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ABSTRACT 

The FTO gene harbors variation with the strongest effect on adiposity and obesity risk. Previous 

data support a role for FTO variation in influencing food intake. We conducted a combined 

analysis of 16,094 boys and girls aged 1-18 years from 14 studies to examine: 1) the association 

between the FTO rs9939609 variant (or a proxy) and total energy and macronutrient intake; and 

2) the interaction between the FTO variant and dietary intake on BMI. We found that the BMI-

increasing allele (minor allele) of FTO variant was associated with increased total energy intake 

(effect per allele=14.3[5.9, 22.7] kcal/day, P=6.5×10
-4

) but not with protein, carbohydrate or fat 

intake. We also found that protein intake modified the association between the FTO variant and 

BMI (interactive effect per allele=0.08[0.03, 0.12]SDs, P for interaction=7.2×10
-4

): the 

association between FTO genotype and BMI was much stronger in individuals with high protein 

intake (effect per allele=0.10[0.07, 0.13]SDs, P=8.2×10
-10

) than in those with low intake (effect 

per allele=0.04[0.01, 0.07]SDs, P=0.02). Our results suggest that the FTO variant that confers a 

predisposition to higher BMI is associated with higher total energy intake and that lower dietary 

protein intake attenuates the association between FTO genotype and adiposity in children and 

adolescents. 
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Introduction 

Common single nucleotide polymorphisms (SNPs) located in the first intron of the fat mass and 

obesity associated (FTO) gene are the first adiposity/body mass index (BMI)-associated variants 

identified through genome-wide association studies (GWASs) (1-3), and to date this remains the 

locus with the largest influence on BMI in adults, as well as in children and adolescents (4). The 

mechanism by which FTO variants influence adiposity is unclear. Previous animal studies have 

suggested a role of Fto in regulating energy homeostasis, but it is unknown whether it influences 

energy intake (5; 6) or energy expenditure (7; 8). In addition, it is not clear which gene’s 

function is affected by the functional variant(s) at this locus: FTO itself or another gene located 

downstream or upstream of FTO, such as IRX3 (9) and RPGRIP1L(10). 

        In many human studies, the BMI-increasing allele of FTO variants has been reported to be 

associated with increased food intake, total energy intake, fat or protein intake (11-20), 

suggesting that diet mediates the association with BMI. However, these associations have not 

been replicated in a number of other studies (21-35).  In addition, there is an increasing interest 

in examining whether lifestyle factors influence the associations between FTO variants and 

adiposity. While there is evidence that physical activity reduces the effect of FTO on BMI, at 

least in adults(36), the few studies that have investigated interaction with dietary factors in 

relation to BMI/obesity have generated conflicting results potential interactions(12; 20; 26; 32; 

34; 35; 37; 38). Our recent large-scale meta-analysis indicated that FTO variants were associated 

with protein intake in adults and under-reporting of dietary intake in obese participants might be 

a major issue in the analysis (39). Studies in children are of particular interest in this regard, 

since this population is less biased by comorbidities and their treatment and exposure to 

environmental contributors is shorter.  
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         Relatively small sample size of individual studies, modest genetic effect size, and 

inevitable measurement errors might be major reasons for these inconsistent observations. Thus, 

studies with larger sample size are needed to clarify interrelations between FTO variants, dietary 

intake, and adiposity. Herein we report the result of a combined analysis of 16,094 children and 

adolescents from 14 studies to examine whether 1) the FTO rs9939609 variant  (or a proxy SNP) 

is associated with dietary intake of total energy and macronutrients (protein, carbohydrate and 

fat); and 2) dietary intake influence the association between the FTO variant and BMI. 

  

Materials and Methods 

Study participants 

The current analysis included cross-sectional data on 16,094 children and adolescents (15,352 

whites, 478 African Americans, and 267 Asians) aged 1-18 years from 14 studies 

(Supplemental Table 1). The study design, recruitment of participants, and data collection of 

individual studies have been described in detail previously (14; 23; 24; 40-50). In each study, 

informed consent was obtained from subjects’ parents or guardians, and subjects (if appropriate). 

Each study was reviewed and approved by the local Institutional Review Board.  

        Study-specific characteristics for each study are shown in Supplemental Table 2. The 

ranges of mean values across studies were age 1.1 to 16.4 years, BMI 16.2 to 24.7 kg/m
2
, total 

energy intake1017 to 2423 kcal/day, total protein intake 12.9 to 16.8% (percentage of total 

energy intake), total carbohydrate 43.4 to 59.0%, and total fat intake 28.1 to 40.0%. 

Assessment of BMI and dietary intake 

BMI was calculated as body weight (kg)/height(m)
2
. Body weight and height were measured in 

all studies except for one study which used self-reported data in a subsample (Supplemental 
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Table 3). For two studies with children aged younger than 2 years, length (height) was measured 

in a supine position to the nearest millimeter (43; 48). Dietary intake (total energy, protein, 

carbohydrate, and fat) was assessed using validated food frequency questionnaires (FFQs) (four 

studies), multiple-day dietary/food records (three studies), multiple-day 24-hour recalls (four 

studies), both dietary records and 24-hour recalls (one study), diet history consulting and 

information system (one study), or brief-type self-administered diet history questionnaire (one 

study) (Supplemental Table 3). Macronutrient intake was expressed as the percentage of total 

energy intake.  

Genotyping 

FTO SNP rs9939609 or a proxy (linkage disequilibrium [LD] r
2
=1 in the corresponding ethnic 

group) was genotyped using direct genotyping methods or Illumina genome-wide genotyping 

arrays, or imputed using MACH (http://www.sph.umich.edu/csg/abecasis/MACH/) with a high 

imputation quality (r
2
=1) (Supplemental Table 4). The studies provided summary statistics 

based on data that met their quality control criteria for genotyping call rate, concordance in 

duplicate samples, and Hardy-Weinberg Equilibrium P-value. 

Statistical analysis 

A standardized analytical plan, described below, was sent to study analysts from the 14 studies and 

analyses were performed locally. BMI was transformed to age-standardized z-score by sex in 

each study before analysis. A linear regression model under additive allelic effects was applied 

to examine associations of FTO variant with BMI, total energy intake, and intake of fat, protein 

and carbohydrate (expressed as the percentage of total energy), adjusted for pubertal status (if 

available), physical activity (if available) and eigenvectors (GWAS data only). We additionally 

adjusted for BMI when evaluating the association between FTO variant and dietary intake. In 
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addition, the difference in BMI between the low and high dietary intake groups (dichotomized at 

medians in each study) was also examined. Interactions between FTO genotype and dietary 

intake on BMI were tested by including the respective interaction terms in the models (e.g., 

interaction term = rs9939609 SNP × total energy intake [dichotomized at the medians in each 

study]). We examined the association between FTO variant and BMI stratified by low and high 

dietary intake groups (dichotomized at medians in each study). All the analyses were conducted 

in boys and girls separately, except for one study that combined the data from boys and girls with 

sex as a covariate. Analyses were also conducted in each race and in cases and controls 

separately if studies included multiple ancestries or had a case-control design. 

Detailed summary statistics from each study were subsequently collected, and we pooled beta 

coefficients and standard errors from individual studies using the Mantel and Haenszel fixed 

effects method as well as the DerSimonian and Laird random effects method implemented in 

Stata, version 12 (StataCorp LP, College Station, Texas, USA). Significant P-value was 0.005 

after Bonferroni’s adjustment for 10 independent tests: FTO-BMI association (1 test), diet-BMI 

associations (3 tests; we considered total energy, protein, carbohydrate and fat intake as 3 

independent variables), FTO-diet associations (3 tests), and FTO-diet interactions (3 tests). 

Between-study heterogeneity was tested by Cochran’s Q statistic and quantified by the I
2
 value. 

