Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function

Sho Kobayashi^{1, 2, 3}, Mami Sato¹, Takayuki Kasakoshi¹, Takumi Tsutsui¹, Masahiro Sugimoto⁴, Mitsuhiko Osaki^{5, 6}, Futoshi Okada^{5, 6}, Kiharu Igarashi¹, Jun Hiratake⁷, Takujiro Homma⁸, Marcus Conrad³, Junichi Fujii⁸, Tomoyoshi Soga⁴, Shiro Bannai¹, and Hideyo Sato^{1, 2, 9*}

- ¹Department of Food and Applied Life Sciences, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
- ²Department of Functional Genomics and Biotechnology, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- ³Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- $^{\rm 4}$ Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- ⁵ Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
- ⁶ Chromosome Engineering Research Center, Tottori University, Yonago, 683-8503, Japan
- ⁷ Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ⁸Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata Univeristy, Yamagata 990-9585, Japan
- ⁹Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, Chuo-ku, Niigata 951-8518, Japan

*Corresponding author. Tel/Fax: +81-25-378-0959

E-mail: hideyo-s@clg.niigata-u.ac.jp

Background: System x_c^- is involved in various pathophysiological conditions such as neurodegenerative disorders and cancer.

Results: Extracellular cystathionine competitively inhibited cystine uptake, and could be exchanged with intracellular glutamate via system x_c .

Conclusion: Cystathionine is exclusively transported into immune tissues as the third physiological substrate of system x_c ⁻.

Significance: Cystathionine can be exchanged with glutamate to reduce extracellular glutamate levels.

The cystine/glutamate transporter, designated as system x_c-, is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system x_c-, xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues such as thymus and spleen. While cystine and glutamate are the well-established substrates of system x_c- and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analysed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged to be absent specifically in thymus and spleen of xCT-deficient mice. No expression of either cystathionine \(\theta\)-synthase cystathionine y-lyase was observed in thymus and spleen of mice. Inembryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular

accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knockout cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system x_c-, and that the accumulation of cystathionine in immune tissues exclusively mediated by system x_c -.

In mammalian cultured cells, the activity of the cystine/glutamate transporter, designated as system x_c-(1), has been shown to be essential for maintaining intracellular glutathione levels and the extracellular cystine/cysteine redox balance (2). The substrate-specific subunit of this transporter, xCT(3,4), is strongly induced by various stimuli, such as oxidative stress and electrophile agents, whereupon intracellular glutathione levels are increased. When cells are cultured in cystine-free medium or the cystine uptake via xCT is inhibited, most of cultured cells die within 24 h due to glutathione depletion (5). Thus, system x_c⁻ is thought to be one of the

adaptive cellular defense systems against oxidative stress.

xCTConstitutive of expression mRNA is observed in the specific regions of the brain such as meninges and circumventricular organs (6), and immune tissues such as thymus and spleen (7). We previously generated xCT-deficient mice and analyzed their phenotypes (8). Although mice were healthy in appearance and fertile, the plasma redox balance was shifted to a more oxidative state. We further demonstrated that xCT-deficient mice susceptible to the are more oxidative-stress inducing agent paraquat than wild-type mice, and that glutathione levels in xCT-deficient mice are lower than those wild-type mice under these conditions (9). These results indicate that xCT plays a protective role against oxidative stress in vivo and contributes to maintaining glutathione levels of tissues exposed to oxidative stress. Hence, the function of xCT is to supply cells with sufficient cysteine as a precursor of intracellular glutathione, which suggests beneficial a protective role of xCT in cell survival and function.

In the last years, it has been suggested that xCT is involved in cancer development and other diseases (10). For instance, we have demonstrated that increased

glutathione via system x_c- increases cisplatin resistance of human ovarian cancer (11). Lo et al. have reported that system x_c- plays a major role in pancreatic cancer growth and therapy resistance by enhancing glutathione synthesis (12). In this context, Ishimoto et al., have recently shown that a variant isoform of CD44, one of the cell surface markers associated with cancer stem cells, stabilizes xCT and thereby, causes a higher intracellular glutathione level in tumor cells (13). As a result, the tumor stem cells may thus acquire an increased resistance to chemo- and radiotherapy.

On the other hand, since cystine is taken up into the cell via xCT in exchange for intracellular glutamate with a molar ratio of 1:1(14), glutamate inevitably secreted from xCT-expressing cells into the extracellular space. Glutamate released via xCT has been suggested to cause glutamate excitotoxicity and/or oxidative glutamate toxicity in brain, also known as oxytosis (15). In this context, xCT has been considered to be linked to the pathology of various neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (16,17). The concentration of extracellular glutamate hippocampus seems to be related to the activity of xCT (18). Sontheimer's group provided evidence that inhibition of

system x_c⁻ restrains tumor growth in the brain and that glutamate released xCTvia acts as an essential autocrine/paracrine signal for glioma cell invasion (19,20). Savaskan et al. have shown that silencing of xCT by abrogates siRNAglioma-induced neurodegeneration and ameliorates brain edema (21). In addition to the effects in brain, glutamate released via xCT by dendritic cells may act as a novel modulator of T cell activation (22). These reports indicate that xCT is also important as a supplier of glutamate into the extracellular space.

In the present study, we sought to investigate the metabolite profile in response to the targeted loss of xCT expression in mice beyond what had already been reported on cystine and glutathione levels in plasma knockout mice (8). To this end, we performed an extended, non-targeted analysis of metabolites in several tissues of wild-type and xCT-deficient mice using capillary electrophoresis time-of-flight mass spectrometry. Remarkably, we found that xCT-deficient mice cystathionine was absent in thymus and spleen of the xCT-deficient mice as compared to control mice, whereas all other did metabolites not show any substantial differences between knockout animals. wild-type and Cystathionine is known as an intermediary metabolite in cysteine synthesis from methionine in the transsulfuration pathway, although its function in the immune system has remained enigmatic to date. We therefore investigated the possibility that cystathionine is the third physiological substrate of system x_c^- .

EXPERIMENTAL PROCEDURES

Materials

L-Cystathionine was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). All other chemicals and regents were purchased from Sigma (St. Louis, MO, USA), unless otherwise stated.

Metabolome analysis

C57BL/6J male mice (8-9 weeks old) and xCT-deficient mice (8), which had been back crossed with C57BL/6J mice for more than 10 generations, were housed at 22 °C with a 12-h alternating light-dark cycle. All mice had free access to standard rodent chow and water. Mice were anesthetized with pentobarbital, and heparinized blood was collected from the inferior vena cava. Collected blood was immediately centrifuged, and 100 µl of plasma was moved into the other tube. In all cases, frozen tissues (approximately 50 mg) were immediately plunged into methanol (500 µl) containing internal

standards (20 µM of methionine sulfone and D-camphor-10-sulfonic acid and homogenized for 3 min to inactivate the enzymes. Plasma (50 µl) was added to methanol (450 µl) containing the same internal standards and mixed without homogenizing. Then, Milli-Q water (200 ul) (Millipore, Billerica, MA) and chloroform (500 µl) were added, and the mixture was thoroughly mixed. The solution was centrifuged at $4,600 \times g$ for 15 min at 4°C and the 450 µl upper aqueous layer was filtered by centrifugation through a Millipore 5-kDa cutoff filter to remove large molecules. Plasma was centrifuged in the same manner but only for 5 min. The filtrate was lyophilized and dissolved in Milli-Q water (50 µl for tissue and 25 µl for plasma) containing a reference compound (200 µM each of 3-aminopyrrolidine and trimesate) prior to CE-TOFMS analysis. CE-TOFMS was carried out as described previously(23).

Induction of experimental hypercystahionemia

To induce experimental hypercystathionemia, male mice (8-9 weeks) were injected with propargylglycine(PPG)¹⁰, a cystathionine γ-lyase (CGL) inhibitor, diluted in saline (i.p., 50 mg/kg) daily for 3 days (24). Control male mice were injected with an equivalent volume of

saline (i.p.). After certain treatment periods, blood was collected from inferior vena cava and the liver, thymus and spleen were removed. These experiments were approved by the Animal Research Committee of Yamagata University.

Measurement of cystathionine levels in plasma, liver, thymus and spleen

Collected blood was immediately centrifuged, and 100 µL of plasma was transferred into another tube containing 10 µL of 50% sulfosalicylic acid. After 30 min in an ice bath, the mixture was stored at -20 °C until further processing. The samples were thawed and centrifuged at 10,000 × g for 15 min and the supernatant was removed. Isolated liver, thymus and spleen were weighed and immediately homogenized in 5 % trichloroacetic acid and then treated with ether to remove the acid. Then, samples were adjusted to pH2.2 with 1 M LiOH. Cystathionine levels were analyzed using the amino acid analyzer (Model L-8800, HITACHI, Japan).

