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Abstract 

The assessment of functional associations between gene sets from large-scale data 

is an important task in the field of systems biology. As high-throughput 

experimental techniques enable the investigation of biological functions across 

multiple omics, the model-based approach, named Multi-level ONtology Analysis 

(MONA), was recently introduced. MONA simultaneously identifies enriched 

functional ontology terms by integration of gene sets from multiple omics layers. 

(Omics levels include mRNA and protein expression data as well as knowledge 

about other molecular mechanisms, which contribute to the expression of gene 

products, for example DNA methylation or miRNA.) MONA models ontology 

term-to-gene relationships via a Bayesian network therewith accounting for term 

redundancies and multiple testing problems. Up to now, two gene set models are 

implemented in MONA, which are plugged to the base model. As the two models 

constitute only a subset of possible models, extending the variety of MONA 

models is essential for the inference of terms-to-gene relationships for truly 

multiple omics levels. In this thesis, we have implemented several extensions for 

the existing MONA model, including a flexible extension of the cooperative 

model to an arbitrary number of omics levels. In addition, a combined model was 

introduced fusing a two-level cooperative to the inhibitory model. All models 

were thoroughly evaluated with realistic synthetic data and outperformed related 

gene-set enrichment approaches as well as less complex MONA models. In 

addition, we applied MONA to a biological data set profiling adipocyte 

differentiation in order to reveal meaningful functional processes. To address the 

greatest drawback of MONA, we developed a working model for the MONA 

framework, which additionally infers term probabilities from p-value ranked gene 

sets instead of the current binary input values (differentially expressed / not 

differentially expressed), comprising the novel model cMONA. CMONA uses p-

values as continuous observation for term inference and thus takes the strength of 

expression into account instead of requiring an arbitrary cutoff.  

   

  



Zusammenfassung 

Die Identifizierung funktionaler Eigenschaften von Genmengen, stellt eine 

wichtige Herausforderung im Bereich der Sytembiologie dar. Da experimentelle 

Hochdurchsatz-Methoden die Erforschung biologischer Funktionen über mehrere 

„-omics“-Level ermöglichen, wurde kürzlich ein neuer Ansatz namens Multi-

Level Ontology Analysis (MONA) vorgestellt. MONA identifiziert parallel 

überrepräsentierte funktionelle Ontologie-Terme durch Integration von 

Genmengen mehrerer „omics“-Level. Diese können unter anderem mRNA- und 

Protein-Expressionsdaten sowie Vorwissen über andere molekulare Mechanismen 

enthalten, die zur Expression von Genprodukten beitragen, beispielsweise DNA-

Methylierung oder microRNAs. MONA modelliert Term-zu-Gen-Beziehungen 

über ein Bayessches Netzwerk und handhabt damit Redundanzen und Probleme 

des multiplen Testens. Bis jetzt sind zwei Modelle für Genmengen in MONA 

implementiert, die an das Basismodel gekoppelt sind. Da diese Modelle jedoch 

nur eine Teilmenge möglicher Modelle darstellen, ist eine Erweiterung von 

MONA für die Inferenz von Term-zu-Gen-Beziehungen verschiedener „omics“-

Level essentiell. Im Rahmen dieser Arbeit haben wir MONA erweitert. Dabei 

handelt es sich um eine flexible Erweiterung des kooperativen Modells auf eine 

beliebige Anzahl von „omics“-Ebenen. Darüber hinaus wurde ein kombiniertes 

Modell eingeführt, das ein Zwei-Ebenen-Modell mit dem inhibitorischen Modell 

fusioniert. Alle Modelle wurden gründlich mit realistischen synthetischen Daten 

evaluiert und übertrafen verwandte Ansätze sowie weniger komplexe MONA 

Modelle. Zusätzlich wurde MONA auf einen biologischen Datensatz angewandt, 

um bedeutsame funktionale Terme bezüglich der Differenzierung von 

Adipozyten. Der größte Nachteil von MONA ist die Nutzung binärer 

Eingabewerte (differentiell / nicht differentiell exprimiert). Um diesen Nachteil 

aufzuheben, haben wir einen Modellansatz namens cMONA entwickelt, der 

Term-Wahrscheinlichkeiten ausgehend von nach p-Wert sortierten Genmengen 

inferriert. CMONA nutzt p-Werte als kontinuierliche Beobachtungen für die 

Term-Inferenz und berücksichtigt folglich die Stärke der Expression, weshalb 

dieser Ansatz nicht von willkürlich festgelegten Signifikanzniveaus abhängig ist. 
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1 Introduction 

Omics technologies measure biological systems on different molecular levels [1]. 

Measurements include for example mRNA or protein expression, DNA 

methylation or microRNA regulation [2].  These levels build complex functional 

networks of molecular interactions capturing cellular functions and pathways [3]. 

We typically employ omics technologies to understand and identify functional 

processes for the phenotypic condition under investigation [2]. This may facilitate 

studies on the mechanisms of likewise underlying diseases and thus can help 

developing corresponding drugs and treatments [4]. Different conditions can arise 

if cells adjust to certain signals coming from the environment, disease or even 

from mutations in the genome. Resulting alterations in gene expression generate a 

phenotypic state which is able to adjust to new conditions [5]. This can be referred 

to as “gene response” and is not only regulated by protein expression but also by a 

number of further regulatory mechanisms like mRNA expression, DNA 

methylation or post-transcriptional modification by microRNAs (miRNA).  

The extraction of “knowledge” by investigation of gene responses poses an 

important challenge in the field of bioinformatics. Obtained gene expression 

profiles have to be interpreted to gain insights into biological mechanisms [6]. 