Low heterogeneity was defined as an I
2
 value of 0%–25%, moderate heterogeneity as an I

2
 of 

25%–75%, and high heterogeneity as an I
2
 of 75%–100%. P for heterogeneity was derived from 

a chi-squared test. We also performed stratified meta-analyses in subgroups according to 

ethnicity (whites, African Americans, or Asian), sex, age group (mean age<10 vs. ≥10 years), 

geographic region (North America, Europe, or Asia), study sample size (n<500 vs. ≥500), study 
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design (population-based vs. case-control), dietary intake assessment method (dietary records or 

24-hour recalls vs. FFQ or others), and adjustment for physical activity (yes vs. no).  

 

Results 

FTO variants and BMI 

We found a significant association between the minor allele (A-allele) of the FTO SNP 

rs9939609 (or its proxies) and higher BMI in all participants combined (effect per allele=0.07 

[95% CI 0.05, 0.09] SDs, P=4.7×10
-10

) (Table 1). The association was significant in 15,352 

whites (effect per allele=0.08 [0.05, 0.10] SDs; P=2.9×10
-11

), but not in 478 African Americans 

(effect per allele=-0.12 [-0.26, 0.02] SDs; P=0.08) or 267 Asians (effect per allele=0.11 [-0.12, 

0.09] SDs P=0.87), separately. 

FTO variants and dietary intake 

The minor allele of the FTO variant was significantly associated with higher total energy intake 

in all participants combined (effect per allele =14.6 [6.3, 23.1] kcal/day, P=6.5×10
-4

), with no 

heterogeneity among studies (I
2
=0%) (Table 1). This association was unchanged after further 

adjustment for BMI (effect per allele =14.7 [6.3, 23.1] kcal/day, P=6.5×10
-4

). The association 

between FTO variant and total energy intake was found in Whites (P=0.001) and Asians (P=0.01) 

but not in African Americans (P=0.80), although directions of associations were consistent 

across ethnicities (P for heterogeneity=0.07) (Figure 1). In stratified meta-analyses according to 

sex, age group, geographic region, study design, dietary intake assessment method, and 

adjustment for physical activity (Supplemental Figure 1), the directions of the associations 

between FTO variant and total energy intake were consistent across subgroups. Of note, the 

association was stronger in studies with a mean age ≥10 years old than in studies with a mean 
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age <10 years old (effect per allele =25.3 vs. 4.2 kcal/day; P for heterogeneity=0.014). Since 

most studies had a mean age >7.5 years and three studies had a mean age between 1.0 to 3.5 

years old, we further examined the association between FTO variant and total energy intake 

according to three categories of age: studies with a mean age between 1.0 to 3.5 years old (effect 

per allele =2.4 kcal/day); studies with a mean age between 7.5 and 10 years old (effect per allele 

=10.6 kcal/day); and studies with a mean age ≥10 years old (effect per allele =25.3 kcal/day).  

       We did not find evidence for associations between FTO variant and intake of protein 

(P=0.10), carbohydrate (P=0.96) or fat (P=0.40), and there was a low or moderate heterogeneity 

among studies (I
2
 =0, 24, and 34%, respectively) (Table 1, Supplemental Figure 2, 3 and 4). 

Further adjustment for BMI did not notably change the results. 

        We also performed meta-analyses for FTO variant and dietary intake using the random 

effects method, resulting in similar findings (Supplemental Table 5).  

Dietary intake and BMI 

Higher total energy and protein intake were significantly associated with higher BMI 

(Supplemental Table 6). Difference in BMI between the high and low energy intake groups was 

0.04 [0.01, 0.02] SDs (P=0.004), and difference in BMI between the high and low protein intake 

groups was 0.09 [0.07, 0.12] SDs (P=5.0×10
-10

). There was no significant difference in BMI 

between the high and low carbohydrate intake groups (difference in BMI = -0.02 [-0.05, 0.01] 

SDs; P = 0.12), and a nominally significant difference in BMI between the high and low fat 

intake groups (difference in BMI = -0.03 [-0.06, -0.001] SDs; P = 0.04).  

Interaction between FTO variants and dietary intake on BMI 

We observed a significant interaction between FTO variant and dietary protein intake on BMI in 

all participants combined (effect per allele for interaction=0.08 [0.03, 0.12] SDs, P for 
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interaction =7.2×10
-4

), showing that lower protein intake attenuated the association between the 

FTO variant and BMI, with no heterogeneity among studies (I
2
=0%) (Table 2). In stratified 

analysis by low and high protein intake groups (dichotomized at medians of protein intake in 

each study: ranging from 12.9 to 16.8% across studies). The association between FTO variant 

and BMI among participants in the low protein intake group (effect per allele = 0.04 [0.01, 0.07] 

SDs, P=0.02) was significantly weaker than that in the high protein intake group (effect per 

allele = 0.10 [0.07, 0.13] SDs, P=8.2×10
-10

) (Table 2). Although the interaction was found in 

whites (P for interaction=0.001) but not in African Americans (P=0.84) or Asians (P=0.11) 

separately, there was no significant heterogeneity among these ethnic groups (P for 

heterogeneity =0.53) (Figure 2). In stratified meta-analyses (Supplemental Figure 5), we found 

similar interaction patterns between FTO variant and protein intake on BMI across subgroups 

divided by sex, age group, geographic region, study design, dietary intake assessment method, 

and adjustment for physical activity (all P for heterogeneity >0.11). 

        We did not find substantive evidence for interactions between FTO variant and total energy 

intake (P for interaction=0.20), carbohydrate intake (P for interaction=0.98) or fat intake (P for 

interaction=0.89) on BMI (Table 2 and Supplemental Figure 6, 7 and 8). The heterogeneity 

among studies was low (I
2
 =0, 15, and 5%, respectively).  In analyses stratified by levels of 

dietary intake, associations between FTO variant and BMI were similar in high and low intake 

groups (Table 2). 

        In addition, since there was little or no heterogeneity in interactions between FTO variant 

and dietary intake on BMI across studies, the results were similar when we performed meta-

analyses using the random effects method (Supplemental Table 7).  
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Discussion 

We confirmed the association between an index SNP in the FTO gene, rs9939609, (or its proxy) 

and BMI in white children and adolescents and in all participants combined, but did not detect 

significant association in African American or Asian children and adolescents. This might be due 

to a relatively small sample size used by African American or Asian studies included in the 

current analysis and/or to different LD patterns across FTO intron 1 between different ethnic 

groups, particularly in populations of African ancestry (4; 51).  Other index SNPs within FTO 

locus might be needed in future studies of African American children and adolescents. 

        Although studies of FTO association with dietary intake in adults have been more numerous 

and often better powered with larger sample sizes than similar studies conducted in children and 

adolescents, the reported results have been inconsistent (16-20; 25-34). Our and other studies 

even observed an inverse association between FTO variant and total energy intake in adults, 

which might be partly due to under-reporting of total energy intake among individuals with a 

higher BMI (19; 20; 39).  In the current analysis, we demonstrated an association between the 

BMI-increasing allele of the FTO variant and higher total energy intake. However, we did not 

observe significant association between FTO variants and percentages of energy derived from 

protein, which has been observed in adults(39), or other macronutrients.  

        An apparently stronger, and more consistently reported, effect of FTO on total energy 

intake in children and adolescents could have several explanations. The influence of social 

desirability bias and the underreporting issues are smaller in children than in adults (52-54). It is 

possible that the effect of FTO variation on appetite may be stronger in children and adolescents 

than in adults. Consistent with this hypothesis and with the idea that FTO genetic effects might 

vary over the life course, previous studies have reported an increasing effect of FTO variants on 
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BMI from early childhood to adolescence, with a subsequently decreasing effect throughout 

adulthood (49; 55-60). Our result is also consistent with this, as we observed a stronger 

association between FTO variant and total energy intake in studies of older children than in 

studies of younger children. 

