example, HCRIS does not include a Neuroscience ICU category.
The Dartmouth Atlas regions also do not account for political and
legislative geographic boundaries, nor were they developed to
address critical illness or “regionalization” (15) of ICU care. Other
confounding factors such as direct hospital competition, health system
integration, and use of ICU telemedicine, which may affect ICU

bed supply and movement of patients within defined areas, could
also not be measured in their data.

Notwithstanding these limitations, the present study by
Wallace and colleagues (12) highlights the complexity of the critical
care bed supply in the United States and offers valuable insights
into the changes in critical care beds that occur at the regional level
and their relationship to the regional populations. However, future
studies investigating hospital, ICU, and insurer characteristics at
the national and regional levels are still needed to advance our
understanding of the U.S. critical care enterprise.

Author disclosures are available with the text of this article at
www.atsjournals.org.
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A First Glimpse at the Early Origins of Idiopathic Pulmonary Fibrosis

Familial pulmonary fibrosis (FPF) is most often diagnosed by

the presence of clinically evident idiopathic pulmonary fibrosis
(IPF), or any idiopathic interstitial pneumonia, in at least two
members of the same family (1). For almost 30 years, we have
known that asymptomatic family members recruited on the basis
of FPF have detectable abnormalities shared by their symptomatic
relatives (2). Further studies have demonstrated that significant
percentages of asymptomatic, or self-identified unaffected, family
members in these FPF kindreds have physiologic, radiologic,

and histopathologic abnormalities (3, 4). This suggests that a
lack of respiratory symptoms, or loss of function, should not be
a benchmark on which to exclude disease affection status. Although
this may not be the most comforting message, in this issue of
the Journal, Kropski and colleagues (pp. 417-426) provide further
evidence that this statement is almost certainly true (5). We must
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consider what obligation we might have to inform our patients with
FPF that some of their asymptomatic family members may be at
risk for, or in some cases may already have, the same disease.
Kropski and colleagues present the collected data and cross-
sectional analysis of 75 asymptomatic, or minimally symptomatic,
first-degree relatives recruited on the basis of FPF who completed
a battery of testing, including respiratory questionnaires, blood
sample collection, high-resolution chest CT, and in most cases,
bronchoscopy with transbronchial biopsy (5). Although there
is much to be learned from a review of this data, and from
subsequent analysis of this population, this study provides
evidence that radiologic, histopathologic, genetic, and other
potentially pathogenic abnormalities noted in patients with
pulmonary fibrosis can be detected in asymptomatic relatives
recruited on the basis of a family history of PF. A number of
peripheral blood biomarkers previously found elevated in patients
with FPF and IPF (e.g., matrix metalloproteinase-7) (6) were also
noted to be elevated in these asymptomatic relatives and were, in
some cases, associated with the imaging findings. There was no
evidence that cellular inflammation played a strong role in early
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stages of FPF. Some of these potentially pathogenic processes
deserve further comment.

Comparable to previous findings by the Vanderbilt group
in patients with IPF (7), this manuscript demonstrates that 30%
of the asymptomatic relatives of FPF kindreds have detectable
herpesvirus DNA in their lungs. Those with detectable viruses were
more likely to have increased measures of endoplasmic reticulum
stress. Similarly, herpesviruses have been demonstrated to lead
to endoplasmic reticulum stress and pulmonary fibrosis in aged
mice (8). However, it should be also noted that endoplasmic
reticulum stress was also commonly found in those without
detectable herpesviruses in this study (5), and a similarly elevated
prevalence of herpesviruses in the lungs of patients with
IPF has not always been found in other studies (9, 10).

In addition, this study confirms that reduced telomere length
likely occurs early in the course of pulmonary fibrosis, as suggested
by the fact that genetic variants in, or adjacent to, numerous
genes controlling telomere length have now been associated with
both FPF and IPF (DKC1, NHP2, NOP10, OBFCI1, TERT, TERC,
and TINH2) (11-17). Although the precise mechanisms by which
reduced telomere length leads to pulmonary fibrosis remain
uncertain, cellular senescence and/or apoptosis and genomic
instability are thought to play some role (18).

Finally, this manuscript provides further evidence that the
MUCS5B promoter polymorphism (rs35705940) is associated with
both FPF and an increased expression of MUC5B protein in the
lung (19). Although it is intriguing that both the MUC5B promoter
polymorphism and the resultant increase in MUC5B protein
expression appear to be present in early (5, 20) as well as late (5, 19)
stages of pulmonary fibrosis, it remains unclear how increases
in MUCS5B expression contribute to pulmonary fibrosis. Further
complicating this story, MUC5B deficiency has recently been
identified to result in critical impairments in macrophage host
defense and bacterial burden in the lungs of an animal model (21),
and the MUC5B promoter polymorphism appears to have an
inverse relationship with the bacterial burden in the lower airways
of patients with IPF (22).

