(t = 0) = 0%

z8(t = 0) = 0%

z9(t = 0) = 100%

z10(t = 0) = 0%

z12(t = 0)= 0%.

The initial conditions for compartments z1, . . . , z10 coincide for both models.

A.1.2 ICRP model

The model for biokinetics of zirconium put forward by the International Commission on

Radiological Protection (ICRP) is a compartmental model consisting of eleven compart-

ments z1,. . . ,z11 and 15 reaction rates θ1,. . . ,θ8,θ13,. . . ,θ19 (ICRP [1989], ICRP [1993]

). Zirconium enters the body in the stomach compartment z9 and diffuses through the

system until it reaches either one of the two final compartments urine, z7, or feces, z8.
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Mathematically, the model is described by the following system of eleven coupled ODEs:

dz1(t)

dt
= (−θ1 − θ2 − θ13) z1(t) + θ7z10(t)

dz2(t)

dt
= θ1z1(t) + (−θ14 − θ15) z2(t)

dz3(t)

dt
= θ2z1(t) + (−θ16 − θ17) z3(t)

dz4(t)

dt
= θ14z2(t) + θ16z3(t)− θ3z4(t) + θ18z11(t)

dz5(t)

dt
= θ15z2(t) + θ17z3(t)− θ4z5(t) + θ8z10(t) + θ19z11(t)

dz6(t)

dt
= θ4z5(t)− θ5z6(t)

dz7(t)

dt
= θ3z4(t)

dz8(t)

dt
= θ5z6(t)

dz9(t)

dt
= −θ6z9(t)

dz10(t)

dt
= θ6z9(t) + (−θ7 − θ8) z10(t)

dz11(t)

dt
= θ13z1(t) + (−θ18 − θ19) z11(t)

with initial conditions

z1(t = 0) = 0%

z2(t = 0) = 0%

z3(t = 0) = 0%

z4(t = 0) = 0%

z5(t = 0) = 0%

z6(t = 0) = 0%

z7(t = 0) = 0%

z8(t = 0) = 0%

z9(t = 0) = 100%

z10(t = 0) = 0%

z11(t = 0) = 0%.
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A.1.3 Solution of the ODE systems

For the calculation of the likelihood p(Yr|θi,Mi), the ODE has to be solved based on

the current parameters θi. Since the ODEs at question are of first order, they can be

written as
dzθi(t)

dt
= ai(θi) · zθi(t), (A.1)

where zθi(t) is the vector of all the compartments of model Mi and the time independent

matrix ai(θi) represents all the interactions between these compartments, depending

on the transfer rate values θi. The analytical solution is then given by

zθi(t) = ea
i(θi)t · zθi(t = 0). (A.2)

The matrix exponential ea
i(θi)t was computed by decomposing

ai(θi) = U(θi) diag
(
d1(θi), d2(θi), . . . , dV (θi)

)
U(θi)−1 (A.3)

such that

ea
i(θi)t = U(θi)


ed1(θi)t · · · · · · 0

... ed2(θi)t
...

...
. . .

...

0 · · · · · · edV (θi)t

U(θi)−1 (A.4)

for the eigenvalues d1(θi), d2(θi), . . . , dV (θi) of ai(θi). For the HMGU model V=10, for

the extended HMGU model and the ICRP model V=11. In our case, the eigenvalues and

matrices U(θi), U(θi)−1 were numerically approximated by MATLAB’s eig function.

By using the eig function, we of course introduce numerical error to our solution,

however we verified that it is of the same order as the error made by the ode45 function,

yet calculations are much faster. Also, if the analytical solution is available, it is clear

that it should be preferred to a purely numerical solution.

A.1.4 Regions of highest posterior density

We derived the 95% credible intervals, i.e. the regions of highest posterior density

from the posterior samples of the complete data run for the HMGU model, see table

A.1. Furthermore, we also give the maximum a posteriori (MAP) estimate as the

sample with the highest posterior value. Since these parameter values are derived

from the concatenated data, they are valid for all investigations and thus represent

the parameters of choice for an average subject, where no individual information or

measurements are available.
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Table A.1: Credible intervals for best parameters - from the posterior samples of the

complete data for the HMGU model

Param. θ1 θ2 θ3 θ4

95% CI [0.03,0.42] [0.63,2.99] [7.14,20.91] [1.03,3.18]

MAP 0.08 1.48 9.54 1.28

Param. θ5 θ6 θ7 θ8

95% CI [0.47,1.55] [17.57,45.15] [0.10,0.61] [19.58,134.48]

MAP 1.03 37.43 0.19 41.86

Param. θ9 θ10 θ11 θ12

95% CI [0.12,0.28] [6.75 · 10−4,0.06] [1.86 · 10−5,2.57 · 10−4] [0.14,0.82]

MAP 0.20 0.0028 3.57 · 10−5 0.27
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A.2 Equations of the JAK2/STAT5 model

The rate equations of the reactions are

v1 =
[Epo] · [EpoRJAK2] · JAK2ActEpo

[SOCS3] · SOCS3Inh + 1

v2 = [EpoRpJAK2] · JAK2EpoRDeaSHP1 · [SHP1Act]

v3 =
[EpoRpJAK2] · EpoRActJAK2

[SOCS3] · SOCS3Inh + 1

v4 =
3 · [EpoRpJAK2] · EpoRActJAK2

(EpoRCISInh · [EpoRJAK2 CIS] + 1) · ([SOCS3] · SOCS3Inh + 1)

v5 =
3 · EpoRActJAK2 · [p1EpoRpJAK2]