Functional annotation of genes or gene products are described in ontologies such 

as Gene Ontology (GO) or KEGG pathways, which represent structured 

vocabularies that are referred to as terms, representing biological functions, 

pathways, etc. for gene products [7]. For gene set analysis, a wide range of 

methods has been developed, including Fisher’s exact test and Gene Set 

Enrichment Analysis (GSEA), which make use of such ontologies [8]. In doing 

so, gene products are mapped to their biological functions and it is determined, 

which gene sets are enriched between the different conditions. Existing methods 

have some drawbacks: On the one hand, these approaches do not consider the 

hierarchical GO structure, which finally implicates a large number of redundant 

inferred terms [9]. On the other hand, due to the GO term hierarchy, there terms 

cannot be statistically tested independently from each other. Therefore multiple 

testing corrections have to be performed retaining a prescribed family-wise error 
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rate [10].  These issues can be solved by using model-based approaches, which try 

to identify a minimal set of groups that best explain the data [9]. To overcome the 

problem of integrated functional analysis across multiple omics, a framework was 

developed, named Multi-level Ontology Analysis (MONA) [2]. MONA uses a 

Bayesian network based approach which models a term-to-gene relationship for 

searching a minimal set of ‘active’ gene sets while taking into account measured 

information from multiple species [2].  

Up to now, MONA has only two models implemented. The cooperative and 

inhibitory model, both represent only selected relationships between molecular 

species (e.g. miRNA post-transcriptional target inhibition) and constituting just a 

subset of possible models. To obtain an appropriate framework for gene set 

analysis, we extended the functionality of MONA in order to handle any number 

of omics levels for term probability inference. In addition, we introduce a concept 

for another extension of MONA going beyond binary values (differentially / not 

differentially expressed) now enabling us to use continuous gene observations, for 

example p-values.  

 

Purpose of this thesis 

The aim of this thesis was to systematically extend and test the functionality and 

flexibility of MONA in order to set up an appropriate framework for term 

inference. Evaluations of MONA were therefore performed not only using 

realistic synthetic data sets in comparison to other methods but also applied to 

biological data. 

This thesis comprises three new features and functions for MONA: First, an 

extension for the cooperative model to allow for a user-set number of species to 

be integrated, which provides more flexibility for the integration of various gene 

response data.  Second, both already existing models were fused into a combined 

model, which is called cooperative-inhibitory model, enabling the user to combine 

independently observed data across different molecular species, for example 

mRNA and methylation expression data, as well as inhibitory layer for post-

transcriptional regulation of mRNA expression by miRNA.  
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Finally and most importantly this thesis comprises a valuable extension of 

MONA, named cMONA. We developed a working model for continuous model-

based ontology analysis, since many methods, including MONA itself, perform 

gene set analysis only using binary values in gene sets. Our cMONA is the first 

step towards a model-based functional analysis incorporating statistical 

significances.  

Each developed and implemented model was systematically evaluated using 

synthetically generated data and additionally applied to experimental data of 

adipocyte differentiation. 

 

In chapter 2, we provide background information, which defines concepts and 

specifies methods used throughout this thesis. Chapter 3 comprises formal 

definitions of all developed and implemented MONA extensions including 

information on parameterization strategy. Chapter 4 describes biological materials 

and contains detailed description of the employed testing strategies. Chapter 5 

gives a description of results and discussion. Chapter 6 concludes this thesis. 
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2 Background 

 

2.1 Omics 

The Suffix “-omics” is used to distinguish respective genome-wide studies on 

each molecular level. For example, genomics was the first “omics” derived to 

describe the genome, which encompasses studies of the entire DNA of an 

organism and was firstly mentioned by Hans Winkler in 1920 [11]. Genomics is 

referred to the study of genomes of organisms. Vast advances in developing 

methods for large-scale profiling in the past decades enabled the assessment of 

different molecular species. Consequently, “-omics” terms were also introduced 

for other subfields such as proteomics, transcriptomics or methylomics [12]. 

Proteomics comprises the study of the function of all expressed proteins, named 

proteome, involving for example protein-protein interactions, protein activity 

patterns and profiles in cancer patients [13]. Transcripts mirror the sequence of the 

DNA from which it was transcribed. Besides messenger RNA (mRNA), various 

other types of transcribed RNA exist, that are not further translated into proteins 

(non-coding RNA), for example transfer RNA (tRNA) and ribosomal RNA 

(rRNA) which are both involved in the translation process of protein biosynthesis 

[14] or microRNAs (miRNA), which control gene expression in plants and 

animals post-transcriptionally [15]. The transcriptome involves all transcripts 

present in a given cell and represents just a very small percentage of the genome, 

below 5% of the genome in humans, because only a very small part of the entire 

DNA is transcribed. In research, transcriptomics is used for example if one wants 

to determine when, where and how strong certain genes are turned on or off in 

cells or tissues. This information can for example indicate the amount of gene 

activity in both health and disease and thus lead to a deeper understanding of the 

contribution of gene activity to disease. Another mechanism contributing to gene 

expression is represented by DNA methylation [16]. DNA methylation involves 

the transfer of a methyl group to the C-5 position of the cytosine ring of DNA by 

the enzyme methyltransferase and states an important epigenetic layer that is 

involved in cellular differentiation processes and control of transcriptional 
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potential. Methylation is a stable modification of genomic DNA and thus can be 

inherited. It dynamically changes during lifespan of cells and tissues and is 

susceptible to diet and environmental influences [1]. Thus, the methylome 

containing all DNA methylation sites for an organism can provide insights into 

the evolutionary history of DNA methylation as well as its dysregulation in 

certain disease states.  

 

2.2 Ontologies 

Gene ontologies describe relationships of each respective protein typically in a 

hierarchical and species-independent manner. Individual genes are then mapped to 

an ontology term in an ontology to better classify its functions. The most 

commonly used ontology is the Gene Ontology. 

 

Gene Ontology (GO) 

GO comprises three different vocabularies (ontologies), namely biological 

process, molecular function and cellular component, to describe features and 

properties of gene products by so called GO terms [7]. Each GO term within the 

ontology has its own name, unique identifier and definition indicating the 

category to which it belongs. GO terms are structured in a hierarchical manner; 

child terms being more specific and parent terms being more general. The 

structure can be described by a directed acyclic graph of which each term is 

represented by a node and a relationship between two terms by a directed edge. 

GO is not strict hierarchy because a term node can have more than one parent 

node. 
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KEGG PATHWAY 

The KEGG PATHWAY database contains manually curated pathway maps which 

represent molecular interaction and reaction networks including metabolism, 

cellular signaling processes, organismal systems and human diseases [17]. It 

represents the biological system and its components on different levels like genes, 

proteins and chemical substances in combination with information about their 

relationships. Information about diseases and drugs are also provided in this 

database. 