Reverse transcription PCR (RT-PCR)

Total RNA from tissues and cultured cells was isolated using Isogen (Nippon gene, Toyama, Japan) by following the manufacturer's instructions.

First-strand cDNA synthesis and quantitative PCR were performed using

PrimeScript RT Reagent Kit (Takara Bio, Shiga, Japan) and SYBR® Premix Ex TaqTM (Takara Bio, Shiga, Japan) according to manufacturer's instructions. The primer sets for mouse xCT, mouse CGL, mouse cystathionine β-synthase (CBS), and mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) used for quantitative RT-PCR were 5'-CTCGTGACAGCTGTGGGCAT-3' and 5'-GGCACTAGACTCAAGAACTGTG-3', 5'-TGGATCGAGCTTTGAAGGCAGC-3' and 5'-CAGTTCTGCGTATGCTCCGTAA-3', 5'-GATTGGCTACGACTTCATCC-3' and 5'-AGTCCTTCCTGTGCGATGAG-3', and 5'-GACCCCTTCATTGACCT-3' and 5'-CCACCACCTGTTGCTGT-3', respectively.

Cell culture

Mouse embryonic fibroblasts (MEF) isolated from wild-type and xCTxCT-deficient mice (8),and over-expressing **MEF** (25)were cultured routinely Dulbecco's in modified Eagle's medium supplemented with 10% fetal bovine serum, 2-mercaptoethanol (50) $\mu M)$, insulin-transferrin-selenium-A (Life Techologies, Carlsbad, CA, U. S. A.), penicillin (50 U/mL) and streptomycin (50 μg/mL) at 37 °C in 5% CO₂ and 95% air. Addition of 2-mercaptoethanol is necessary for xCT-deficient MEF to grow even under routine cell culture conditions (8,26). For measurement of cell survival, cells were cultured in cystine-free medium (without 2-mercaptoethanol) with and without 0.1 mM cystathionine for the time periods indicated. The number of viable cells was measured by trypan blue exclusion.

Determination of intracellular total glutathione (GSH and the oxidized form of GSH (GSSG))

Cells were seeded on 35 mm dishes (2 x 10⁵ cells/dish) and cultured for 24 h in the routine culture medium. Then, cells were cultured in cystine-free medium with and without 0.1 mM cystathionine for the time periods indicated. Cells were washed three times with ice-cold PBS, extracted with 5% trichloroacetic acid, and then treated with ether to trichloroacetic remove acid. Total glutathione content in the aqueous laver was measured using enzymatic method, which is based on the catalytic action of glutathione in the of 5,5'-dithiobis reduction (2-nitrobenzoic acid) by the glutathione reductase system (27).

Cystine uptake

Cells were seeded on 35 mm dishes (2 x 10⁵ cells/dish) and cultured for 24 h in

the routine culture medium. Then, the cells were cultured with or without 50 µM diethyl maleate further for 24 h. Cells were washed three times in pre-warmed Na+-free PBS(+)G (10 mM phosphate-buffered saline (137 mM choline chloride, 3 mM KCl) pH 7.4, containing 0.01% CaCl₂, 0.01% MgCl₂· 6H₂O and 0.1% glucose) and then incubated in 0.5 ml of pre-warmed uptake medium at 37 °C for 2 min. This uptake medium contained 20 µM cystine plus [14 C]cystine (0.2 μ Ci/mL) in PBS(+)G. L-cystathionine, Na⁺-free L-glutamate, L-leucine, L-serine or L-arginine each at final concentrations of 200 µM were added to the uptake medium as inhibitors. Uptake was terminated by rapidly rinsing the cells three times with ice-cold PBS, and the radioactivity in the cells was counted.

Determination of intracellular and extracellular cystathionine and glutamate levels

Cells were seeded on 35 mm dishes (2 x 10⁵ cells/dish) and cultured for 24 h in the routine culture medium. Then, the cells were cultured with or without 50 uM diethyl maleate further for 24 h. Cells were washed three times with PBS(+)Gpre-warmed (10)mMphosphate-buffered saline(137 mMNaCl, 3 mM KCl), pH 7.4, containing 0.01% CaCl₂, 0.01% MgCl₂·6H₂O and 0.1% glucose) and then incubated in 0.5 ml of pre-warmed PBS(+)G containing 0.1 mM cystathionine or cystine at 37 °C for 15 min. PBS(+)G was collected, dried using a rotary evaporator, and dissolved in 100 uL of amino acid analysis buffer (pH 2.2) for measuring extracellular amino acids. Cells were washed three times with ice-cold PBS, extracted with 5% trichloroacetic acid, with ether treated to remove trichloroacetic acid, and used for measuring intracellular amino acids. Extracellular and intracellular amino acids were analyzed using the amino acid analyzer.

Statistical analyses

Statistical significances of the differences were determined by Student's t test (*P < 0.05, **P<0.01).

RESULTS

Previously, we showed that mice lacking xCT revealed perturbations in extracellular cystine and GSH levels, but otherwise appeared healthy and fully viable (8). Here, we performed a detailed analysis of metabolites in cerebrum, cerebellum, thymus, spleen, lung, liver, kidney, heart, pancreas, testis and plasma of wild-type (WT) and xCT-deficient (KO) mice using capillary time-of-flight electrophoresis mass spectrometry \mathbf{so} that all possible metabolite peaks profiled. were

Although most of the metabolite peaks significant showed no differences WT and KO between mice. cystathionine was not detectable in thymus and spleen of KO mice (Fig. 1 and Table I). Yet, significant amounts of cystathionine were detected in the same tissues of WT mice (Table I), indicating that cystathionine might be a novel substrate for system x_c⁻.

Therefore, we first examined expression of key enzymes involved in cystathionine biosynthesis, CBS and CGL. As shown in Fig. 2, the expression of CBS and CGL mRNA were hardly detectable in thymus and spleen of both WT and KO mice, while they were markedly expressed in liver of these WT mice. In mice. significant expression of xCT mRNA could be detected in the thymus and spleen, whereas no xCT expression could be observed in liver tissue. Although the amount of cystathionine in the thymus of WT mice was completely different from that of KO mice, histological differences in thymus were apparent between these mice (data not shown). To induce experimental hypercystathionemia, WT and KO mice were treated with PPG, a CGL inhibitor. Three days after treatment, cystathionine levels in liver, plasma, thymus, and spleen were measured by the amino acid analyzer (Fig. 3). In plasma and liver of xCT-deficient and

wild-type mice, cystathionine markedly increased like in the thymus and spleen of wild-type mice. By stark contrast, it was barely detectable in thymus and spleen of xCT-deficient mice. These results suggest that in thymus and spleen cystathionine is not synthesized but transported via system x_c⁻, whereupon it accumulates in these tissues. Therefore, we have further addressed the possibility cystathionine is a yet-unrecognized, physiological substrate of system x_c-.

To this end, we measured the activity of cystine uptake in the presence of various concentrations of cystathionine in MEF derived from WT mice (WT MEF) (Fig. 4). The activity of cystine uptake was substantially inhibited by cystathionine in a concentration-dependent manner. shown in Fig. 5, cystine uptake in WT MEF was significantly inhibited by cystathionine and glutamate, one of the established physiological two substrates of system x_c-, but not by leucine, serine, or arginine. When cells were incubated with diethyl maleate, a strong inducer of xCT (3), the activity of cystine uptake was significantly increased. Under these conditions, more prominent inhibition of cystine uptake by cystathionine was observed. Hence, these results strongly suggest that cystathionine is a novel substrate of system x_c-. Since radio-labeled

cystathionine iscommercially available, we could not perform the kinetic analysis of cystathionine uptake. Instead, the rates of the uptake of cystine at various concentrations were measured in the absence or presence of 0.1 and 0.5 mM cystathionine, and the Michaelis-Menten parameter and Ki value were determined by graphing the data as Lineweaver-Burk plot and Dixon plot, respectively (Fig. 6). Since the activity of cystine uptake in WT MEF is too low to perform kinetic analyses, we used MEF in which xCT expression was manipulated. These cells stably express xCT in xCT KO MEF under the control of the strong synthetic CAG (chicken 8-actin and CMV) promoter (25). The apparent Ki value of cystathionine for cystine uptake was 0.23 ± 0.04 mM.