        Several lines of evidence from animal and in vitro studies are consistent with the observed 

association between FTO variant and total energy intake in humans. It has been reported that 

overexpression of Fto in mice led to increased food intake (5), and Fto expression in 

hypothalamus was regulated by feeding, fasting, and energy restriction (61-67). Further studies 

showed that glucose and amino acid deprivation decreases Fto expression, suggesting a role of 

FTO in cellular nutrient sensing (68; 69), possibly acting via hypothalamic mTOR pathways 

known to regulate food intake (70). A recent study suggested a link between FTO, ghrelin (a key 

mediator of ingestive behavior), and impaired brain food-cue responsivity (71) in both animals 

and humans. Interestingly, a recent study has challenged the established view of FTO as the 

major gene associated with BMI and risk of obesity (9), reporting that the region of FTO intron 1 

harboring the BMI-associated variants are strongly associated with IRX3 gene (500kbp 

downstream of FTO intron 1) expression in cerebellar brain samples. However, it has been 

pointed out that the cerebellum is not primarily involved in food intake or appetite regulation and 

FTO expression may function in a site-dependent manner (72). In addition, another study 

suggested that RPGRIP1L, located >100 bp 5’ in the opposite transcriptional orientation of FTO, 

may be partly or exclusively responsible for the obesity susceptibility signal at the FTO 

locus(10).  

        One novel finding of our study is the interaction between the FTO variant and dietary 

protein intake on BMI. The effect size of FTO variant on BMI in children with a low protein 
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intake was much smaller than in children with a high protein intake, suggesting that low protein 

intake may attenuate the influence of FTO variation on BMI. A study of 354 Spanish children 

and adolescents reported a significant interaction between the FTO-rs9939609 variant and 

dietary saturated fat intake on BMI (38) and several adult studies also found interactions between 

the FTO variant and total fat or saturated fat intake on BMI and obesity risk (20; 26; 34), while 

no significant interaction between the FTO variant and dietary intake was observed  in our meta-

analysis of adult data(39). In addition, we previously found that dietary protein intake might 

modify the effects of FTO variants on changes in body composition, fat distribution and appetite 

in a two-year weight-loss trial (73; 74). A recent mouse study showed that loss of Fto gene 

altered protein utilization and body composition (6); and consistently, other studies also suggest 

that FTO may influence body composition through cellular sensing of amino acids (68; 69). 

Given the increasing evidence supporting the role of FTO in protein metabolism and body 

composition, future investigations on this topic might help to clarify the mechanisms underlying 

the observed interaction between the FTO variant and protein intake on BMI. 

        Major strengths of our study include a large sample size of over 16,000 children and 

adolescents from 14 studies, a wide range of studies with data from early childhood to late 

adolescence, and the standardized analytical plan across studies.  There are some limitations in 

our study. Our analysis was conducted based on cross-sectional data. Measurement errors in 

dietary assessment are inevitable since self-reported data on dietary intake are all subject to bias. 

We only included dietary data on total energy and macronutrient intake but no data on specific 

foods, more specific types of fatty acids or micronutrients, which may potentially interact with 

the FTO variant as suggested previously (26; 34; 38). We were unable to examine other adiposity 

proxies, but were limited to the consideration of BMI, which cannot distinguish body 
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composition and does not give any indication about body fat distribution. To the best of our 

knowledge, this is the largest analysis of FTO variant and dietary intake in children and 

adolescents to date, though more data are needed to further confirm our results.  In particular, 

most of the children and adolescents included in our analysis are individuals of European 

ancestry (95% of all samples), and it is unknown whether our results can be generalized to other 

ethnic groups. 

        In summary, we demonstrated an association between the BMI-increasing allele of FTO 

variant and total energy intake based on data from 16,094 children and adolescents. Our data also 

show that dietary protein intake may modify the influence of FTO variants on BMI, offering new 

insight into the interrelationships between FTO genetic variants, dietary intake, and obesity. 
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Table 1 Associations between FTO SNP rs9939609, BMI, and dietary intake in a fixed effects meta-analysis of 

16,097 children and adolescents* 

 

 Model 1†  Model 2‡ 

 Beta (95% CI) P I
2
  Beta (95% CI) P I

2
 

BMI Z-score 0.07 (0.05, 0.09) 4.7×10
-10

 40%  - - - 

Total energy (kcal/day) 14.6 (6.3, 23.1) 6.5×10
-4

 0%  14.7 (6.3, 23.1) 6.5×10
-4

 6% 

Protein (% of energy) 0.0 (-0.1, 0.0) 0.10 0%  0.0 (-0.1, 0.0) 0.09 0% 

Carbohydrate (% of energy) 0.0 (-0.1, 0.1) 0.96 24%  0.0 (-0.1, 0.1) 0.92 15% 

Fat (% of energy) 0.1 (-0.1, 0.2) 0.40 34%  0.1 (-0.1, 0.2) 0.35 29% 

 

*Beta coefficients (95% CI) per minor allele of FTO rs9939609 or a proxy (r
2
=1) are given for each trait. Analyses 

from individual studies were conducted separately, and then combined by meta-analysis of 16,097 children and 

adolescents (15,352 Whites, 478 African Americans, and 267 Asians).  Values for proportion of variance explained 

by inter-study differences (I
2
) are also given. 

†Adjusted for age, pubertal status (if available), physical activity (if available), region (if available) and eigenvectors 

(GWAS data only).  

‡Further adjusted for BMI based on Model 1. 
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Table 2 Interaction between FTO SNP rs9939609 and dietary intake on BMI in a fixed effects meta-analysis of 

16,097 children and adolescents* 

 

*Data are beta coefficients (95% CI) per minor allele of FTO rs9939609 or a proxy (r
2
=1) for BMI (z-score), 

adjusted for age, pubertal status (if available), physical activity (if available), region (if available) and eigenvectors 

(GWAS data only). Analyses from individual studies were conducted separately, and then combined by meta-

analysis of 16,097 children and adolescents (15,352 Whites, 478 African Americans, and 267 Asians). Values for 

proportion of variance explained by inter-study differences (I
2
) are also given. 

†High and low intake groups were defined by medians of each dietary intake in each study. Medians of total energy 

intake ranged from 1160 to 2422 kcal/day, medians of protein intake ranged from 12.9 to 16.8%, medians of 

carbohydrate intake ranged from 44.2 to 59.0%, and medians of fat intake ranged from 28.0 to 41.0% across studies.  

 

 

 

  

 Association between FTO variant and BMI Interaction effect 

 Beta (95% CI) P I
2
 Beta (95% CI) P I

2
 

Total energy (kcal/day)       

Low intake group† 0.08 (0.05, 0.12) 2.9×10
-7

 25% 
-0.03 (-0.07, 0.02) 0.20 0% 

High intake group† 0.05 (0.02, 0.08) 8.0×10
-4

 25% 

Protein (% of total energy intake) 

Low intake group† 0.04 (0.01, 0.07) 0.02 0% 
0.08 (0.03, 0.12) 7.2×10

-4
 0% 

High intake group† 0.10 (0.07, 0.13) 8.2×10
-10

 34% 

Carbohydrate (% of total energy intake) 

Low intake group† 0.08 (0.05, 0.11) 1.6×10
-6

 20% 
0.00 (-0.04, 0.04) 0.98 10% 

High intake group† 0.07 (0.04, 0.10) 9.9×10
-6

 26% 

Fat (% of total energy intake) 

Low intake group† 0.08 (0.05, 0.11) 6.7×10
-7

 24% 
0.00 (-0.05, 0.05) 0.89 0% 

High intake group† 0.07 (0.03, 0.10) 4.1×10
-5

 34% 
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Figure Legend 

 

Figure 1 Forest plot of the association between FTO SNP rs9939609 and total energy intake in a 

fixed effects meta-analysis of 16,097 children and adolescents 

The studies are shown in boys (_B), girls (_G) or mixed, cases (_Case) and controls (_Control) 

for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the 

difference in total energy intake per minor allele of SNP rs9939609 or a proxy (r
2
=1), adjusted 

for age, pubertal status (if available), physical activity (if available), region (if available) and 

eigenvectors (GWAS data only). 