 

WikiPathways 

WikiPathways is an open platform comprising biological pathways, which 

provide views of interactions of underlying processes [18]. Each pathway has its 

own dedicated wiki page containing useful information including the current 

diagram, description and references. Moreover, the collections of pathways can be 

browsed with combinations of species names and ontology-based categories. 

 

2.3 Gene expression analysis 

Different environmental conditions or disease states can influence the 

development of phenotypes by alterations in gene expression on different 

molecular levels like mRNA expression, methylation states or even by post-

transcriptional modification by microRNAs [2]. The quantitative analysis of gene 

expression has become an integral part of most modern biological investigations. 

A technique often applied in gene expression analysis is microarray technology 

[19]. Microarrays are able to simultaneously capture variations in gene sequence 

or expression by hybridization of labeled DNA targets to a very large set of 

oligonucleotide probes [20]. This enables description of genome-wide expression 

changes. A microarray expression analysis typically results in a long list of 

differentially expressed genes, which is the starting point of further functional 
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analysis, including gene set enrichment, which it is aimed to find patterns for 

differential expression [21]. 

 

2.4 Statistics 

Moderated t-statistic with limma 

On the assumption that gene expression is altered under e.g. different 

environmental conditions, information obtained from microarray experiments is 

derived in order to score genes according to their strength of differential 

expression [22]. For this purpose, Smyth developed the moderated t statistic, 

which uses local regression to determine significance for each gene with respect 

to its expression by fitting a linear model to the expression data. The level of 

different expression of each gene is represented by its respective log-fold-change. 

The more the respective log-fold-change differs from zero, the more significant 

the magnitude of different expression for a gene. Relative to a minimum log-fold-

change cutoff, a p-value can be computed for each gene. P-values and/or log-fold-

change can be then used as arbitrary cutoffs to determine differentially expressed 

genes. 

 

Receiver operating characteristics (ROC) and Area under the 

receiver operator curve (AUC) 

A receiver operating characteristic (ROC) curve visualizes the performance of a 

benchmark test by plotting the true positive rate (sensitivity) against the false 

positive rate (sensitivity) across varying cutoffs [23]. It illustrates the tradeoff 

between sensitivity and specificity. The overall accuracy is measured by the area 

under the ROC curve (AUC). It summarizes the entire location of the ROC curve 

and is an effective measure of sensitivity and specificity that describes the 

inherent validity of diagnostic tests. The closer its curve follows the upper left-

hand corner of its ROC space, the more accurate the test and thus the higher its 
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AUC. If the curve lies on the diagonal of the ROC space, the diagnostic test gives 

random guesses. ROC curves are appropriate for comparing two or more 

alternative statistic tests applied to the same data or finding the optimal cut off 

values.  

 

Goodness of Fit test 

Starting from observed data, a Goodness of Fit test measures the “distance” 

between the data and the distribution or model, which is tested. The resulting 

distance is then compared to some threshold value. If the distance is below this 

threshold, which is also referred to as the critical threshold, the fit is considered as 

good. The Chi Square test is a famous example of a goodness of fit test which can 

be applied to any univariate, discrete distribution for which the cumulative 

distribution function can be calculated [24]. The probability curve of a chi-square 

distribution is an asymmetric curve and has only one parameter, k, which is a 

positive integer specifying the number of degrees of freedom. The null 

hypothesis, for which the test is defined, assumes that the data follow a specified 

distribution. The opposite holds for the alternative hypothesis.   

 

2.5 Bayesian networks 

Bayesian networks are directed acyclic graphs (DAG), containing nodes being 

random variables and directed edges representing probabilistic dependencies 

among the random variables [25]. A node without parents follows an 

unconditional probability; otherwise it follows a conditional probabilistic 

distribution, which is determined by its parent nodes. Using an assumption of 

conditional independence, it is able to efficiently infer posterior probabilities of 

variables by computing the joint distribution over a set of random variables. 

Consequently, it contains information to compute any probability of interest. This 

feature makes Bayesian networks a favorite tool for areas such as machine 

learning or text mining. 
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2.6 Functional Analysis 

2.6.1  Gene set enrichment by Fisher’s exact test 

Fisher’s exact test constitutes an application for functional analysis of large gene 

lists derived from high-throughput experiments [26] with respect to sets of genes 

rather than to individual genes [27]. Starting from a gene list, a measure of 

differential expression is calculated for each gene, usually a p-value from a t-test. 

This measure is used as cutoff for separating the gene list into differentially 

expressed and non-differentially expressed genes. Fisher’s exact test makes use of 

the hypergeometric distribution and takes the size of the overlap between the gene 

set and the list of differentially expressed genes using a 2 x 2 contingency table. 

The table simply counts the number of genes on the microarray with every 

possible combination of the binary attributes ‘differentially expressed’ and ‘in the 

gene set’ [21]. Fisher’s exact test examines the relationship between the two 

dimensions of the table by calculating the p-value for overrepresentation of the 

gene set among the differentially expressed genes using a test for independence. 

The null hypothesis formulates that a term is not active whereas the alternative 

hypothesis states that a term is active. Fisher’s exact test determines the null 

distribution by randomly reassigning genes to the labels for being in the gene set 

and for being differentially expressed [21]. If the out coming p-value is small, the 

null hypothesis of the respective term being off is rejected [28]. 

 

2.6.2  Model-based enrichment analysis 

Bayesian networks can be used in model-based approaches of gene set enrichment 

analysis to model the data with all categories simultaneously for identifying 

biological categories, which are overrepresented. Model-based Gene Set Analysis 

(MGSA) is an example for such an approach [29]. It aims to identify a set which 

comprises a minimal number of categories which is overrepresented in the given 

data by mapping genes to their respective categories within a Bayesian network. 
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By including prior knowledge, this approach is able to infer posterior probabilities 

of biological categories and parameters in order to identify ‘active’ groups. Using 

a model-based approach instead of hypothesis testing on each category separately 

(as for example done by Fisher’s exact test), it overcomes multiple testing 

problems and additionally avoids the prediction of term redundancies. Thus, this 

model-based approach provides a more accurate method for the analysis of high-

throughput data. 