We then studied whether cystathionine can be exchanged for intracellular glutamate. In WT MEF, glutamate was significantly released when the cells were incubated with cystathionine (Fig. 7). When cells were pretreated with diethyl cystathionine accelerated the release of glutamate into the extracellular space. In contrast to these results, no increase in the release of glutamate was observed in KO MEF when cells were incubated with cystathionine or with cystine. These results indicate that extracellular cystathionine can

exchanged for intracellular glutamate via system x_c^- . As a direct Fig. 8 shows that measurement, cystathionine indeed accumulated in WT MEF, when cells were incubated with cystathionine. Pre-treatment of the cells with diethyl maleate caused a marked accumulation of cystathionine in WT cells in stark contrast to KO MEF. Here, cystathionine was only slightly detectable when cultured with cystathionine, which might be due to non-specific entry of cystathionine not mediated by system x_c . To test if cystathionine is transported by system have measured Xc^{-} we accumulation of cystathionine in the of sulfasalazine. presence well-established system x_c⁻ inhibitor (28). As expected from our previous the accumulation results. of WT MEF cystathionine in was completely inhibited in the presence of sulfasalazine (Fig. 9).

When WT MEF were cultured in cystine-free medium, they failed to proliferate and died within 24 h as expected (Fig. 10 and 11A). However, they survived and even proliferated by mM cystathionine adding 0.1 cystine-free medium. On the contrary, KO MEF died within 24 h cystine-free medium regardless of (0.1)mM) cystathionine supplementation (Fig. 10 and 11B). Although total glutathione in WT MEF was rapidly decreased by culturing cells in cystine-free medium, it was significantly restored by culturing the cells in cystine-free medium containing cystathionine (Fig. 11C). In contrast, the intracellular glutathione levels were not increased in KO MEF by culturing in the cystine-free medium with cystathionine (Fig. 11D). These data indicate that cystathionine is able to sustain intracellular glutathione levels even in the absence of exogenous cystine in WT cells but not in KO cells.

When WT MEF were cultured for 8 h in cystine-free medium with or without cystathionine, the expression of xCT mRNA was strongly induced, compared with cells cultured in the routine culture medium (Fig. 12A). Under these conditions, CGL mRNA was markedly induced (Fig. 12B). On the other hand, CBS mRNA was unchanged by culturing the cells in cystine-free medium with or without cystathionine (Fig. 12C). It is noteworthy that CGL mRNA in KO MEF was significantly induced even in the routine culture (Fig. 12B). Addition 2-mercaptoethanol is necessary for KO MEF to grow even in the routine medium. culture In Fig. 12B, 2-mercaptoethanol was removed when culturing the cells in cystine-free medium started. Because KO MEF cannot take up extracellular cystine, it is likely that CGL mRNA was induced

in response to the decrease of intracellular cysteine by removal of 2-mercaptoethanol in these cells.

DISCUSSION

In the present study, we have found that cystathionine is absent in thymus and spleen of xCT-deficient mice, although it was significantly detected in the same tissues of wild-type mice. As reported previously, the expression xCTmRNA is constitutively expressed in thymus and spleen (7). CBS and CGL mRNA are not expressed in these tissues of xCT-deficient and wild-type mice (Fig. 2). Our present study thus demonstrates cystathionine is a novel substrate of system x_c⁻ and transported via system x_c⁻ in exchange for glutamate in MEF (Fig. 13). From this, we conclude that cystathionine is exclusively transported via system x_c- from the extracellular space in thymus and spleen. Recently, we have observed that xCT mRNA is constitutively expressed in Payer's patch, mesenteric and inguinal lymph nodes, and bone marrow (unpublished data). It is thus likely that occurrence of cystathionine in the immune tissues is dependent on the transport activity of system x_c-.

Patel, *et al.* have analyzed the differences of substrate and non-substrate inhibitors of system x_c -,

and revealed that potent inhibitors such as L-quisqualate and (S)-4-carboxyphenylglycine were not always substrates for system x_c⁻ (29). They also showed that cystathionine significantly inhibits the activity of glutamate uptake, although it has remained unclear whether it is a direct substrate for system x_c-. The present study clearly shows now that cystathionine is a physiological substrate of system x_c⁻ and that it can exchanged with intracellular glutamate. In general, some portion of cystine exists tripolar as a (monocationic and dianionic) form at pH 7.4, which occupies 19.2% of total cystine molecule (p $K_{a3} = 8.02$). System x_c only recognizes the tripolar form of cystine, and this causes the exchange transport with intracellular glutamate (30). Calculating from the pKa values $(pK_{a3} = 8.54)$ of cystathionine (31), 6.8% of cystathionine exists as a tripolar molecule at pH 7.4., thus only a small part of cystathionine can be a substrate for system x_c-. As illustrated in Fig. 6, cystathionine was indeed shown to inhibit cystine uptake to a lower extent than glutamate, which might be due to the fact that only the tripolar form of cystathionine molecule can inhibit cystine uptake. The apparent Ki value of cystathionine for cystine uptake was 0.23 ± 0.04 mM, which is similar to the calculated Km value of glutamate uptake (0.20 -0.30 mM) via system x_c in human fibroblasts (1,32). Therefore, under these conditions less than 10% of cystathionine is able to inhibit cystine uptake. It is likely that cystathionine with the tripolar form has even higher affinity to xCT than glutamate. In cells, mammalian cystine is transported also by a Na+-independent amino acid transporter called b^{0,+}AT, which was first described in blastocysts and is mainly expressed in kidney and intestine (33,34).Therefore, tetrapolar form of cystathionine may also be transported by this transporter, since cystathionine was detected in thymus and spleen of xCT-deficient mice, b^{0,+}AT is probably not expressed in these tissues. Recently, a plasma membrane cystine-specific CgCYN1, in transporter, Candida glabrata was reported (35). Cystine uptake via this transporter is strongly inhibited by cystathionine, however, this transporter shows no similarity to the hitherto known plasma membrane cystine transporters, including xCT. Nonetheless, CgCYN1 may recognize the tetrapolar form of cystine and cystathionine. Recently. small molecule inhibitor specific for xCT, erastin, has been reported (36,37), a compound that might prove useful for studying xCT function and other cystine transporters in the future.

The present study further implicates

that the supply of cysteine from cystathionine is negligible in thymus and spleen. There has been no known function for cystathionine other than serving as an intermediate in the transsulfuration pathway. Maclean, et al. recently found have cystathionine is capable of blocking the induction of hepatic steatosis, kidney injury, and apoptotic cell death, by mitigating endoplasmic reticulum (ER) stress (38). Thymus is known to profound undergo age-associated atrophy, i. e. thymus involution, which less efficient T-cell results in development and decreased emigration of naïve T cells to the periphery (39). During the involution, the thymic epithelial space (cortex and medulla), in which T-cell development thymopoiesis is occurs, gradually replaced with adipocytes. The present shows that even if transsulfuration pathway terminates, cystathionine can exist in the cell only when xCT is expressed. We have observed that the average weight of the thymus of xCT-deficient mice at the age of 8-9 weeks old is bigger than that of wild-type mice (unpublished data). It seems an appealing hypothesis that cystathionine transported via system plays an important rolepreventing steatosis in thymus. We have previously demonstrated that xCT is induced by ER stress caused by amino acid deprivation or ER stress inducing agent tunicamycin, and that the induction is mediated by a genomic cis-element termed amino acid response element and a transcription factor, activating transcription factor 4 (ATF4)(40). Recently, Dickhout, et al. have demonstrated that CGLup-regulated by the ATF4 pathway under ER stress conditions (41). In ATF4-deficient MEF. xCTdown-regulated and intracellular GSH is significantly lower than in wild-type MEF (41). As ATF4 seems to be one of the important regulatory factors for the expression of xCT(42,43),importance of ATF4 for the regulation of gene expression involved in thiol metabolism deserves further investigation.