 

Figure 2 Forest plot of the interaction between FTO SNP rs9939609 and dietary protein intake 

on BMI in a fixed effects meta-analysis of 16,097 children and adolescents 

The studies are shown in boys (_B), girls (_G) or mixed, cases (_Case) and controls (_Control) 

for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the 

difference in BMI per minor allele of SNP rs9939609 or a proxy (r
2
=1) comparing participants in 

the high protein intake group to those in the low protein intake group, adjusted for age, pubertal 

status (if available), physical activity (if available), region (if available) and eigenvectors 

(GWAS data only). 
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Heterogeneity between groups: p = 0.525
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Supplemental Tables and Figures 

Supplemental Table 1 Basic information of studies participating in the analysis 

Study 
Study design Race/ethnic group 

No. of participants Country 

and Region 
References 

Short name Full name All Boys Girls 

ALSPAC Avon Longitudinal Study of Parents and Children Birth cohort Caucasian 5561 2759 2802 UK, Europe (1) 

APEX Adiposity Prevention through Exercise study 

School-based 

cross-sectional 

study 

African American 250 117 133 
USA, North 

America 
(2) 

BAMSE 
The  Children, Allergy, Milieu, Stockholm, 

Epidemiology  Study 

Birth cohort / 

nested case-control 

study 

Caucasian 477 266 211 
Sweden, 

Europe 
(3) 

GENDAI 
Gene and Diet Attica Investigation on Childhood 

Obesity 

School-based 

cross-sectional 

study 

Caucasian 825 385 440 
Greece, 

Europe 
(4) 

GENESIS 
Growth, Exercise and Nutrition Epidemiological Study 

in preSchoolers 

Population-based 

cross-sectional 

study 

Caucasian 1733 902 831 
Greece, 

Europe 
(5) 

GENR The Generation R Study Birth cohort Caucasian 1404 715 689 
Netherlands, 

Europe 
(6) 

GINI/LISA 

German Infant Study on The Influence of Nutrition 

Intervention PLUS Environmental and Genetic 

Influences on Allergy Development/Life-Style Factors 

on The Development of The Immune System and 

Allergies in East and West Germany PLUS The 

Influence of Traffic Emissions and Genetics 

Birth cohort Caucasian 1999 1031 968 
Germany, 

Europe 
(7; 8) 

LACHY 
Lifestyle, Adiposity and Cardiovascular Health in 

Youths Study 

School-based 

cross-sectional 

study 

Caucasian 257 124 133 USA, North 

America 
(2) 

African American 228 91 137 

LEIPZIG Leipzig Childhood Cohort Population-based Caucasian 280 134 146 
Germany, 

Europe 
(9) 

PANIC The Physical Activity and Nutrition in Children 
Population-based 

intervention study 
Caucasian 409 209 200 

Finland, 

Europe 
(10) 

SHUNAN Shunan Child Cohort Study Case-control study Asian 267 140 127 Japan, Asia (11) 

SWS Southampton Women's Survey Birth cohort Caucasian 1112 579 533 UK, Europe (12) 

STRIP Special Turku Coronary Risk Factor Intervention Project Intervention study Caucasian 511 261 250 
Finland, 

Europe 
(13) 

TEENAGE 
TEENs of Attica: Genes and Environment study on 

Greek Adolescents 

School-based 

cross-sectional 

study 

Caucasian 784 354 430 
Greece, 

Europe 
(14) 

 

  

Page 38 of 62Diabetes



Supplemental Table 2 Study-specific characteristics for studies participating in the meta-analysis 
Study Gender N Age, yr BMI, kg/m2 Energy, kcal/d Protein, g/d Protein, % Carbohydrate, g/d Carbohydrate, % Fat, g/d Fat, % 

ALSPAC 
Boys 2759 10.1 (0.3) 18.1 (3.0) 1944.3 (394.8) 65.5 (16.2) 13.6 (2.5) 260.6 (56.8) 53.7 (5.5) 78.4 (20.8) 36.1 (4.9) 

Girls 2802 10.1 (0.3) 18.3 (3.1) 1770.0 (349.7) 58.3 (14.1) 13.3 (2.5) 235.9 (51.0) 53.4 (5.4) 72.5 (18.4) 36.7 (4.7) 

APEX 
Boys 117 9.8 (1.0) 20.4 (4.9) 1867.5 (692.7) 69.6 (32.2) 14.9 (4.1) 229.0 (85.5) 49.9 (8.6) 76.3 (33.4) 36.0 (6.5) 

Girls 133 9.4 (0.9) 21.1 (5.3) 1705.0 (584.9) 55.6 (20.2) 13.2 (2.8) 229.5 (85.7) 53.8 (6.3) 64.9 (24.8) 34.1 (5.1) 

BAMSE_Case 
Boys 148 8.4 (0.5) 17.2 (1.8) 1895.2 (476.5) 74.4 (21.0) 15.7 (2.1) 252.3 (62.5) 53.4 (4.6) 65.2 (19.9) 30.8 (3.9) 

Girls 87 8.3 (0.4) 17.4 ( 2.2) 1823.9 (415.1) 72.7 (17.9) 16.1 (2.6) 242.1 (62.6) 52.9 (7.2) 62.6 (17.0) 31.0 (5.9) 

BAMSE_Control 
Boys 118 8.3 (0.5) 17.2 (2.0) 1926.2 (456.4) 75.9 (20.2) 15.7 (1.7) 256.0 (62.5) 53.3 (4.1) 66.4 (18.2) 31.0 (3.7) 

Girls 124 8.2 (0.5) 16.9 ( 1.7) 1838.6 (409.4) 73.6 (17.8) 16.1 (1.9) 243.7 (58.7) 53.0 (3.9) 63.2 (16.0) 30.9 (3.7) 

GENDAI 
Boys 385 11.2 (0.7) 20.3 (3.5) 2012.6 (630.7) 75.3 (27.1) 15.0 (3.0) 225.9 (78.0) 45.1 (8.0) 89.1 (30.3) 40.5 (6.8) 

Girls 440 11.2 (0.6) 19.7 (3.4) 1792.8 (554.8) 66.2 (22.8) 15.0 (3.5) 204.3 (69.1) 45.8 (7.4) 78.6 (27.5) 39.8 (6.5) 

GENESIS 
Boys 902 3.4 (0.9) 16.2 (1.6) 1208.5 (267.0) 50.1 (13.3) 16.6 (2.6) 136.6 (34.4) 45.4 (6.6) 54.1 (15.1) 40.1 (5.5) 

Girls 831 3.4 (0.9) 16.2 (1.6) 1160.4 (249.3) 48.0 (12.5) 16.5 (2.6) 131.4 (32.1) 45.5 (6.6) 52.0 (15.1) 40.1 (5.4) 

GENR 

All 1404 1.1 (0.1) 17.2 (1.3) 1308.9 (352.9) 41.8 (11.6) 12.9 (2.4) 192.1 (51.2) 59.0 (5.7) 41.3 (15.9) 28.0 (5.3) 

Boys 715 1.1 (0.1) 17.4 (1.3) 1346.9 (357.3) 43.1 (12.1) 12.9 (2.4) 197.6 (51.5) 59.0 (5.8) 42.6 (16.3) 28.0 (5.4) 