 

2.6.3 Multi-level Ontology Analysis (MONA) 

MONA is a model-based framework using a Bayesian network to infer term 

probabilities by integrating data from different “omics” [2]. While other methods 

are just capable of integrating a single species for the inference of term 

probabilities, MONA is able to combine multiple species response data. 

Simultaneously, it overcomes issues like the multiple testing problem and 

handling redundant term predictions which could be problematic using GO as 

ontology. MONA integrates multi-level omics data into a base model and also 

handles any combination of molecular levels. 

 

Base model 

The base model of MONA (see Figure 1, a) comprises a Bayesian network, which 

consists of a term layer (blue) representing the ontology terms and a hidden layer 

(green), which stands for the hidden gene response [2]. As displayed in the figure, 

the nodes of the term layer are mapped to one or more nodes of the hidden layer 

as, for example, defined by GO. In addition, the base model is defined by 

conditional probabilities: The term layer includes Boolean nodes which are 

Bernoulli- distributed and modeled by a probability p to be on. 
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Figure 1: a) The base model: Hidden nodes (green) of the gene response which are 

observed by noisy measurements are attached by nodes representing the ontologies 

(blue). A prior p defines the probability for the terms to be on or off. b) Single-species 

model: observations ��  (orange) in terms of measurements from a single species are 

connected to exactly a node ��	 of the hidden gene response. Furthermore, each 

observation node is attached by a false positive error rate (��) and false negative error rate 

(��). The figure was adopted from [2]. 

 

The hidden terms are also Boolean nodes and defined to be on if at least one of 

the term nodes, to which they are connected, is on. Let �	be the used ontology 

terms, �� 	a certain gene and ����		a set of terms which are connected to	��. Then 

the following holds: 

 


���|�	 � 	 
1			��	∃�� 	 ∈ ����	 ∶ 	 �� � 1
0																											���������  

 

The single species model, which is displayed in Figure 1 b), allows a single 

species to be observed. Observations in terms of noisy measurements are 

contained in the observation layer. Each observation node ��  is connected to 

exactly one node �� 	of the hidden gene response, respectively. Moreover, each 

observation node possesses its own error rates �	and �	which represent false 
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positive and false negative error rates. Let  �� be an observed gene measurement 

and �� 	the corresponding gene response. Then the following holds: 

 


��� � 1|��	 � 	 
 1	 − 	�						��	�� � 1	�����	������ �			�																��	�� � 0	��!"��	������ �	 


��� � 0|��	 � 	 
 1	 − 	�						��	�� � 0	�����	#�$!�� �			�																��	�� � 1	��!"��	#�$!�� �	 
 

 

Cooperative and inhibitory model 

In addition to the single-level model, a cooperative and an inhibitory model are 

implemented in MONA. This enables the integration of measurements from 

different species in an independent or dependent manner [2].  

In contrast to the single-species model, the cooperative model allows for two 

species, which can be considered as independent measurements of a common 

underlying gene response (see Figure 2), which might be for example changes in 

gene expression or DNA methylation [2]. Each observation node of the species is 

connected to exactly one hidden node, like it is the case for the single species 

model. As the measurements are noisy, each observation node has got its own 

false positive and false negative rate (�% , �%% and	�% , 	�%% for species I and II). The 

error rates for each of the species are defined as described in the base model.  
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Figure 2: The cooperative model of MONA: The observation layer comprises 

independent noisy measurements from two species, for example mRNA and methylation. 

Each observed species has its respective false positive (�% , �%%) and false negative error 

rate (	�% , 	�%%). The figure was adopted from [2]. 

 

The inhibitory model can be used in case of measurements, where one species is 

considered to act as an inhibitor of another species [2]. An example for this is 

represented by posttranscriptional modulation of mRNA by miRNA. According to 

that, one of the observed species is referred to as inhibited species, the other as 

inhibitor species. For the inhibitory observations, an additional hidden node ��%,�'( 

is introduced for every gene response �� separately, like described by Figure 3. 

��%,�'( Is a Boolean random variable which describes the state of the inhibitor (for 

example miRNA): If the inhibitor is active, then	��%,�'( � 1, otherwise	��%,�'( � 0. 

��'(  is the probability for ��%,�'(  to be active. ��%,�'(	states the observation of 

��%,�'( and has its own false positive and false negative error rates. While the error 

rates for the inhibitor species ��%,�'( are defined as described above in the base 

model, following error rates hold for the inhibited species	��%: 
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)��% � 1*��%,�'(, ��+
� 	 ,1 − �%			�����%,�'( � 0 ∧ �� � 1	 ∨ )��%,�'( � 1 ∧ �� � 0+��
	

�%											�����%,�'( � 1 ∧ �� � 1	 ∨ ���%,�'( � 0 ∧ �� � 0	�/
	 


)��% � 0*��%,�'(, ��+
� 	 ,1 − �%			�����%,�'( � 1 ∧ �� � 1	 ∨ )��%,�'( � 0 ∧ �� � 0+��0	

�%											�����%,�'( � 0 ∧ �� � 1	 ∨ ���%,�'( � 0 ∧ �� � 1	�/0	 

 

A true gene response is reflected by an active inhibitor and an inactive inhibited 

species or by an inactive inhibitor and an active (which means non-inhibited) 

species. 

 

 

Figure 3: The inhibitory model of MONA: Two observed species which cannot be 

considered as independent measurements, for example post-translational modification of 

mRNA by miRNA. In this case, ��%	represents the observed mRNA and  ��%,�'( represents 

the observed miRNA. The observed mRNA node ��% is not only connected to both the 

hidden gene response of mRNA 	��  but also to the hidden gene response of its 

inhibitor 	��%,�'(  which indicates that the expression of miRNA influences mRNA 

expression. ��#�	 is the probability for ��1,�#�  to be active Apart from that ��%,�'(  is 
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connected to its hidden gene response	��%,�'(. Both the inhibitor and inhibited observed 

species have their own false positive and false negative error rates. The figure was 

adopted from [2]. 