Glutamate is the major excitatory amino acid neurotransmitter in the mammalian central nervous system, whose function is mediated by several receptors. glutamate In addition, several glutamate transporters play an important role in regulating extracellular glutamate levels in the central nervous system. Recently, the importance of glutamate receptors in non-neural tissues has been recognized (44). Especially, in the immune system, glutamate several receptors expressed in T cells and several glutamate transporters are expressed in antigen presenting cells such as

dendritic cells and macrophages (45). Pacheco, et al. have demonstrated that glutamate released via system x_c- by modulates dendritic cells activation (22). Intracellular cystine transported via system x_c is rapidly converted to cysteine, and thus it is hardly detectable in the cell. cystathionine accumulates in dendritic cells, macrophages or thymic stromal cells, it can be exchanged with extracellular glutamate, thereby possibly contributing to the regulation of extracellular glutamate levels also in immune tissues (Fig. 13C). It is noteworthy that a substantial amount of cystathionine accumulates in human brain (46). These observations may result from an imbalance between the relative activities of CBS and CGL. The accumulation of cystathionine in the brain has been mainly considered to be a reservoir of cysteine for glutathione synthesis until now, however, it is conceivable that cystathionine might play a role also for exchanging with glutamate to reduce and equilibrate extracellular glutamate levels in the brain (Fig. 13C). In case CGL is not fully expressed in some parts of the brain, it might be that accumulated cystathionine becomes exchanged for cystine, which is then reduced to for cysteine and be used can glutathione synthesis more efficiently than cystathionine (Fig. 13D). Under

oxidative stress conditions in the brain such as ischemia/reperfusion, it is likely that xCT is induced and cystine is actively transported into cells at the exchange for cystathionine to boost intracellular glutathione concentrations.

Conclusively, our data presented here identify cystathionine as a novel substrate of system x_c^- , and imply that cystathionine may not only play an important role in the immune system, such as thymopoiesis, but also in regulating extracellular glutamate homeostasis in brain through system x_c^- activity.

Acknowledgement

This work was supported, in part, by the Strategic Young Researcher Overseas Visits Program Accelerating Brain Circulation from the Japan Society for the Promotion of Sciences, Research Grant from The Naito Foundation, and the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant No. 2013-43).

REFERENCES

- Bannai, S., and Kitamura, E. (1980)
 Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J. Biol. Chem.

 255, 2372-2376
- 2. Bannai, S., and Tateishi, N. (1986)
 Role of membrane transport in metabolism and function of glutathione in mammals. *J. Membr. Biol.* **89**, 1-8
- 3. Sato, H., Tamba, M., Ishii, T., and Bannai, S. (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. *J. Biol. Chem.* **274**, 11455-11458
- 4. Sato, H., Tamba, M., Kuriyama-Matsumura, K., Okuno, S., and Bannai, S. (2000) Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc. Antioxid Redox Signal 2, 665-671
- 5. Conrad, M., and Sato, H. (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. *Amino Acids* 42, 231-246
- 6. Sato, H., Tamba, M., Okuno, S., Sato, K., Keino-Masu, K., Masu, M., and Bannai, S. (2002) Distribution of cystine/glutamate exchange transporter, system x(c)-, in the

- mouse brain. *J. Neurosci.* **22**, 8028-8033
- 7. Taguchi, K., Tamba, M., Bannai, S., and Sato, H. (2007) Induction of cystine/glutamate transporter in bacterial lipopolysaccharide induced endotoxemia in mice. *J*Inflamm (Lond) 4, 20
- Sato, H., Shiiya, A., Kimata, M., 8. Maebara, K., Tamba, M., Sakakura, Y., Makino, N., Sugiyama, Yagami, K., Moriguchi, T., S., Takahashi, S. and Bannai, (2005)Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol.
- 9. Kobayashi, S., Kuwata, K., Sugimoto, T., Igarashi, K., Osaki, M., Okada, F., Fujii, J., Bannai, S., and Sato, H. (2012) Enhanced expression of cystine/glutamate transporter in the lung caused by the oxidative-stress-inducing agent paraquat. Free Radic. Biol. Med. 53, 2197-2203

Chem. 280, 37423-37429

- 10. Lo, M., Wang, Y. Z., and Gout, P. W. (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. *J. Cell. Physiol.* **215**, 593-602
- Okuno, S., Sato, H.,
 Kuriyama-Matsumura, K., Tamba,
 M., Wang, H., Sohda, S., Hamada,
 H., Yoshikawa, H., Kondo, T., and

- Bannai, S. (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. *Br. J. Cancer* **88**, 951-956
- 12. Lo, M., Ling, V., Wang, Y. Z., and Gout, P. W. (2008) The xc-cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. *Br. J. Cancer* 99, 464-472
- 13. Ishimoto, T., Nagano, O., Yae, T., Tamada, M., Motohara, T., Oshima, H., Oshima, M., Ikeda, T., Asaba, R., Yagi, H., Masuko, T., Shimizu, T., Ishikawa, T., Kai, K., Takahashi, E., Imamura, Y., Baba, Y., Ohmura, M., Suematsu, M., Baba, H., and Saya, H. (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19, 387-400
- 14. Bannai, S. (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. *J. Biol. Chem.* **261**, 2256-2263
- 15. Lewerenz, J., Hewett, S. J., Huang, Y., Lambros, M., Gout, P. W., Kalivas, P. W., Massie, A., Smolders, I., Methner, A., Pergande, M., Smith, S. B., Ganapathy, V., and Maher, P. (2013) The

- cystine/glutamate antiporter system $x(c)(\cdot)$ in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18, 522-555
- 16. Qin, S., Colin, C., Hinners, I., Gervais, A., Cheret, C., and Mallat, M. (2006) System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J. Neurosci. 26, 3345-3356
- 17. Massie, A., Schallier, A., Kim, S. W., Fernando, R., Kobayashi, S., Beck, H., De Bundel, D., Vermoesen, K., Bannai, S., Smolders, I., Conrad, M., Plesnila, N., Sato, H., and Michotte, Y. (2011) Dopaminergic neurons of system x(c)(-)-deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. *FASEB J.* 25, 1359-1369
- 18. De Bundel, D., Schallier, A., Loyens, E., Fernando, R., Miyashita, H., Van Liefferinge, J., Vermoesen, K., Bannai, S., Sato, H., Michotte, Y., Smolders, I., and Massie, A. (2011) Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci. 31, 5792-5803
- 19. Chung, W. J., Lyons, S. A., Nelson,

- G. M., Hamza, H., Gladson, C. L., Gillespie, G. Y., and Sontheimer, H. (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. *J. Neurosci.* **25**, 7101-7110
- Lyons, S. A., Chung, W. J., Weaver,
 A. K., Ogunrinu, T., and Sontheimer,
 H. (2007) Autocrine glutamate
 signaling promotes glioma cell
 invasion. Cancer Res. 67,
 9463-9471
- 21. Savaskan, N. E., Heckel, Hahnen, E., Engelhorn, T., Doerfler, A., Ganslandt, O., Nimsky, C., Buchfelder, M., and Eyupoglu, I. Y. (2008)Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat. Med. 14, 629-632
- Pacheco, R., Oliva, H., Martinez-Navio, J. M., Climent, N., Ciruela, F., Gatell, J. M., Gallart, T., Mallol, J., Lluis, C., and Franco, R. (2006) Glutamate released by dendritic cells as a novel modulator of T cell activation. *J. Immunol.* 177, 6695-6704
- Sugimoto, M., Ikeda, S., Niigata, K.,
 Tomita, M., Sato, H., and Soga, T.
 (2012) MMMDB: Mouse Multiple
 Tissue Metabolome Database.
 Nucleic Acids Res. 40, D809-814
- 24. Barber, T., Triguero, A.,

 Martinez-Lopez, I., Torres, L.,

- Garcia, C., Miralles, V. J., and Vina, J. R. (1999) Elevated expression of liver gamma-cystathionase is required for the maintenance of lactation in rats. *J. Nutr.* **129**, 928-933
- 25. Lewerenz, J., Baxter, P., Kassubek, R., Albrecht, P., Van Liefferinge, J., Westhoff, M. A., Halatsch, M. E., Karpel-Massler, G., Meakin, P. J., Hayes, J. D., Aronica, E., Smolders, I., Ludolph, A. C., Methner, A., Conrad, M., Massie, A., Hardingham, G. E., and Maher, P. (2014) Phosphoinositide 3-kinases upregulate system xc(-)eukaryotic initiation factor 2alpha and activating transcription factor Α pathway active in glioblastomas and epilepsy. Antioxid Redox 20. Signal 2907-2922
- 26. Ishii, T., Bannai, S., and Sugita, Y. (1981) Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. *J. Biol. Chem.* **256**, 12387-12392
- 27. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. *Anal. Biochem.* 27, 502-522
 28. Gout, P. W., Buckley, A. R., Simms,

- C. R., and Bruchovsky, N. (2001) Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. *Leukemia* **15**, 1633-1640
- 29. Patel, S. A., Warren, B. A., Rhoderick, J. F., and Bridges, R. J. (2004) Differentiation of substrate and non-substrate inhibitors of transport system xc(-): an obligate exchanger of L-glutamate and L-cystine. Neuropharmacology 46, 273-284
- 30. Bannai, S., and Kitamura, E. (1981)
 Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. *J. Biol. Chem.* **256**, 5770-5772
- 31. Aitken, S. M., and Kirsch, J. F. (2003)Kinetics of the yeast cystathionine beta-synthase forward and reverse reactions: continuous assays and the equilibrium constant for the reaction. Biochemistry 42, 571-578
- 32. Bannai, S. (1984) Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. *J. Biol. Chem.* **259**, 2435-2440
- 33. Van Winkle, L. J., Campione, A. L.,and Gorman, J. M. (1988)Na+-independent transport of basic

- and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. *J. Biol. Chem.* **263**, 3150-3163
- 34. Lee, W. S., Wells, R. G., Sabbag, R. V., Mohandas, T. K., and Hediger, M. A. (1993) Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J. Clin. Invest. 91, 1959-1963
- 35. Yadav, A. K., and Bachhawat, A. K.