Girls 689 1.1 (0.1) 17.1 (1.3) 1269.6 (344.2) 40.5 (11.1) 12.9 (2.4) 186.4 (50.2) 59.0 (5.6) 40.1 (15.4) 28.0 (5.1) 

GINI/LISA 
Boys 1031 10.8 (0.5) 17.3 (2.5) 2217.8 (677.2) 81.2 (29.9) 14.5 (2.4) 295.8 (84.0) 54.0 (6.5) 75.7 (31.8) 30.2 (5.7) 

Girls 968 10.9 (0.5) 17.3 (2.4) 1883.5 (531.6) 68.3 (23.0) 14.5 (2.4) 256.2 (71.6) 54.8 (6.2) 62.6 (24.2) 29.5 (5.5) 

LACHY_White 
Boys 124 16.2 (1.2) 22.1 (4.0) 2306.2 (566.4) 81.3 (22.8) 14.3 (2.8) 305.3 (83.2) 53.7 (6.4) 86.2 (26.9) 32.7 (4.9) 

Girls 133 16. 1 (1.1) 22.1 (3.9) 1713.4 (530.7) 56.4 (18.1) 13.5 (2.7) 235.9 (74.9) 55.8 (6.2) 62.9 (23.3) 32.1 (5.0) 

LACHY_AA 
Boys 91 15.9 (1.1) 22.6 (4.6) 2057.0 (517.2) 71.9 (19.9) 14.0 (2.3) 266.3 (78.3) 52.3 (5.6) 80.1 (21.5) 34.5 (4.2) 

Girls 137 16.4 (1.3) 24.7 (6.0) 1634.4 (511.5) 53.3 (17.1) 13.4 (2.9) 216.8 (72.3) 53.8 (6.6) 63.3 (23.2) 33.9 (4.9) 

LEIPZIG 
Boys 134 11.9 (3.2) 20.27 (5.3) 2145.5 (502.1) 75.5 (19.1) 14.2 (2.6) 250.2 (66.7) 46.7 (6.5) 90.0 (28.4) 37.7 (6.2) 

Girls 146 11.8 (3.2) 20.6 (5.9) 1952.6 (444.0) 67.5 (18.2) 13.9 (2.4) 230.0 (61.1) 47.2 (7.3) 81.4 (24.9) 37.3 (6.8) 

PANIC 
Boys 209 7.6 (0.4) 16.1 (1.9) 1728.0 (311.2) 72.3 (15.6) 16.8 (2.6) 223.0 (47.5) 51.6 (5.4) 58.1 (14.6) 30.2 (5.1) 

Girls 200 7.6 (0.4) 16.1 (2.2) 1554.9 (285.7) 64.2 (12.4) 16.7 (2.3) 202.6 (40.3) 52.2 (4.9) 51.8 (15.0) 29.8 (5.1) 

SHUNAN_Case 
Boys 77 11.9 (1.5) 23.3 (2.6) 2422.5 (644.3) 81.2 (23.6) 13.5 (2.0) 345.3 (105.7) 56.7 (6.0) 75.1 (22.4) 28.1 (4.9) 

Girls 53 11.9 (1.5) 23.6  (2.8) 1017.2 (563.9) 71.4 (23.1) 14.3 (2.4) 272.4 (84.4) 53.9 (6.2) 68.5 (24.2) 30.6  (5.1) 

SHUNAN_Control 
Boys 63 12.2 (1.5) 17.4 (1.7) 2335.7 (643.0) 82.8 (24.8) 14.2 (1.8) 313.1 (90.0) 53.6  (5.7) 79.8 (26.1) 30.7 (4.8) 

Girls 74 11.9 1.5) 17.8 (2.0) 1976.6 (530.0) 71.7 (19.8) 14.6 (1.9) 261.2 (88.4) 52.5 (5.7) 68.9 (17.3) 31.7 (4.6) 

STRIP_Int 

 

Boys 128 9.0 (0.0) 16.5 (1.9) 1730.2 (229.8) 69.4 (14.8) 16.1 (2.4) 227.9 (39.6) 52.9 (5.3) 56.5 (15.6) 29.6 (4.8) 

Girls 118 9.0 (0.0) 16.7 (2.0) 1550.9 (296.6) 62.5 (13.0) 16.3 (2.8) 206.5 (53.1) 53.3 (4.7) 50.4 (13.8) 29.0 (4.6) 

STRIP_Control 
Boys 133 9.0 (0.0) 16.5 (2.2) 1831.6 (329.7) 72.0 (14.5) 15.8 (2.3) 233.4 (44.5) 51.1 (5.2) 65.0 (18.3) 31.7 (5.1) 

Girls 132 9.0 (0.0) 17.2 (2.8) 1604.3 (302.8) 62.8 (13.6) 15.8 (2.3) 203.4 (40.0) 50.9 (5.1) 57.5 (15.6) 32.0 (5.1) 

SWS 
Boys 579 3.1 (0.1) 16.4 (1.3) 1642.7 (394.2) 57.7 (15.6) 14.1 (1.9) 225.7 (57.1) 55.0 (5.6) 62.0 (18.2) 33.8 (4.6) 

Girls 533 3.1 (0.1) 16.4 (1.6) 1554.9 (386.8) 55.2 (14.8) 14.3 (2.0) 210.6 (56.9) 54.7 (5.7) 59.7 (17.8) 34.5 (4.6) 

TEENAGE 
Boys 354 13.4 (0.8) 21.5 (3.7) 2017.3 (625.5) 76.5 (25.8) 15.2 (2.8) 221.3 (78.2) 44.2 (7.7) 91.6 (31.9) 41.0 (6.9) 

Girls 430 13.5 (0.9) 21.1 (3.3) 1590.4 (509.0) 58.5 (21.3) 14.6 (3.2) 183.3 (69.5) 45.4 (8.4) 74.0 (30.5) 40.0 (7.3) 

Data are means (SD). 

AA: African American. 

Page 39 of 62 Diabetes



Supplemental Table 3 Methods used for measuring BMI and dietary intakes for studies participating in the meta-analysis 

Study Anthropometric measurement 

Dietary intake measurement Time interval 

between 
anthropometric and 

dietary intake 

measurements 

Measurement Description 

ALSPAC 

Height was measured to the last complete mm with the use of a 
Harpenden stadiometer (Holtain Ltd, Crosswell, UK) while the 

child was not wearing shoes or socks, and weight was measured 

with the use of a body fat analyzer and weighing scales (Tanita 
TBF 305; Tanita UK Ltd, Yiewsley, UK). 

Dietary 
Records 

Three-day dietary records were collected from the whole cohort between February 2002 and 

October 2003 when the child was aged 10-11 years. The diary was checked by a nutritionist 

and the diet records were coded using Diet in, Diet out (DIDO). The coded data were 
converted to nutrient intakes by using a databased derived from McCance and Widdowson's 

Composition of Foods (5th edition), augmented with manufacturers' information and 

information from the nutrient database used by the National Diet and Nutrition survey.(1) 

Dietary data, was 
collected one week 

before the 

anthropometric 
measurements 

APEX 
Height and weight were measured by standard methods using a 

wall-mounted stadiometer and a digital scale, respectively. 
24-h recall 

Free-living diet was measured with individual, non-consecutive, 24-h recalls that covered the 
period from midnight to midnight of the previous day. In the APEX study, two 24-h diet 

recalls were obtained from each participant. 

Within two weeks 

BAMSE 

Weight was measured without shoes and with light indoor 

clothes to the nearest 0.1 kg, using an electronic scale. Height 
was measured twice without shoes to the nearest 0.1 cm, using a 

wall-mounted wooden stadiometer. 