 

2.6.4 2D enrichment integrating quantitative high-throughput data 

The method 2D enrichment, a method, which was presented by Cox et al., aims to 

identify categories from genes, which show a consistent behavior between any 

two different omics data [30]. In this context, for each category it is tested 

whether its numerical value (for example p-value or fold-change), which was 

previously determined by a non-parametric test such as a multivariate analysis of 

variance (MANOVA), significantly deviates from the general global distribution 

of the data. This is done in order to be independent of the shape of the distribution 

from the numerical values. To test if a particular population tends to have larger 

values than another, the MANOVA test statistic compares the means of several 

groups, as showed in (1), regarding two groups in two dimensions: 

�22345 +	�44325 − 2�243234�22�44 − �245 									�1	 

where	32 �	 8̅: − 8̅5	!#3	34 �	;<: − ;<5  are the differences of the group means 

between group 1 and 2 in the x and y coordinated, respectively and 	�22, �44 and 

�24 are the summed squares of the deviations from the group means for x, y and 

mixed coordinates [30]. The result of the MANOVA test is defined as the 2D 

annotation enrichment p-values. The difference of average ranks of the 

significantly deviating annotations is characterized by a s-score, which is 

represented by a tupel consisting of two numbers,)�2, �4+, where −1 ≤ �2 ≤ 1 

and −1 ≤ �4 ≤ 1. Consequently, significant terms will avoid a circular region 

around the origin, as Figure 4 displays. The remaining parts can be divided into 

correlating, non-correlating and anti-correlating regions. In summary, it can be 

stated that the 2D enrichment provides a ‘no-cutoff’ method handling two ‘omics’ 

dimensions simultaneously, meaning that it is not necessary to define sets  of 

regulated genes or proteins in advance, thereby reducing arbitrary factors. In 
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contrast to other enrichment method, the 2D enrichment does not need a reference 

set to calculate scores regarding a set of genes or proteins relative to all genes in 

the genome and thus, for instance, avoids use of biased data in consequence of 

incomplete databases.  

 

Figure 4: Schematic representation of the 2D annotation enrichment score, which is 

represented by a number pair inside the displayed rectangle. Significant terms will avoid 

the circular region around the origin. The green regions correspond to concordant up or 

down regulation. The blue regions correspond to terms that are up or down regulated in 

one direction, but not in the other, while the terms in the red regions show anti-correlating 

behavior. The figure was adopted from [30]. 

 

 

2.7 MiRNA-target relationship 

Beside other regulatory mechanisms, gene expression in plants and animals is 

post-transcriptionally controlled by non-coding RNAs. Short non-coding RNAs 

are for example miRNAs, which interact with complementary sites of the 

mRNA’s 3’ untranslated region leading to an induced cleavage or to repression of 

productive translation [15]. While it has been shown that miRNAs are involved in 

stress signaling and diseases [31], their impact on distinct biological pathways and 

phenotypes remains largely unknown [32]. 
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2.7.1 Identifying miRNA-target relationships 

The identification of miRNA targets relies strongly on in silico predictions of 

miRNA seed regions and target sequences [33]. Public databases of validated 

miRNA-target pairs benefit from recent technological advances [34]. Several tools 

for miRNA-target prediction are presented in this section. 

 

TargetScan 

TargetScan predicts miRNA targets by looking for 8mer and 7mer sites matching 

the seed region of each miRNA [35]. Nonconserved sites as well as sites with 

mismatches in the seed region can optionally be identified and predicted. 

Predicted targets of mammalian miRNAs are ranked by predicted efficacy of 

targeting using context+ scores of the site, which is defined as the sum of the 

contribution of overall six features: Site-type contribution, 3’ pairing contribution, 

local AU contribution, position contribution, target site abundance contribution 

and seed-pairing contribution. If a single miRNA is chosen as the representative 

miRNA for a specific targeted gene, all other miRNAs belonging to the same 

family are also predicted to target the same gene. 

 

StarBase 

Beside a variation of features like decoding Pan-Cancer and Interaction Networks, 

the identification of miRNA target interactions is another main feature of 

StarBase [36]. For this purpose, miRNA cleavage sites are predicted from CLIP-

Seq and Degradome-Seq data from six organisms. To identify target clusters in 

animal and plants, respectively, six miRNA target prediction tools are used, 

including TargetScan, PicTar and miRanda. To discover new miRNA target sites 

from CLIP-Seq and Degradome-Seq, two web servers were provided.  
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MiRanda 

MiRanda is an algorithm for detecting potential miRNA target sites in genomic 

sequences [37]. It is able to read RNA sequences and genomic DNA sequences 

from files in FASTA format for identifying potential target sites using a dynamic 

programming local alignment between query miRNA sequence and reference 

sequence. However, this algorithm uses scores which are based on sequence 

complementarity instead of sequence identity. Using the resulting alignment, the 

second part of the MiRanda algorithm estimates the thermodynamic stability of 

RNA duplexes. A fictional single-stranded RNA composed of the query sequence, 

a linker and the reference sequence is generated and is then used to calculate its 

minimum free energy. 

 

MiRTarBase 

MiRTarBase is an experimentally validated miRNA-target database containing 

interactions which were collected by data mining and manually survey of 

pertinent literature articles related to functional studies of miRNAs [38]. The 

collected miRNA-target interactions are validated experimentally using reporter 

assay, western blot, microarray and next-generation sequencing experiments. The 

database provides the most updated collection by comparing with other similar 

previously developed databases. 