 (2011) CgCYN1, a plasma
 membrane cystine-specific
 transporter of Candida glabrata
 with orthologues prevalent among
 pathogenic yeast and fungi. *J. Biol.*Chem. 286, 19714-19723
- 36. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell* 149, 1060-1072
- 37. Dixon, S. J., Patel, D. N., Welsch,
 M., Skouta, R., Lee, E. D., Hayano,
 M., Thomas, A. G., Gleason, C. E.,
 Tatonetti, N. P., Slusher, B. S., and
 Stockwell, B. R. (2014)
 Pharmacological inhibition of
 cystine-glutamate exchange

- induces endoplasmic reticulum stress and ferroptosis. *Elife* **3**, e02523
- 38. Maclean, K. N., Greiner, L. S., Evans, J. R., Sood, S. K., Lhotak, S., Markham, N. E., Stabler, S. P., Allen, R. H., Austin, R. Balasubramaniam, V., and Jiang, H. (2012)Cystathionine protects endoplasmic reticulum against stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J. Biol. Chem. 287. 31994-32005
- Lynch, H. E., Goldberg, G. L., Chidgey, A., Van den Brink, M. R., Boyd, R., and Sempowski, G. D. (2009) Thymic involution and immune reconstitution. *Trends Immunol.* 30, 366-373
- Sato, H., Nomura, S., Maebara, K.,
 Sato, K., Tamba, M., and Bannai, S.
 (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. *Biochem. Biophys. Res. Commun.* 325, 109-116
- 41. Dickhout, J. G., Carlisle, R. E., Jerome, D. E., Mohammed-Ali, Z., Jiang, H., Yang, G., Mani, S., Garg, S. K., Banerjee, R., Kaufman, R. J., Maclean, K. N., Wang, R., and Austin, R. C. (2012) Integrated stress response modulates cellular

- redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. *J. Biol. Chem.* **287**, 7603-7614
- 42. Lewerenz, J., and Maher, P. (2009)
 Basal levels of eIF2alpha
 phosphorylation determine cellular
 antioxidant status by regulating
 ATF4 and xCT expression. *J. Biol.*Chem. 284, 1106-1115
- 43. Lewerenz, J., Sato, H., Albrecht, P., Henke, N., Noack, R., Methner, A., and Maher, P. (2012) Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression. *Cell Death Differ.* 19, 847-858
- 44. Julio-Pieper, M., Flor, P. J., Dinan, T. G., and Cryan, J. F. (2011)

 Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. *Pharmacol. Rev.* **63**, 35-58
- 45. Pacheco, R., Gallart, T., Lluis, C., and Franco, R. (2007) Role of glutamate on T-cell mediated immunity. *J. Neuroimmunol.* **185**, 9-19
- Tallan, H. H., Moore, S., and Stein,
 W. H. (1958) L-cystathionine in human brain. J. Biol. Chem. 230,
 707-716

Footnote

¹⁰The abbreviations used are: PPG, propargylglycine; CGL, cystathionine γ-lyase; CBS, cystathionine β-synthase; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; MEF, mouse embryonic fibroblasts; ATF4, activating transcription factor 4.

Figure legends

Figure 1 Heatmap showing relative metabolite concentrations. In total, 153 metabolites were identified and quantified by metabolomics analysis. Of these, 90 metabolites detected in multiple samples (≥3) from WT or KO mice as well as multiple tissues (≥3) were used here. Each metabolite concentration was transferred to Z-score and assigned the corresponding color. Pearson correlation was used for clustering. MeV TM4 (PMID: 12613259) was used for the analysis and the visualization. The concentrations of cystathionine (indicated with a yellow box) are also given in Table I.

Figure 2 Expression of *CBS*, *CGL* and *xCT* mRNA in thymus, spleen and liver of wild-type (WT) and xCT-deficient (KO) mice. Thymus, spleen and liver were collected from male xCT WT and KO mice. Total RNA was extracted, and *CBS*, *CGL* and *xCT* mRNA expression was determined by quantitative RT-PCR as described in Experimental Procedures. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal standard. *CBS* and *CGL* mRNA expression represented as fold of that of liver of wild-type, and *xCT* mRNA expression represented as fold of thymus of wild-type (n=3).

Figure 3 Cystathionine levels in liver, plasma, and thymus of wild-type (WT) and xCT-deficient (KO) mice treated with DL-propargylglycine (PPG). Male xCT WT and KO mice were injected with PPG (ip, 50 mg/kg) daily for 3 days. Control male mice were injected with equivalent volume of saline. After treatment periods, blood, liver, thymus, and spleen were collected. Plasma was collected from blood by centrifuge immediately. Cystathionine levels were determined as described in Experimental Procedures. Values are means \pm S. D. (n=3-4).

Figure 4 Effect of cystathionine on cystine uptake in mouse embryonic fibroblast (MEF) derived from wild-type (WT) mice. WT MEF were cultured for 24 h in the routine culture medium, and then L-[14 C] cystine (0.02 mM) uptake was measured in the absence or presence of 0.1-2 mM cystathionine under Na+-free condition. Each point represents the mean \pm S. D. (n=3-4).

Figure 5 Effects of cystathionine and various amino acids on the cystine uptake in mouse embryonic fibroblast (MEF) derived from wild-type (WT) mice. WT MEF were

cultured for 24 h in the routine culture medium, and then cultured further for 24 h with or without 50 μ M diethyl maleate (DEM). L-[14C] cystine (0.02 mM) uptake was measured in the absence or presence of 0.2 mM cystathionine, glutamate, leucine, serine, or arginine under Na⁺-free condition. Each point represents the mean \pm S. D. (n=6). **P<0.01 compared with control.

Figure 6 Lineweaver-Burk plot (A) and Dixon plot (B) for the inhibition of L-cystine uptake by cystathionine. xCT over-expressing MEF were cultured for 24 h in the routine culture medium, and then cultured further for 24 h. L-[¹⁴C] cystine (0.0125, 0.025, and 0.05 mM) uptake was measured in the absence (▲) or presence of 0.1 (●) or 0.5 (◆) mM cystathionine under Na+-containing condition. The data points are the means of duplicate determinations from one experiment representative of three similar experiments.

Figure 7 Effects of cystathionine on glutamate release in mouse embryonic fibroblasts (MEF) derived from wild-type (WT) and xCT-deficient (KO) mice. WT and KO MEF were cultured for 24 h in the routine culture medium, and then cultured further for 24 h with or without 50 μ M diethyl maleate (DEM). Then, the cells were incubated for 15 min in 1 mL of PBS(+)G (PBS containing 0.1 % glucose, 0.01%Ca²⁺ and 0.01% Ma²⁺) with or without 0.1 mM cystathionine or 0.1 mM cystine. After 15 min incubation, the solution was collected and glutamate level in the PBS(+)G was determined as described in Experimental Procedures. Each point represents the mean \pm S. D. and is expressed as percentage of control (n=3-8). **P<0.01 compared with control.

Figure 8 Intracelluar cystathionine levels in mouse embryonic fibroblasts (MEF) derived from wild-type (WT) and xCT-deficient (KO) mice. WT and KO MEF were cultured for 24 h in the routine culture medium, and then cultured further for 24 h with or without 50 μM diethyl maleate (DEM). Then, the cells were incubated for 15 min in 1 mL of PBS(+)G (PBS containing 0.1 % glucose, 0.01%Ca²⁺ and 0.01% Ma²⁺) with or without 0.1 mM cystathionine or 0.1 mM cystine. After 15 min incubation, intracellular cystathionine levels were determined as described in Experimental Procedures. Each point represents the mean ± S. D. (n=3-8). **P<0.01 compared with control.