FFQ 

Parents together with their child answered a food-frequency questionnaire with 98 food items 
and beverages commonly consumed in Sweden. Children were asked how often, on average, 

they had consumed each type of food or beverage during the past 12 months. There were ten 

pre-specified response categories that ranged from never to three or more times per day. The 
food-frequency questionnaire was transformed into nutrients by multiplying the frequency of 

consumption of each food item by its nutrient content per serving, using composition values 

obtained from the Swedish National Food Administration Database, and summarized over 
foods and beverages. 

Anthropometrics and 

dietary intake were 
measured 

concurrently 

GENDAI 
Physical measurements of body weight and height were obtained 
in light clothing without shoes. 

24-h recall 

Dietary information was collected via two non-consecutive 24-h recalls. The second dietary 

recall was always conducted on a different day of the week from the first interview, 3–10 

days after the first recall, to calculate usual nutrient intake. The 24-h recall data were 
analyzed using Nutritionist Pro software, version 2.2 (Axxya Systems-Nutritionist Pro, 

Stafford, TX, USA). The Nutritionist Pro food database was expanded by adding analyses of 
traditional Greek foods and recipes, and nutrient information for local processed food items 

(mainly snack foods, sweets, and fast foods) as shared by industry. 

Anthropometrics and 

dietary intake were 
measured 

concurrently 

GENESIS 

Body weight was recorded to the nearest 10 gr with the use of a 

Seca digital scale and with subjects standing without shoes in the 
minimum clothing possible. Recumbent length was measured for 

all subjects to the nearest 0.1 cm with a portable measuring 

wooden board that had a stationary head piece, a sliding vertical 
foot piece and a horizontal back piece with a measure tape 

mounted on it. Further to recumbent length, standing height was 

also measured to the nearest 0.1 cm in children older than two 
years of age, with the use of a commercial stadiometer (Leicester 

Height Measure). 

Food records + 
24-h recall 

Intake data were obtained for 3 days (2 consecutive weekdays and 1 weekend day) using a 

combination of techniques comprising weighed food records (during nursery hours) and 24 h 

recall or food diaries (outside nurseries and under parental supervision). 

Food records: same 

day; 24-h recall: 

within one week 

GENR 

Anthropometrics were measured by well-trained staff in 
community health centers using standardized procedures at the 

ages of 2, 3, 4, 6, 11, 14, 18, 24, 30, 36 and 48 month. Length 

was measured in a supine position to the nearest millimeter until 
the age of 12 months with a neonatometer, after which height 

was measured in standing position with a Harpenden stadiometer 

(Holtain Ltd, Dyfed, United Kingdom). Weight was measured 
with a mechanical personal scale. 

FFQ 

The FFQ was developed on the basis of an existing validated food questionnaire described in 
detail previously,(15) and modified according to foods frequently consumed in the Dutch 

food consumption survey among infants aged 9-18 months of which foods contributing 

≥0.1% of the total consumption of energy, protein, fat, carbohydrates and dietary fibre were 
incorporated in the FFQ. The final FFQ consisted of 211 food items and included questions 

on the frequency of consumption of these food items over the last month, the amount and 

type of the food items, and preparation methods. Portion sizes in grams per day were 
estimated using standardised household measures. To calculate nutrient intake the Dutch 

food composition Table 2006 was used. A validation study comparing the FFQ against three-

day 24h recalls in a representative sample showed intra-class correlation coefficients for 
macronutrients between 0.4 and 0.7.(16) 

 
Mean (SD):  

0.42 (2.06) months 

Range:  
-1.91 to 4.22 months 

GINI/LISA 

Measured (n=1822): Height was measured with light clothing 

and no shoes to the nearest 0.1cm; Weight was measured 
wearing underwear to the nearest 0.1kg. Self-reported (n=177): 

Parents were asked to report children’s height to the nearest 1cm 

and weight to the nearest 1kg without shoes and wearing light 
clothing. 

FFQ 

A food frequency questionnaire (FFQ) was developed to measure children’s usual food and 

nutrient intake over the past year, and more specifically to estimate energy, fatty acid and 
antioxidant intake at 10 years of age.(17) The FFQ comprised a list of 82 food items 

accompanied by several questions about the preferred fat and energy content of products, 

preparation methods, diets and food preferences, buying habits and dietary supplement use. 
The consumption frequencies and portion size estimates were converted to average 

Mean (SD):  

31 (26) weeks 
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consumption in grams per day and linked to the German Nutrient Data Base (BLS) version 

II.3.1. 

LACHY 
Height and weight were measured by standard methods using a 

wall-mounted stadiometer and a digital scale, respectively. 
24-h recall 

Free-living diet was measured with individual, non-consecutive, 24-h recalls that covered the 
period from midnight to midnight of the previous day. We sought to obtain seven recalls 

from each participant, one of each day of the week and only those subjects that provided at 

least four recalls were included in the analysis.(18) 

Anthropometrics and 
dietary intake were 

measured 

concurrently 

LEIPZIG 
Height and weight were measured by standard methods using a 

wall-mounted stadiometer and a digital scale, respectively. 
EBIS pro Quantitative analyses of food diaries over 4 days applying EBIS pro. 

Anthropometrics and 

dietary intake were 

measured 
concurrently 

PANIC 

Trained research staff measured the body 

height by a wall-mounted stadiometer in the Frankfurt plane 

without shoes. Body height was measured three times to an 
accuracy of 0.1 cm, and the mean of the nearest two values was 

used for the analyses. Body weight was measured to an accuracy 

of 0.1 kg using the InBody 720 device (Biospace, Seoul, Korea), 
after overnight fasting, empty-bladdered and standing in light 

underwear. 

 

Food Records 

Dietary intake was assessed by food records of four consecutive days that consisted of two 

weekdays and two weekend days (99.5% of children), or three weekdays and one weekend 

day (0.5% of children). The parents were instructed to record all food and drink consumption 
of their children and to ask their children about their food consumption outside home. The 

schools and afterschool clubs were asked about the type and preparation of the served food. 

When the parents returned the records, clinical nutritionists checked the records and filled in 
missing information with them. The food records were analyzed using the Micro Nutrica 

dietary analysis software (version 2.5, The Social Insurance Institution of Finland, Turku, 

Finland). 

Mean (SD):  
24 (27) days 

SHUNAN 

The height and body weight were measured from April through 

June by school nurses during annual medical checkups, in 

accordance with the Japanese School Health Law. Height was 
measured to the nearest 0.1 cm while the students stood 

barefooted, and body weight was measured to the nearest 0.1 kg 

while the students wore light clothing and no footwear.  

BDHQ 
Brief-type self-administered diet history questionnaire (BDHQ) was used for assessment of 
food intake in a previous month.(19) 

Mean (SD):  

20.9 (12.3) days 
Range: 

-68 to 41days 

SWS 
Weight was measured with Seca scales and height using a 
Leicester height measurer. 

FFQ 

Diet was assessed using an eighty-item FFQ that was administered by trained research 
nurses.(20) The list of food and beverage items was compiled from a review of dietary intake 

data collected from a nationally representative sample of children aged 3 years, SWS infants 
and SWS women and 3-year-olds in the Avon Longitudinal Study of Pregnancy and 

Childhood. The FFQ asked how often in the last 3 months the child had consumed each of 

the food and beverage items 

Anthropometrics and 

dietary intake were 
measured 

concurrently 

STRIP 

Weight was measured to the nearest 0.1 kg with an electronic 
scale (S10; Soehnle, Murrhardt, Germany) at each visit. Height 

was measured to the nearest millimetre with a wall-mounted 

Harpenden stadiometer (Holtain, Crymych, UK).  

Food records 

Families kept food records of the children's food intake for four consecutive days (including 
at least one weekend day). Food records were reviewed by a nutritionist for comleteness and 

accuracy. Nutrient intakes were analyzed by using Micro Nutrica® programme developed at 

the Research and Development Centre of Social Insurance Institution, Turku, Finland. 