 

2.7.2  MiRlastic 

As sequence-based prediction approaches predict a high number of false positives, 

it would be reasonable to combine them with expression data to obtain more 

accurate miRNA target relationships. To overcome this issue, a method called 

MiRlastic was developed which enables the construction of miRNA-mRNA 

regulatory networks representing potential regulatory relationships between 

mRNAs and miRNAs. It is assumed that miRNAs which are highly correlated in 

expression data tend to be functionally related and thus are coexpressed [39]. 
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Thus, MiRlastic aims to retain groups of miRNAs that are more likely correlated 

with each other as compared to randomly sampled miRNAs [40]. Consequently, it 

includes biological properties in order to predict miRNA target relationships using 

a regression-based feature selection and an elastic net penalty which identifies all 

associations which are explained by measured expression values. The Elastic net 

penalty is based on a combined penalty of the least absolute shrinkage and 

selection operator (lasso) and ridge regression penalties [41]. It simultaneously 

performs automatic variable selection and continuous shrinkage. In some 

situations, the lasso approach produces unsatisfactory results and thus does not 

constitute a reliable method as it does not retain correlated variables. In contrast to 

lasso, elastic net is able to select groups of correlated variables, meaning that 

strongly correlated predictors tend to be in or out of the model, and thus prevents 

a loss of information [41]. In addition, ridge expression provides no proper 

solution since it performs no feature selection on the data. For modeling miRNA-

mRNA relationships, elastic net is used as regression model to keep meaningful 

correlated miRNA predictors while excluding miRNAs with insufficient effect on 

the mRNA response. Using a balance between the lasso and ridge regression 

penalties, MiRlastic outperforms other multivariate regression models in multiple 

genomic datasets and suits biological understanding of miRNA-mRNA 

interactions [41]. 

 

2.8 Software 

C# and Infer.net 

MONA is implemented in C# using the Infer.NET framework 

(http://research.microsoft.com/infernet). Infer.NET can be used for a number of 

different problems like machine learning approaches, classifications or clustering. 

It also allows for running Bayesian inference on graphical models. All extensions 

of MONA were implemented based on C# and Infer.net. 
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R 

The generation of the synthetic data sets, the evaluation, ROC curves and AUC, as 

well as all visualizations (including heatmaps, trees, volcano plots) for this thesis 

were performed using the R language [42]. R is a free software environment for 

statistical computing and graphics.  
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3 Methods: Extending MONA 

 

For the purpose of obtaining an extended functionality and flexibility of multi-

level ontology analysis, following three models were implemented in MONA:  

 

1. The cooperative model was adjusted to handle any number of 

species for ontology term inference. 

2. A combination of the cooperative and the inhibitory models was 

implemented to allow for the investigation of measurements that 

can be interpreted as both independent and dependent. 

3. A working model was derived handling continuous observations in 

terms of values, which are obtained from differential expression 

analysis. Essential work for the analysis of p-value distribution was 

subsequently performed. 

 

The following sections provide motivation and specification of each implemented 

extension. Evaluation strategy and results are described subsequently in Chapters 

3 and 4, respectively. 

 

3.1 Extended cooperative model 

Up to this point, the cooperative model allowed just for two species as 

observations, for example combined measurements of mRNA expression and 

DNA methylation. In case of more than two species, the cooperative model could 

not be used as “plug and play” because the model first had to be adapted by 

modifying the implementation and then had to be recompiled before applying 

MONA to the data. In order to overcome these costly procedures the cooperative 

model was adjusted to allow for optional numbers. The resulting extended 

cooperative model is illustrated in Figure 5. An arbitrary number of N 

independent species can be handled which may be regarded as noisy 
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measurements of an underlying gene response. Given N species, each observation 

node  ��� 	�> � 1,… , 0	 is connected to its respective hidden node �� of the gene 

response and has its own false positive and false negative rates �� and ��, which 

are defined below.  

 

 

Figure 5: Extended Cooperative Model: Observations of an optional number N of species, 

which are coupled to an underlying hidden gene response node	��. Each species > has its 

own false positive and false negative rates α	�	and	�	�	 . Note that each node ��  of the 

hidden layer is connected to an ontology term. The figure was reproduced from [2]. 

 

For any hidden node	��, the species j is modeled as an independent observation 

���of gene response, which again depends on the respective false positive (��) and 

false negative (��) error rates. The error rates are then defined as: 
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)��� � 1*��+ � 	 ,1 − �� 						��	�� � 1
�� 														��	�� � 0 


)��� � 0*��+ � 	 ,1 − �� 						��	�� � 0
��														��	�� � 1 

For parameterization, uniform priors were chosen meaning all values in the 

domain of the distribution have equal density. Thus the shape parameters �� 	and 

�� 	of the Beta priors for the terms being active as well as for the false positive and 

false negative rates were set to 1. 

In addition, Fisher’s exact test was performed on the given synthetic dataset. Note 

that Fisher’s exact test is just applicable for a single species. To compare the 

results of the different approaches, a receiver-operating-characteristic analysis 

(ROC curve) based on the p-values for all datasets together with the area under 

the curve (AUC) was performed.   

 

3.2 Combined cooperative inhibitory model 

The cooperative and the inhibitory model of MONA allow for the separate gene 

set analysis of independent or dependent measurements, respectively. Both 

models were combined, resulting in a cooperative inhibitory model, achieving an 

inference using both types of measurements. Figure 6 illustrates the cooperative-

inhibitory model which connects a cooperative part (blue) to an inhibitory part 

(orange). The nodes of the observation layer consist of measurements from the 

first species (��%), second species (��%%) and a species (��%,�'(), which is able to 

regulate the first species by inhibition. The first species is connected to both, the 

gene response	��, which is modeled by independent measurement, and the gene 

response 	��%,�'(  of the inhibitory part, which is not regarded as independent. 

Furthermore, the second species is connected to 	��  and the inhibitory species 

to	��%,�'(, which has a probability ��'( of being active. Likewise the false positive 

and false negative error rates are chosen as for the cooperative and the inhibitory 

model described above. 
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The cooperative-inhibitory model can for example be applied to combined mRNA 

expression, DNA methylation and miRNA expression data.  

 

 

Figure 6: The cooperative inhibitory model fuses a cooperative part (blue), which allows 

the observation of two independent measurements with an inhibitory part (orange), which 

comprises the measurement of an inhibitor and an inhibited species. The second observed 

node ��%%  of the cooperative part is just connected to the hidden node ��  while the 

observed node ��% of the first species is connected to both ��	of the cooperative part and 

to 	��%,�'( of the inhibitory part. The inhibitor species ��%,�'( is only connected to the node 

of its own hidden gene response which has the probability ��'( to be active. All nodes of 

the observation layer have their own corresponding false positive and false negative error 

rates. The figure was reproduced from [2]. 