(EpoRCISInh · [EpoRJAK2 CIS] + 1) · ([SOCS3] · SOCS3Inh + 1)

v6 =
EpoRActJAK2 · [p2EpoRpJAK2]

[SOCS3] · SOCS3Inh + 1

v7 = JAK2EpoRDeaSHP1 · [SHP1Act] · [p1EpoRpJAK2]

v8 = JAK2EpoRDeaSHP1 · [SHP1Act] · [p2EpoRpJAK2]

v9 = JAK2EpoRDeaSHP1 · [SHP1Act] · [p12EpoRpJAK2]

v10 = [EpoRJAK2 CIS] · EpoRCISRemove · ([p12EpoRpJAK2] + [p1EpoRpJAK2])

v11 = [SHP1] · SHP1ActEpoR · ([EpoRpJAK2] + [p12EpoRpJAK2] +

+[p1EpoRpJAK2] + [p2EpoRpJAK2])

v12 = SHP1Dea · [SHP1Act]

v13 =
[STAT5] · STAT5ActJAK2

[SOCS3] · SOCS3Inh + 1
· ([EpoRpJAK2] + [p12EpoRpJAK2] +

+[p1EpoRpJAK2] + [p2EpoRpJAK2])

v14 =
[STAT5] · STAT5ActEpoR · ([p12EpoRpJAK2] + [p1EpoRpJAK2])2

([CIS] · CISInh + 1) · ([SOCS3] · SOCS3Inh + 1)

v15 = STAT5Imp · [pSTAT5]

v16 = STAT5Exp · [npSTAT5]

v17 = −CISRNAEqc · CISRNATurn · [npSTAT5]

v18 = [CISnRNA1] · CISRNADelay

v19 = [CISnRNA2] · CISRNADelay

v20 = [CISnRNA3] · CISRNADelay

v21 = [CISnRNA4] · CISRNADelay

v22 = [CISnRNA5] · CISRNADelay

v23 = [CISRNA] · CISRNATurn

v24 = [CISRNA] · CISEqc · CISTurn

v25 = [CIS] · CISTurn

v26 = −SOCS3RNAEqc · SOCS3RNATurn · [npSTAT5]

v27 = [SOCS3nRNA1] · SOCS3RNADelay

v28 = [SOCS3nRNA2] · SOCS3RNADelay
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v29 = [SOCS3nRNA3] · SOCS3RNADelay

v30 = [SOCS3nRNA4] · SOCS3RNADelay

v31 = [SOCS3nRNA5] · SOCS3RNADelay

v32 = [SOCS3RNA] · SOCS3RNATurn

v33 = [SOCS3RNA] · SOCS3Eqc · SOCS3Turn

v34 = [SOCS3] · SOCS3Turn

Reactions v18 to v22 and v27 to v31 account for a delay that summarize the processing
steps of the mRNA by a linear chain of reactions (MacDonald [1976]) with common
rate constant CISRNADelay and SOCS3RNADelay, respectively. The ODE systems is
composed out of the rate equations by

d[EpoRJAK2]/dt = −v1 + v2 + v7 + v8 + v9

d[EpoRpJAK2]/dt = +v1 − v2 − v3 − v4

d[p1EpoRpJAK2]/dt = +v3 − v5 − v7

d[p2EpoRpJAK2]/dt = +v4 − v6 − v8

d[p12EpoRpJAK2]/dt = +v5 + v6 − v9

d[EpoRJAK2 CIS]/dt = −v10

d[SHP1]/dt = −v11 + v12

d[SHP1Act]/dt = +v11 − v12

d[STAT5]/dt = −v13 − v14 + v16 ·
0.275

0.4
d[pSTAT5]/dt = +v13 + v14 − v15

d[npSTAT5]/dt = +v15 ·
0.4

0.275
− v16

d[CISnRNA1]/dt = +v17 − v18

d[CISnRNA2]/dt = +v18 − v19

d[CISnRNA3]/dt = +v19 − v20

d[CISnRNA4]/dt = +v20 − v21

d[CISnRNA5]/dt = +v21 − v22

d[CISRNA]/dt = +v22 ·
0.275

0.4
− v23

d[CIS]/dt = +v24 − v25

d[SOCS3nRNA1]/dt = +v26 − v27

d[SOCS3nRNA2]/dt = +v27 − v28

d[SOCS3nRNA3]/dt = +v28 − v29

d[SOCS3nRNA4]/dt = +v29 − v30

d[SOCS3nRNA5]/dt = +v30 − v31

d[SOCS3RNA]/dt = +v31 ·
0.275

0.4
− v32

d[SOCS3]/dt = +v33 − v34.
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The volume factors vol cyt = 0.4 pl and vol nuc = 0.275 pl account for transitions

between different compartments and are determined experimentally. The species np-

STAT5, CISnRNA1–5 and SOCS3nRNA1–5 are located in the nuclear compartment,

the remaining species in the cytoplasmatic compartment.

The initial condition are set to zero except for

[EpoRJAK2](0) = init EpoRJAK2

[SHP1](0) = init SHP1

[STAT5](0) = init STAT5.

The maximum likelihood estimate of the parameters can be found in the supplementary

material of Bachmann et al. [2011].
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