Dietary data was 
collected 1-2 weeks 

prior to measurement 

of weight and height 

TEENAGE 

Body weight was measured to the nearest 0·1 kg, with the 

participants barefoot and dressed in light clothing, by the use of a 

weighing scale (Seca Alpha, Hamburg, Germany). Height was 
measured to the nearest 0·1 cm using a portable stadiometer 

while the participants were barefoot with their shoulders in a 

relaxed position, their arms hanging freely and their head in a 
normal position, with the eyes looking straight ahead. 

24-hour recall 

Dietary information was collected via two non-consecutive 24-h recalls. The second dietary 

recall was always conducted on a different day of the week from the first interview, 3–10 

days after the first recall, to calculate usual nutrient intake. The 24-h recall data were 
analyzed using Nutritionist Pro software, version 2.2 (Axxya Systems-Nutritionist Pro, 

Stafford, TX, USA). The Nutritionist Pro food database was expanded by adding analyses of 

traditional Greek foods and recipes, and nutrient information for local processed food items 
(mainly snack foods, sweets, and fast foods) as shared by industry. 

Within 10 days 
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Supplemental Table 4 Genotyping methods and quality control for the FTO SNPs in all studies participating in the meta-analysis 

Study SNP r2 
Genotyped 

or imputed 

Imputation 

quality 
Method 

Minor 

allele 

Boys Girls 

MAF 
Call 
rate 

PHWE 
Concordance 

rate 
MAF 

Call 
rate 

PHWE 
Concordance 

rate 

ALSPAC rs9939609 - Imputed 1 
Illumina 550k Custom Chip;  

MACH (version 1.0.15) 
A 0.39 >0.95 - >0.80 0.39 >0.95 - >0.80 

APEX* rs9939609 - Genotyped - Taqman SNP Genotyping Assay A 0.48 0.99 0.92 1 0.48 0.99 0.92 1 

BAMSE* rs8050136 1 Genotyped - Illumina 610 Quad Array A 0.42 1 0.56 - 0.42 1 0.56 - 

GENDAI rs9939609 - Genotyped - Taqman SNP Genotyping Assay A 0.43 >0.96 0.01 >0.99 0.42 >0.96 0.84 >0.99 

GENESIS rs17817449 1 Genotyped - RFLP method G 0.43 0.94 0.13 1 0.43 0.94 0.60 1 

GENR* rs9939609 - Imputed 1 
Illumina 610 Quad Array;  

MACH (version 1.0.15) 
A 0.27 1 0.99 - 0.27 1 0.99 - 

GINI/LISA* rs9935401 1 Genotyped - iPLEX™ Gold Assay G 0.4 0.97 0.81 >0.95 0.4 0.97 0.81 >0.95 

LACHY* rs9939609 - Genotyped - Taqman SNP Genotyping Assay A 0.45 0.99 0.34 1 0.45 0.99 0.34 1 

LEIPZIG rs17817449 1 Genotyped - Taqman SNP Genotyping Assay C 0.46 - 0.25 1 0.52 - 0.99 1 

PANIC rs9939609 - Genotyped - Illumina MetaboChip Array A 0.37 - 0.81 - 0.40 - 0.81 - 

SHUNAN_Case rs9939609 - Genotyped - Taqman SNP Genotyping Assay A 0.30 1 0.84 - 0.35 1 0.24 - 

SHUNAN_Control rs9939609 - Genotyped - Taqman SNP Genotyping Assay A 0.21 1 0.28 - 0.15 1 0.09 - 

SWS rs9939609 - Genotyped  Kbioscience A 0.41 0.97 0.59 1 0.42 0.97 0.59 1 

STRIP _Int rs9939609 - Genotyped - Illumina MetaboChip Array A 0.38 1 0.45 1 0.39 1 0.26 1 

STRIP _Control rs9939609 - Genotyped - Illumina MetaboChip Array A 0.43 1 0.88 1 0.45 1 0.13 1 

TEENAGE rs9939609 - Genotyped - iPLEX™ Gold Assay A 0.45 0.96 0.75 - 0.41 0.99 0.02 - 

r
2
: correlation with rs9939609; MAF: minor allele frequency; PHWE: P-values for Hardy–Weinberg equilibrium. 

*These studies provided data in boys and girls combined. 
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Supplemental Table 5 Associations of FTO SNP rs9939609 or a proxy with intakes of total energy, protein, carbohydrate and fat in a random effects meta-analysis of 16,097 

children and adolescents* 

 Total energy (kcal/day) Protein (% of energy) Carbohydrate (% of energy)  Fat (% of energy) 

 Beta (95% CI) P I
2
 Beta (95% CI) P I

2
 Beta (95% CI) P I

2
 Beta (95% CI) P I

2
 

All 14.6 (6.2,  23.1) 0.001 0% 0.0 (-0.1, 0.0) 0.10 0% 0.0 (-0.2, 0.2) 0.82 24% 0.0 (-0.1, 0.2) 0.71 34% 

 Whites 14.0 (5.5, 22.5) 0.001 0% 0.0 (-0.1, 0.0) 0.13 0% 0.0 (-0.2, 0.2) 0.90 30% 0.1 (-0.1, 0.2) 0.41 32% 

 African Americans 9.7 (-66.1, 85.6)  0.80 14% -0.2 (-0.6, 0.2) 0.36 0% 1.1 (0.2, 2.0) 0.02 0% -0.8 (-1.5, -0.1) 0.02 0% 

 Asians 157.2 (34.4, 280.0) 0.01 0% 0.0 (-0.5, 0.4) 0.87 0% 0.0 (-0.5, 0.4) 0.87 0% 0.3 (-1.0, 1.5) 0.65 34% 

*Data are beta coefficients (95% CI) per minor allele of rs9939609 or a proxy (r
2
>0.8) for each trait, adjusting for age, physical activity (if available), region (if available) and 

eigenvectors (GWAS data only). Analyses from individual studies were conducted separately, and then combined by meta-analysis of 16,097 children and adolescents (15,352 

Whites, 478 African Americans, and 267 Asians). 
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Supplemental Table 6 Associations between dietary intake and BMI  

 Beta (95% CI)* P I
2
 

Total energy (kcal/day)     

  All 0.04 (0.01, 0.07) 0.004 57% 

  Whites 0.05 (0.02, 0.08) 0.001 57% 

  African Americans -0.18 (-0.37, 0.02) 0.07 63% 

  Asians -0.04 (-0.20 0.12) 0.59 0% 

Protein (% of energy)     

  All 0.09 (0.07, 0.12) 5.0×10
-10

 68% 

  Whites 0.09 (0.06, 0.12) 4.1×10
-9

 72% 

  African Americans 0.27 (0.08, 0.46) 0.005 0% 

  Asians 0.04 (-0.12, 0.20) 0.63 35% 

Carbohydrate (% of energy)    

  All -0.02 (-0.05, 0.01) 0.12 54% 

  Whites -0.02 (-0.05, 0.01) 0.19 58% 

  African Americans -0.21 (-0.41, -0.02) 0.03 0% 

  Asians -0.04 (-0.12, 0.20) 0.63 35% 

Fat (% of energy)    

  All -0.03 (-0.06, -0.001) 0.04 53% 

  Whites -0.03 (-0.06, -0.000) 0.05 56% 

  African Americans -0.10 (-0.29, 0.09) 0.32 55% 

  Asians 0.00 (-0.16, 0.16) 0.97 51% 

*Beta represents SD difference in BMI (kg/m
2
) comparing the high intake group to the low intake group (dichotomized at median of 

respective dietary intake variable), adjusted for age, physical activity (if available), region (if available) and eigenvectors (GWAS data 

only). 