 

In order to determine appropriate shape parameters a and b of the Beta prior 

probability p for the terms to be active, different values for a and b were used for 

evaluating the cooperative-inhibitory model. Results are described in Section 5.2. 
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3.3 cMONA - Continuous MONA for single species 

Up to now, MONA infers ontology terms by using binary data as observations, 

which indicate whether the respective genes are differentially expressed or not. 

The aim is to implement a model, which allows using continuous input values and 

thereby considering the strength of differential expression by avoiding arbitrary 

thresholding of significance values. Meaningful continuous values are represented 

by p-values obtained from significance testing, e.g. by a moderated t statistic, 

meaning that each measurement has a respective p-value. 

 

 

Figure 7: Current working model of cMONA allowing for continuous input values, 

represented by p-values. A p-value 
� 	is directly coupled to exactly one node �� of the 

hidden gene response. µ and γ are hyperparameters specifying the error rates for Pi by 

representing mean and precision of the p-value distribution. 

 

According to these requirements for a continuous MONA (cMONA), we propose 

a working model for single species (Figure 7) as follows. P-values are introduced 

as observations 
� (orange) from a single species and are connected to exactly a 

node ��	of the hidden gene response. The 
�  observation level is replacing the 

binary	��observation level from MONA. As p-values contain false positives and 

false negative errors, corresponding error rates have to be included. (Binary) 

MONA uses two error rates, which are coupled to its observation nodes 	�� , 

considering false positive and false negative measurements and are represented by 

two Beta distributions α and β. However, in contrast to α and β, these error rates 

are not Beta distributed, and thus are replaced by the global hyperparameters µ  
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and γ, which represent the mean as well as the precision of the p-value 

distribution. Therefore, we have to derive distribution assumption for the p-

values, which is a non-trivial task. Trimmer et al. presented a method for the 

determination of differentially expressed genes from set of genes without 

requiring any p-value threshold [43]. According to that, it was aimed to estimate 

the number of differentially expressed genes based on the p-value distribution, 

which was divided into a uniform distribution and an unknown, alternative 

distribution.  

Consequently, we assume that p-values obtained from differentially expressed 

genes are log-log-normally distributed, otherwise uniformly distributed. If the 

hidden gene response	�� � 1, we expect that the respective p-value	
� comes from 

a lognormal distribution, if	�� = 0, we expect 
� to be uniformly distributed: 

  


�
�|��		~	
	B�$ − B�$ − 0�μ, D					��	�� = 1
	E#����F																										��	�� = 0 

 

In the context of this thesis, the model could not be fully implemented in MONA. 

Instead, a generic model for p-value distribution was implemented in Infer.net, 

which estimates mean and variance of p-values in a transformed log-log-space. 

 

Analysis towards a generic model for p-value distribution 

A fundamental step towards implementation of the generic model was to fit a 

mixture model estimating the distribution of given p-values which indicate the 

significance of differential expression. Concerning this, a set of genes can be 

divided into: 

�0:0�	3������#H�	�#	$�#�	�8�������# 

�1:I������#H�	�#	$�#�	�8�������# 
 

 



27 
 

P-values under the null hypothesis which are obtained by multiple significance 

tests follow a uniform distribution [43]. In contrast, p-values under H1 are 

expected to have a very low p-value, for example 0.1 or 0.05 and thus accumulate 

around zero. Such p-values follow an alternative distribution, which is assumed to 

be lognormal. Consequently, the p-values follow a mixture distribution 

comprising uniform and lognormal.  

A prerequisite for generating realistic synthetic datasets for the evaluation of 

cMONA is represented by modeling the p-value distribution. Therefore, a generic 

model was implemented in Infer.net which infers the parameters for the lognormal 

distribution given the fraction of genes under the null hypothesis. The model takes 

raw p-values as input parameter and transforms them into a log-log-space as it is 

expected that the transformed p-values follow a normal distribution. Based on the 

proportion of null p-values which are also given as input, the model infers mean 

and precision of the p-value distribution. The inferred parameters are then used to 

sample the lognormal-uniform mixture distribution. The generic model was 

applied to p-values obtained from mRNA expression data (chapter 4.2) as well as 

p-values obtained from ten independent data sets from the Gene Expression 

Omnibus.  

 

 

  



28 
 

4 Materials and Testing Strategy 

The following chapter comprises data sets which were used to evaluate and 

compare results of the newly implemented models as well as their application for 

ontology term inference. Furthermore, it describes methods of functional analysis 

performed as preprocessing step for multi-level ontology analysis in order to 

identify differentially expressed genes. 

 

4.1 Synthetic Data Generation 

Both the new implemented and already existing models of MONA were evaluated 

using synthetically generated data using the GO. For this purpose, a number of 

non-redundant GO biological process terms were randomly sampled containing 

between five and hundred genes. Non-redundant means, that for every term in a 

set, it holds that none of the remaining terms is either a parent or an offspring of 

this term. Afterwards, the sampled terms were mapped to their corresponding 

genes in order to create the gene sets for the evaluation. This was done according 

to the different models respectively and is described in the corresponding sections. 

Furthermore, false positives and false negatives were introduced in the data with a 

probability of 25% respectively. Overall twenty synthetic data sets were generated 

for the evaluation of the extended cooperative model, the cooperative-inhibitory 

model and cMONA. 

MONA and cMONA were systematically evaluated with synthetic and biological 

data sets. Performance was quantified consistently with Receiver Operating 

Curves (ROC) and respective area under the ROC curve (AUC). A term was 

considered to be active, if its posterior probability is above 0.5. 

 

4.2 Biological Dataset 

Besides synthetic data, expression measurements from mRNA, miRNA and 

methylation levels are used in this thesis for multi-level inference of biological 

processes involved in adipocyte differentiation. These datasets were generated by 
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isolating preadipocytes from obese patients (with a BMI between 43 and 70) at 

the group of Harald Staiger (Universitätsklinikum Tübingen) kindly provided by 

Steffen Sass for this thesis. After isolation, the cells were differentiated to 

adipocytes in vitro within 20 days. Measurements were taken of the preadipocytes 

(day 0) and the fully differentiated mature adipocytes (day 20). For mRNA 

profiling the Affymetrix GeneChip Human Gene 1.0 ST Array, for miRNA 

profiling the Affymetrix GeneChip miRNA 2.0 Array and for DNA methylation 

the Illumina Infinium HumanMethylation450 Array was used. All these 

experiments were conducted in the group of Johannes Beckers (Institute of 

Experimental Genetics at the Helmholtz Center Munich). 