Figure 9 Intracelluar cystathionine levels in mouse embryonic fibroblasts (MEF) derived from wild-type (WT) embryos exposed to sulfasalazine. WT MEF were cultured for 24 h in the routine culture medium, and then cultured further for 24 h with or

without 50 μ M diethyl maleate (DEM). Then, the cells were incubated for 15 min in 1 mL of PBS(+)G (PBS containing 0.1 % glucose, 0.01%Ca²⁺ and 0.01% Ma²⁺) with or without 0.1 mM sulfasalazine (+SAS) in the presence of 0.1 mM cystathionine. After 15 min incubation, intracellular cystathionine levels were determined as described in Experimental Procedures. Each point represents the mean \pm S. D. (n=4; n.d. indicates not detectable).

Fig. 10 Effect of cystathionine on cell viability in mouse embryonic fibroblasts (MEF) derived from wild-type (WT) and xCT-deficient (KO) mice. WT and KO MEF were cultured for 24 h in the routine culture medium, and then cultured in cystine-free medium with or without 0.1 mM cystathionine for the indicated time periods in the absence of 2-mercaptoethanol.

Figure 11 Effect of cystathionine on cell viability and intracellular glutathione levels in mouse embryonic fibroblasts (MEF) derived from wild-type (WT) and xCT-deficient (KO) mice. WT and KO MEF were cultured for 24 h in the routine culture medium, and then cultured in the cystine-free medium with (\bullet) or without (\bigcirc) 0.1 mM cystathionine for the indicated time periods in the absence of 2-mercaptoethanol. A and B indicate cell viability of WT MEF and KO MEF, respectively; C and D indicate intracellular glutathione levels of WT and KO MEF, respectively. Each point represents the mean \pm S. D. (n=4-8). *P < 0.05, **P<0.01 compared with control (without cystathionine).

Figure 12 Expression of *xCT*, *CGL* and *CGLC* mRNA in mouse embryonic fibroblast (MEF) derived from xCT-deficient (KO) and wild-type (WT) mice. WT and KO MEF were cultured for 24 h in the routine culture medium with 50 μM of 2-mercaptoethanol, and then in cystine-free medium with or without 0.1 mM cystine or cystathionine followed by another 8 h without 2-mercaptoethanol. Total RNA was extracted, and *xCT* (A), *CGL* (B), and *CBS* (C) mRNA expression was determined by quantitative RT-PCR as described in Experimental Procedures. *GAPDH* was used as an internal standard (n=3). **P<0.01 compared with control (0 h).

Figure 13 Physiological substrates for system \mathbf{x}_c . Several exchange transport scenarios for (novel) system \mathbf{x}_c substrates are depicted. (A), The well-established exchange of cystine (Cyss) and glutamate via system \mathbf{x}_c is shown. Cystine transported into cells is reduced to cysteine and used for GSH synthesis and protein synthesis. (B), Exchange of extracellular cystathionine (Cysta) for intracellular

glutamate occurs in cells such as WT MEF, expressing cystathionine γ -lyase (CGL), and thus providing cysteine for GSH synthesis. (C), Exchange of extracellular glutamate for intracellular cystathionine may occur in cells in thymus, spleen, and brain to regulate extracellular glutamate concentrations. (D), Exchange of extracellular cystine for intracellular cystathionine may occur especially in brain to secure intracellular cysteine levels without increasing extracellular glutamate concentrations.

Table I Content of cystathionine in the tissues of wild-type (WT) and xCT-deficient (KO) mice.

Cystathionine (nmol/g wet weight)

	WT	КО
thymus	98 ± 43.1	N. D.
spleen	15 ± 3.7	N. D.
cerebrum	15 ± 4.6	20 ± 2.7
cerebellum	46 ± 4.1	67 ± 7.0
kidney	10 ± 1.1	10 ± 1.3
liver	27 ± 11.3	46 ± 12.6
pancreas	27 ± 16.4	26 ± 18.2
heart	1 ± 1.6	1 ± 1.6
lung	1 ± 2.6	N. D.
testis	2 ± 1.3	N. D.
plasma	N. D.	N. D.

Cystathionine in each tissue was determined as described in "Materials and Methods" (n=3-4). All other metabolites in the wild-type mice are shown in (23). N. D., not detected.