Page 44 of 62Diabetes



Supplemental Table 7 Interaction between FTO SNP rs9939609 or a proxy and dietary intakes on BMI in a random effects meta-analysis of 16,097 children and adolescents* 

 High dietary intake group† Low dietary intake group† Interaction effect 

 Beta (95% CI) P I
2
 Beta (95% CI) P I

2
 Beta (95% CI) P I

2
 

Total energy (kcal/day)          

All 0.05 (0.01, 0.09) 0.02 25% 0.07 (0.03, 0.11) 0.001 25% -0.03 (-0.07, 0.02) 0.20 0% 

 Whites 0.06 (0.02, 0.10) 0.006 25% 0.08 (0.03, 0.12) 0.002 38% -0.03 (-0.07, 0.02) 0.30 5% 

 African Americans -0.19 (-0.39, 0.01) 0.06 0% -0.07 (-0.26, 0.13) 0.49 0% -0.13 (-0.41, 0.15) 0.37 0% 

 Asians 0.02 (-0.18, 0.22) 0.86 0% 0.01 (-0.18, 0.20) 0.93 0% 0.02 (-0.18, 0.21) 0.84 0% 

Protein (%)          

All 0.09 (0.04, 0.13) 3.3×10
-4

 34% 0.04 (0.01, 0.07) 0.02 0% 0.08 (0.03, 0.12) 0.001 0% 

 Whites 0.10 (0.06, 0.15) 1.7×10
-5

 35% 0.04 (0.01, 0.07) 0.02 0% 0.07 (0.03, 0.12) 0.001 0% 

 African Americans -0.13 (-0.35, 0.09) 0.26 0% -0.08 (-0.27, 0.11) 0.39 14% -0.02 (0.34, 0.31) 0.93 23% 

 Asians -0.07 (-0.26, 0.12) 0.48 0% 0.17 (-0.06, 0.39) 0.14 0% 0.17 (-0.04, 0.37) 0.11 0% 

Carbohydrate (%)          

All 0.06 (0.02, 0.10) 0.005 26% 0.07 (0.03, 0.11) 0.001 20% 0.00 (-0.05, 0.05) 0.95 15% 

 Whites 0.07 (0.03, 0.11) 0.001 29 0.08 (0.03, 0.12) 0.001 28% -0.01 (-0.07, 0.05) 0.72 16% 

 African Americans -0.03 (-0.24, 0.19) 0.82 25% -0.12 (-0.3,3 0.08) 0.24 0% 0.03 (-0.30, 0.36) 0.86 26% 

 Asians -0.07 (-0.26, 0.12) 0.48 0% 0.17 (-0.06, 0.39) 0.14 0% 0.17 (-0.04, 0.37) 0.11 0% 

Fat (%)          

All 0.06 (0.01, 0.10) 0.01 28% 0.07 (0.03, 0.12) 0.001 26% 0.00 (-0.05, 0.04) 0.89 0% 

 Whites 0.07 (0.03, 0.11) 0.001 25% 0.08 (0.03, 0.13) 0.002 39% -0.01 (-0.06, 0.05) 0.86 18% 

 African Americans -0.10 (-0.29, 0.09) 0.31 0% -0.07 (-0.27, 0.13) 0.48 0% -0.01 (-0.29, 0.27) 0.94 0% 

 Asians -0.11 (-0.35, 0.12) 0.35 34% 0.15 (-0.08, 0.38) 0.21 0% 0.12 (-0.08, 0.33) 0.24 0% 

*Data are beta (95% CI) per minor allele of rs9939609 or a proxy (r
2
>0.8) for BMI (z-score), adjusted for age, physical activity (if available), region (if available) and eigenvectors 

(GWAS data only). Analyses from individual studies were conducted separately, and then combined by meta-analysis of 16,097 children and adolescents (15,352 Whites, 478 

African Americans, and 267 Asians). 

†High and low intake groups were defined by medians for each dietary intake variable. 
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Supplemental Figure 1 Association between FTO rs9939609 SNP or a proxy and total energy intake in a fixed 

effects meta-analysis of 16,097 children and adolescents stratified by study characteristics.  

 

Meta-analyses were stratified by geographic region, gender (one study with mixed data were not included), age 

group, sample size, study design, measurement of dietary intake, or adjustment for physical activity. The beta 

represents the difference in total energy intake (kcal/day) per minor allele of SNP rs9939609 or a proxy (r
2
=1), 

adjusted for age, physical activity (if available), region (if available) and eigenvectors (GWAS data only). 
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Supplemental Figure 2 Forest plot of the association between FTO rs9939609 SNP or a proxy and protein 

intake in a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in protein 

intake (% of energy) per minor allele of SNP rs9939609 or a proxy (r
2
=1), adjusted for age, physical activity (if 

available), region (if available) and eigenvectors (GWAS data only).  
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Supplemental Figure 3 Forest plot of the association between FTO rs9939609 SNP or a proxy and 

carbohydrate intake in a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in 

carbohydrate intake (% of energy) per minor allele of SNP rs9939609 or a proxy (r
2
=1), adjusted for age, 

physical activity (if available), region (if available) and eigenvectors (GWAS data only). 
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Supplemental Figure 4 Forest plot of the association between FTO rs9939609 SNP or a proxy and fat intake in 

a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in fat intake 

(% of energy) per minor allele of SNP rs9939609 or a proxy (r
2
=1), adjusted for age, physical activity (if 

available), region (if available) and eigenvectors (GWAS data only). 

  

Page 52 of 62Diabetes



16 

 

  

 

Page 53 of 62 Diabetes



17 

 

Supplemental Figure 5 Interaction between FTO rs9939609 SNP or a proxy and protein intake on BMI in a 

fixed effects meta-analysis of 16,097 children and adolescents stratified by study characteristics.  

 

Meta-analyses were stratified by geographic region, gender (one study with mixed data were not included), age 

group, sample size, study design, measurement of dietary intake, or adjustment for physical activity. The beta 

represents the difference in BMI per minor allele of SNP rs9939609 or a proxy (r
2
=1) comparing participants in 

the high protein intake group to those in the low protein intake group, adjusted for age, physical activity (if 

available), region (if available) and eigenvectors (GWAS data only). 
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Supplemental Figure 6 Forest plot of the interaction between FTO rs9939609 SNP or a proxy and total energy 

intake on BMI in a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in BMI per 

minor allele of SNP rs9939609 or a proxy (r
2
=1) comparing participants in the high energy intake group to 

those in the low energy intake group, adjusted for age, physical activity (if available), region (if available) and 

eigenvectors (GWAS data only). 
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Supplemental Figure 7 Forest plot of the interaction between FTO rs9939609 SNP or a proxy and 

carbohydrate intake on BMI in a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in BMI per 

minor allele of SNP rs9939609 or a proxy (r
2
=1) comparing participants in the high carbohydrate intake group 

to those in the low carbohydrate intake group, adjusted for age, physical activity (if available), region (if 

available) and eigenvectors (GWAS data only). 
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Supplemental Figure 8 Forest plot of the interaction between FTO rs9939609 SNP or a proxy and fat intake on 

BMI in a fixed effects meta-analysis of 16,097 children and adolescents 

 

The studies are shown in boys (_B), girls (_Y) or mixed (GENR study only), cases (_Case) and controls 

(_Control) for case-control studies, and whites (_W) and African Americans (_AA) for studies with multiple 

ethnicities separately, sorted by sample size (smallest to largest). The beta represents the difference in BMI per 

minor allele of SNP rs9939609 or a proxy (r
2
=1) comparing participants in the high fat intake group to those in 

the low fat intake group, adjusted for age, physical activity (if available), region (if available) and eigenvectors 

(GWAS data only). 
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