Although the authors should be congratulated for this study,
there are also limitations worth noting. Accumulating evidence
suggests that early stages of sporadic IPF that are comparable to
these findings in FPF (5) may be also detectable (23). However, we
should be cautious in extrapolating the findings of early disease
detection in FPF to sporadic IPF. FPF tends to present earlier than
sporadic IPF (24) and can have imaging (25) and histopathologic
(5) findings discordant from those expected to be present in
sporadic IPF. Although the authors should be applauded for their
collection and phenotypic characterization of this valuable cohort,
the controls for the bronchoalveolar lavage analyses were on
average 13 years younger than the asymptomatic family members.
Given the prominent role that age alone may have in this disorder
(26), these age differences potentially limit the strength of some
of the conclusions that can be drawn. In addition, we do not know
whether the development of pulmonary fibrosis can result from
each of these potentially pathogenic processes independently or
whether the cumulative and/or cooperative effects of multiple
processes will be required for the transition to a progressive,
clinically evident disease. Finally, as the authors duly note, the
greatest value of this cohort will come from the longitudinal
follow-up evaluations that hopefully will allow us to determine

Editorials

what factors predict progression from detectable abnormalities
to pulmonary fibrosis. If we can ultimately agree that a lack

of respiratory symptoms should not alone exclude the detection
of FPF, perhaps we should consider what abnormalities are
sufficient to define disease in FPF.
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Preventing the NET Negative in Primary Graft Dysfunction

Primary graft dysfunction (PGD) is a form of acute lung injury
triggered by ischemia/reperfusion injury after lung transplantation.
It affects 10-35% of lung allograft recipients and is the major cause
of early morbidity and mortality after lung transplant (1). In
addition, PGD has been associated with an increased risk of
chronic lung allograft dysfunction, which is the major cause of
late mortality after lung transplantation (2). Prior studies have
proposed several risk factors for the development of PGD based on
the donor, recipient, and surgical variables (3). The pathogenesis
of PGD is not well understood. An inflammatory cascade initiated
by ischemia/reperfusion injury after lung transplant, which
ultimately leads to an influx of neutrophils into the lungs, has
been suggested as the underlying etiology of the development
of PGD (4). Given the unclear pathogenesis and lack of any
established therapy for PGD, it is crucial to characterize the
cellular and molecular pathways leading to PGD to develop
targeted therapies. In this issue of the Journal, Sayah and
colleagues (pp. 455-463) present evidence that neutrophil
extracellular traps (NETs) develop after ischemia/reperfusion
injury, and recruitment is dependent on platelets (5). Further,
they find increased NETs in the bronchoalveolar lavage of human
lung transplant recipients with PGD compared with subjects
without PGD. Interestingly, the prevention of NET formation
using an antiplatelet agent or intraalveolar disruption of NETs
using DNase I protects against PGD in a mouse model of
orthotopic lung transplant.

Previous studies in animal models have suggested a role for
neutrophils in the inflammatory response after graft reperfusion and
found that disrupting neutrophil infiltration can reduce lung injury
after transplant (4, 6). One of the consequences of neutrophil
infiltration and activation can be the formation of NETSs, extrusions
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of neutrophil DNA-protein complexes generated by cell death in
a process called NETosis (7). Prior work by Looney and colleagues
found that NET's were involved in lung injury in a mouse model
of transfusion-related acute lung injury (8). Disruption of platelet
function with aspirin decreased NET formation and the severity of
lung injury (9). The group has extended their work by investigating
the contribution of NETs to lung injury, using two mouse models
of ischemia/reperfusion pathology, a hilar clamp model, and

an orthotopic left lung transplant model with prolonged cold
ischemia time. The models provide complementary results on

the involvement of NETs in ischemia/reperfusion injury, as both
models resulted in NET formation. However, the hilar clamp
model had a significant increase in NETs in the plasma and not
the bronchoalveolar lavage (BAL), whereas the transplant model
had an increase in NET's in the BAL and not the plasma.

These data suggest the two models are not equivalent in the
compartmentalization of NET formation initiated after lung
ischemia and may provide different insights into the effect of
ischemia/reperfusion on the lung.

The findings in the orthotopic left lung transplant model are
particularly interesting, as they reflected the clinical scenario
with elevated levels of NET's detected in patients with PGD grades
2 or 3 in the BAL, and not the plasma. Disruption of NETs with
administration of DNase I markedly reduced lung injury after
transplant, supporting a pathogenic role for NETs. In addition
to reducing the indices of lung injury, DNase I treatment was
also associated with a reduction in neutrophils in the BAL. These
data are interesting and support a role for NETs not only in
promoting lung injury but also in augmenting the recruitment or
expansion of neutrophils. To address the mechanism of NET
formation after transplant, the authors drew on their experience
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