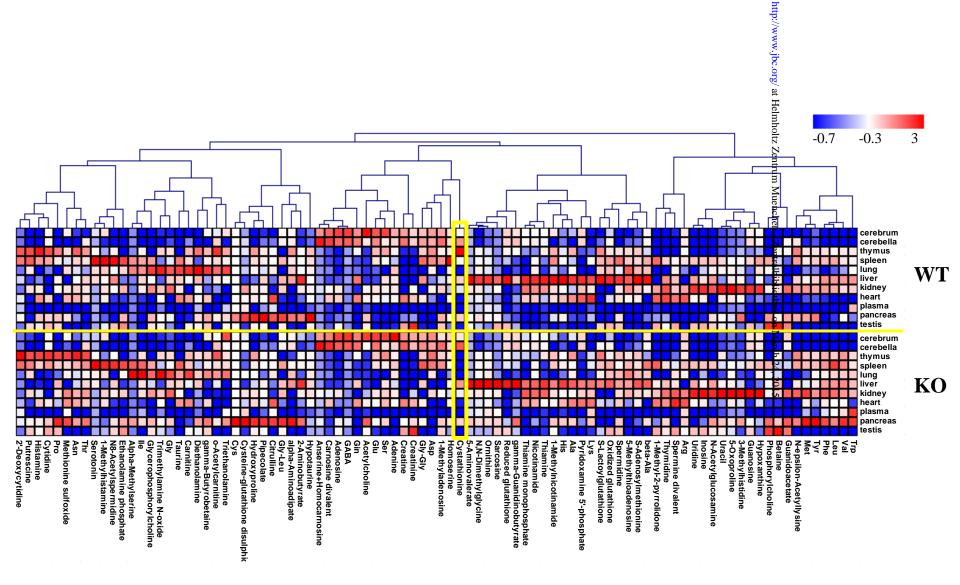


Fig. 1

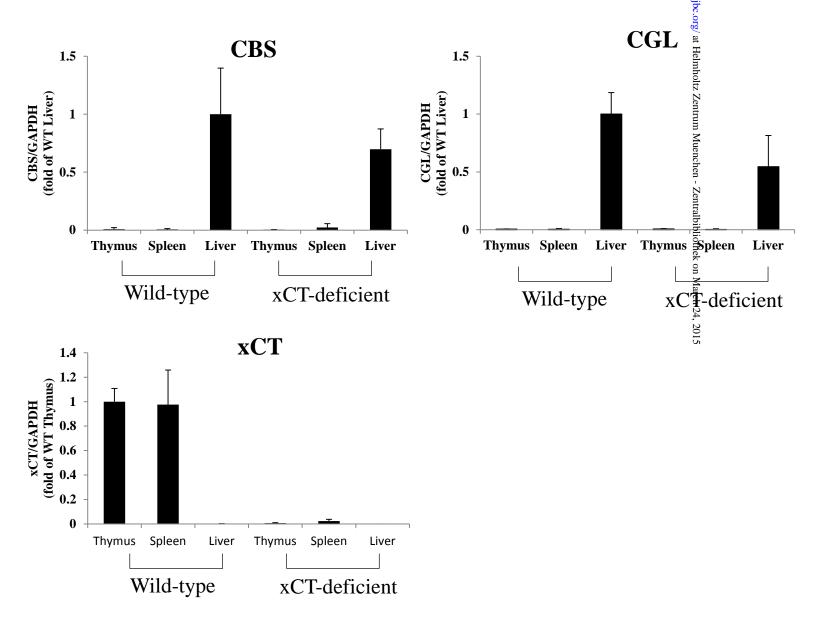


Fig. 2

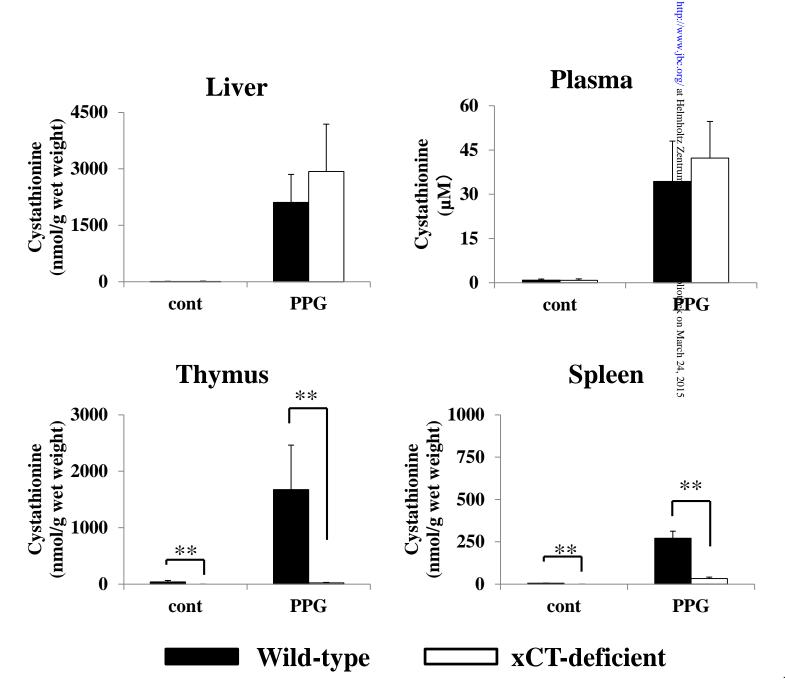


Fig. 3

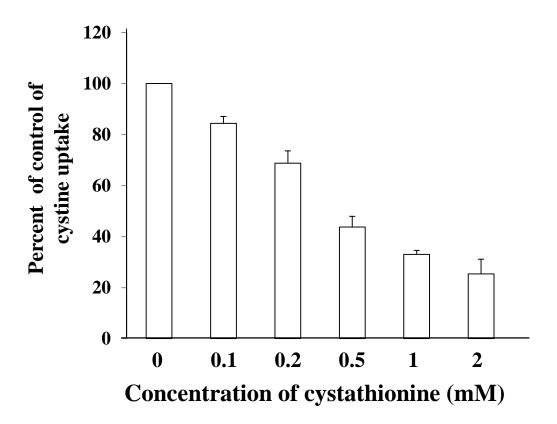


Fig. 4

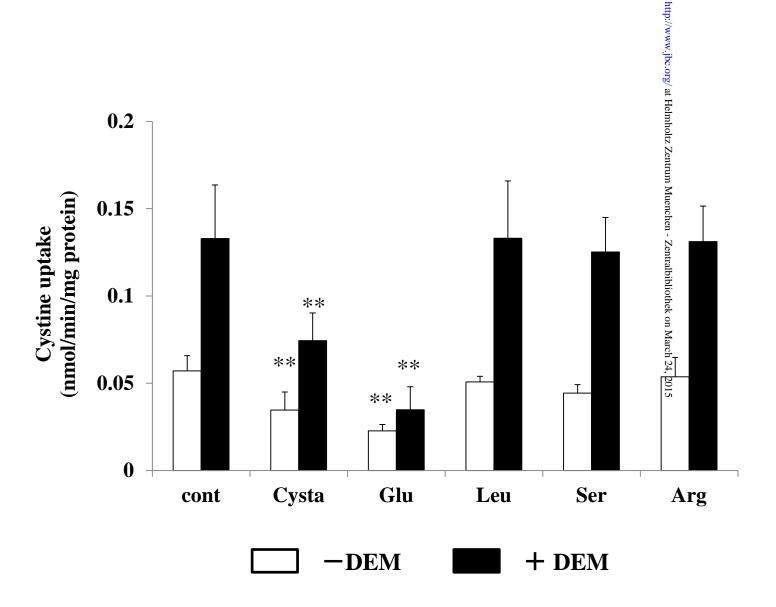


Fig. 5

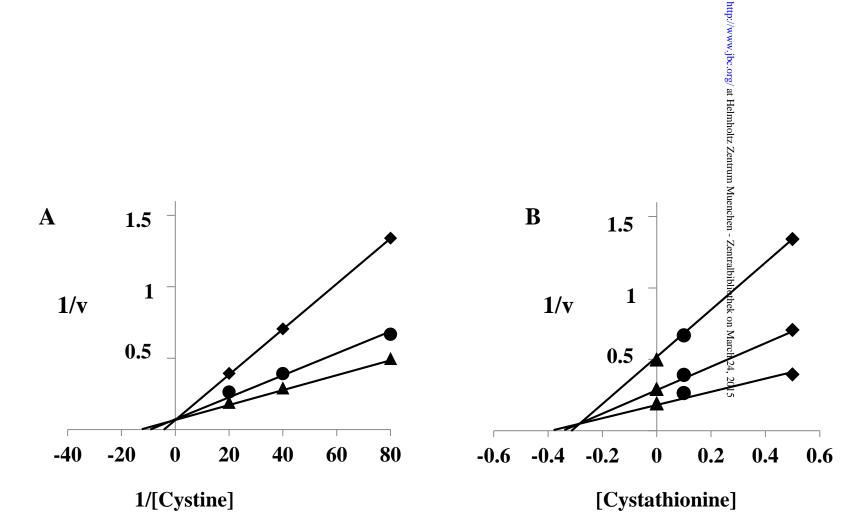
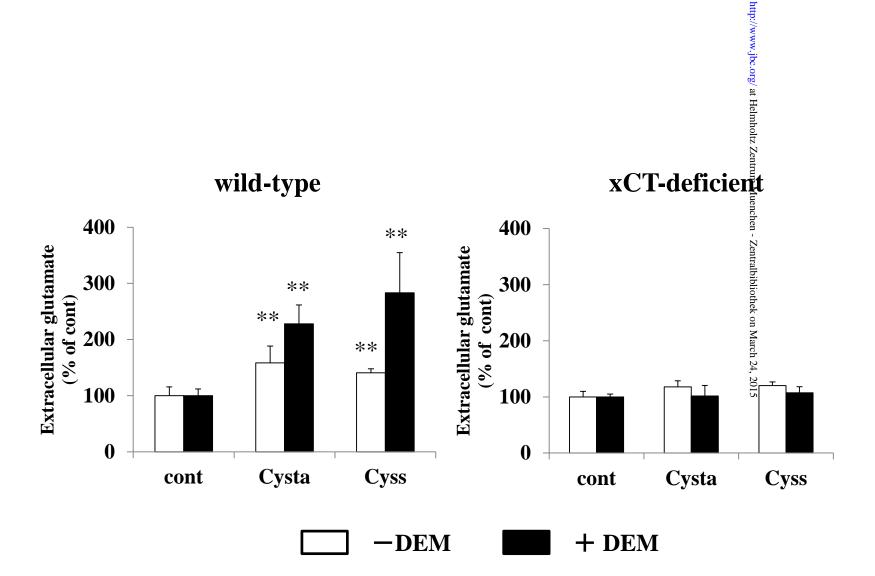
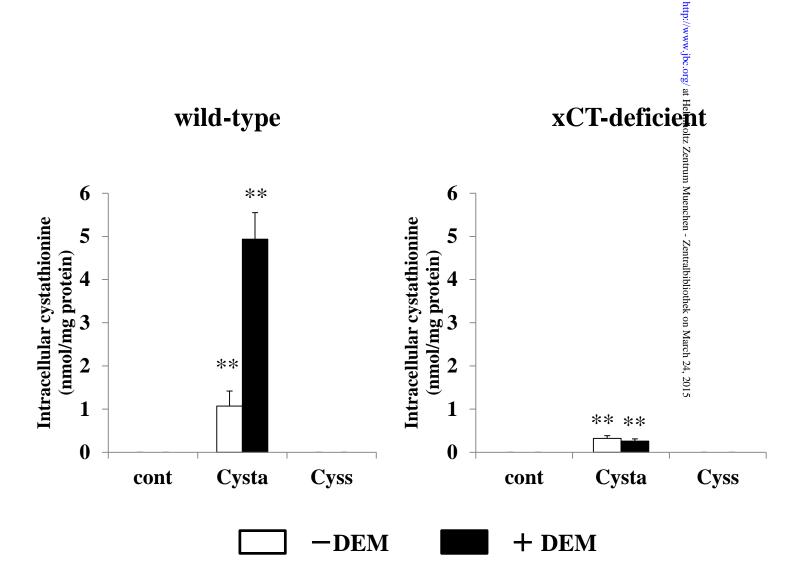
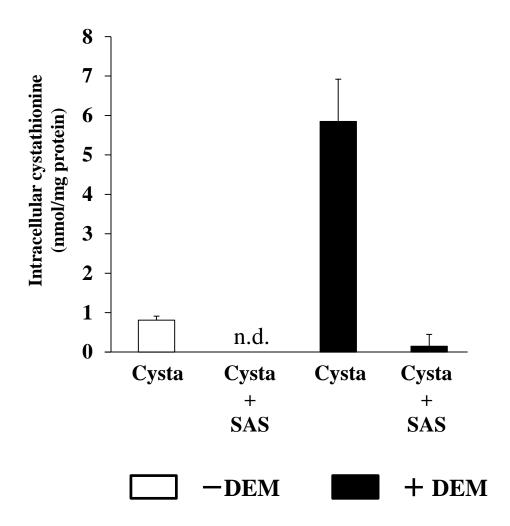
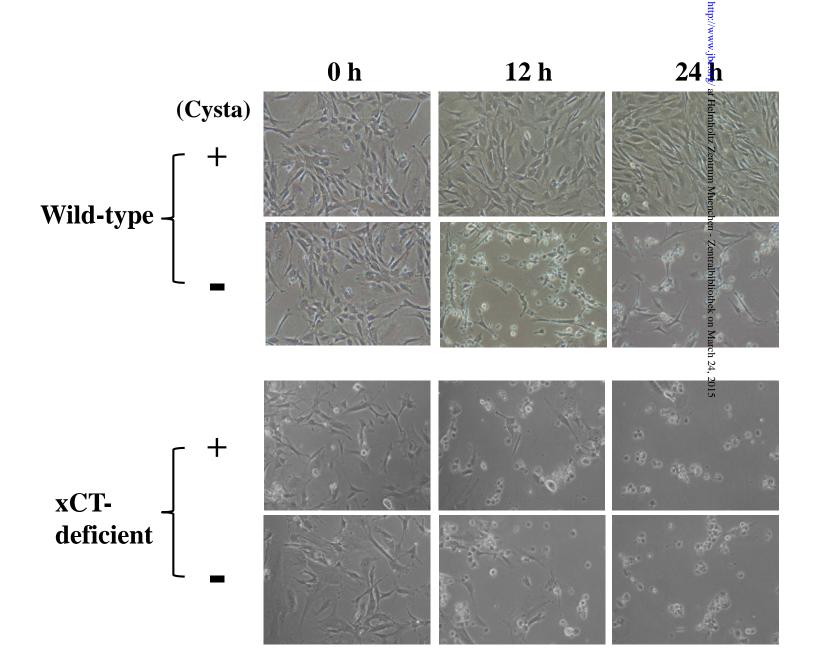
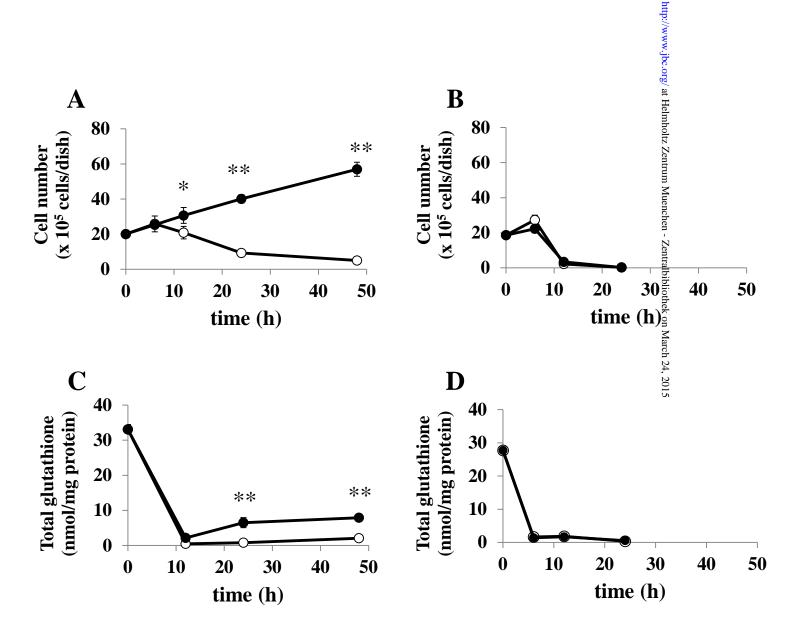
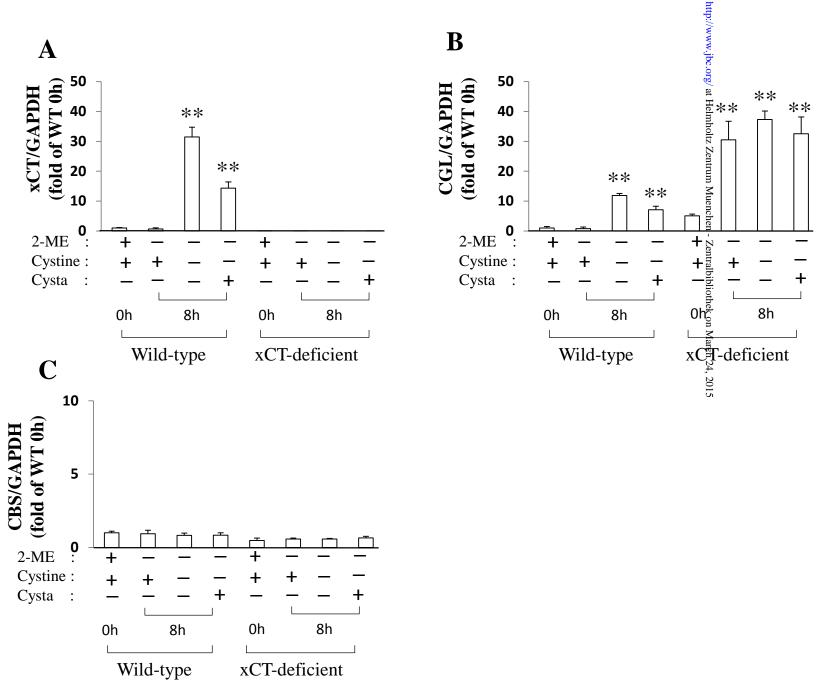




Fig. 6

Fig. 7

Fig. 8


Fig. 9

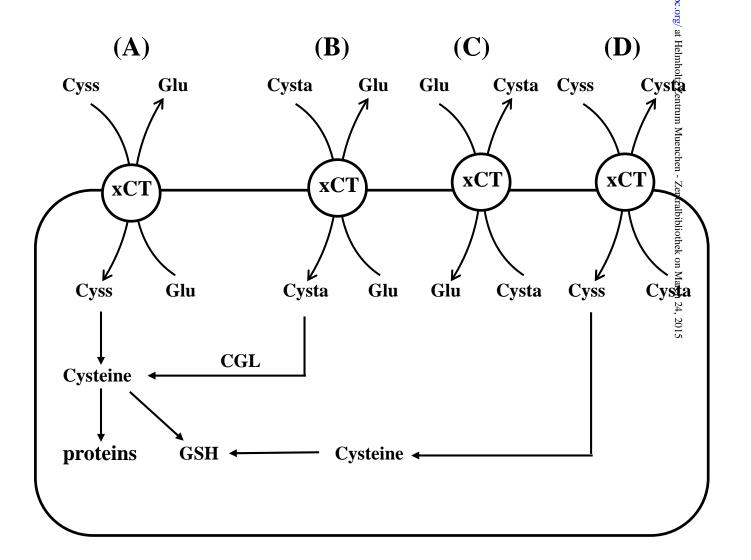
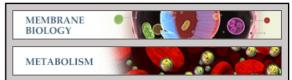

Fig. 10

Fig. 11

Fig. 12


Fig. 13

Membrane Biology:

Cystathionine is a Novel Substrate of Cystine/glutamate Transporter: Implications for Immune Function

Sho Kobayashi, Mami Sato, Takayuki Kasakoshi, Takumi Tsutsui, Masahiro Sugimoto, Mitsuhiko Osaki, Futoshi Okada, Kiharu Igarashi, Jun Hiratake, Takujiro Homma, Marcus Conrad, Junichi Fujii, Tomoyoshi Soga, Shiro Bannai and Hideyo Sato J. Biol. Chem. published online February 20, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M114.625053

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:

- · When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2015/02/20/jbc.M114.625053.full.html#ref-list-1