 

4.3 Statistical Analysis of mRNA expression, methylation and 

miRNA expression data 
 

The biological data sets were preprocessed meaning that active gene sets had to be 

determined. For this purpose, the Bioconductor library limma was used which 

provides functionalities with respect to analysis of gene expression microarray 

data, especially for assessment of differential expression. 

For the determination of both mRNAs and methylation sites that are differentially 

expressed between preadipocytes and mature adipocytes, a moderated t statistic 

was first performed, which indicates the significance of differential expression. 

Figure 8 shows the heatmaps for the corresponding samples derived from 

preadipocytes and adipocytes of mRNA and methylation site measurements, 

respectively. The columns of samples derived from preadipocytes are marked blue 

while columns of samples from adipocytes are marked orange. The coloring of 

each heatmap indicates the row scaled expression values from row expression 

(white) over medium expression (light blue) to high expression (dark blue). It is 

observable that both species show differential expression patterns. The differences 

between the expression values between preadipocytes and adipocytes are stronger 

for measured mRNAs than for methylation sites.  
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Figure 8: Heatmap showing (a) differentially expressed genes and (b) differentially 

expressed methylation sites between preadipocytes (blue column) and adipocytes (orange 

column). The gene expression and methylation values were standardized row-wise, 

respectively. Low values are indicated in white, middle in light blue whereas high values 

are colored in darker blue. The clustering of mRNAs is based on the correlation of 

mRNA and sample expression profiles, respectively. The same holds true for the 

methylation sites. 



31 
 

To determine genes which are considered as differentially expressed, thresholds 

had to be defined. For this purpose, volcano plots, showed in Figure 9, were 

created and used to identify changes in mRNA and methylation measurements. 

Each plot shows significance as a function of log-change. Based on these plots, it 

was decided to choose both an adjusted p-value cutoff and a log fold change 

cutoff and for methylation data, due to the number of data points with low p-

values and high log fold changes, only an adjusted p-value cutoff. 

 

 

Figure 9: Volcano plots showing the chosen thresholds for defining gene sets for mRNA 

and methylation measurements: (a) 336 (cyan) of overall 19878 (rose) mRNAs with both 

an adjusted p-value below 0.05 and a log fold change above 2 are considered as 

significantly differentially expressed. (b) 66 (cyan) of overall 9278 (rose) methylation 

sites with an adjusted p-value below 0.05 are considered as significantly differentially 

expressed.  

 

Consequently, a measured mRNA was defined to be considered significantly 

differentially expressed if its adjusted p-value was below 0.05 and its mean 

expression (log fold change) was 2-fold up- or down-regulated.  Methylation sites 

were considered as significantly differentially expressed if their adjusted p-value 
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was below 0.05. Starting from these chosen cutoffs, 336 mRNAs and 66 

methylation sites were defined to be differentially expressed. 

The third level of the biological data set, consisting of measured miRNAs, was 

preprocessed using the MiRlastic approach (described in 2.7). In order to 

determine significantly differentially expressed miRNAs, a moderated t statistic 

was first calculated as it was done for the mRNA and methylation sites data. The 

resulting p-values were adjusted by applying Bonferroni p-value correction for 

multiple testing. Based on these statistics, a miRNA was assumed to be 

differentially expressed if its adjusted p-value was below 0.05 and its mean 

expression was at least 4-fold up- or down-regulated between preadipocyte and 

adipocyte measurements. Next miRlastic was applied to the miRNA and also the 

mRNA measurements to assign potential targeted genes using miRNA-target 

predictions from TargetScan. Out of 9941 overall miRNA targets, 1395 were 

predicted to be significantly differentially expressed. 
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5 Results and discussion 

This chapter contains the results with respect to evaluation and application of 

extended MONA. Section 5.1 comprises the evaluation results of the extended 

cooperative model, 5.2 describes both the evaluation of the cooperative-inhibitory 

model as well as its application to experimental datasets. Section 5.3 illustrates the 

results of a generative model for p-value distribution with respect to cMONA. 

Afterwards, an additional section will show evaluation results of MONA for 

miRNA alone enrichment. 

 

5.1 Extension of Cooperative Model 

The performances of the cooperative inhibitory models for both two and three 

levels and for Fisher’s exact test (only applicable to single level) are displayed in 

Figure 10.  

 

 

Figure 10: Performance of the cooperative model applied to synthetic data of two species 

(purple) and three species (blue) respectively. The inference of Fisher’s exact test 

(yellow) is based on one species only. AUC values are listed in the respective figure 

legends. 
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The AUC value for the cooperative model with three levels was 0.983, for two 

levels 0.946 and for Fishers exact test 0.933. The ROC curve generated by the 

three species model differed from the curve generated by the two level model of 

MONA and indicated that a higher number of measurements correspond to more 

accurate results.  

We have implemented the cooperative model to be used with more than three 

levels, which was not evaluated further. We anticipate even higher AUC values 

following the trend of one- to three-level MONA results. 
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5.2 Cooperative Inhibitory Model 

5.2.1 Evaluation on synthetic data 

In the following, optimal shape parameters of the Beta prior p for the cooperative-

model were determined by evaluation. The heatmap in Figure 11 shows different 

priors and the corresponding AUC values. While the parameter b was chosen to 

be 1 or 2, a larger range was decided to be chosen for a because this prior restricts 

the number of predicted terms. The resulting AUC values for these priors range 

from 0.9750583 (corresponds to a = 1 and b = 2) to 0.9954245 (corresponds to a 

= 15 and b = 1). Altogether, all AUC values, regardless of whether a was chosen 

to be high or low, are relatively near to 1 which implies an accurate performance 

of the cooperative-inhibitory model regardless of the selected priors. We therefore 

selected a=15 and b=1 for further analysis. 

 

Figure 11: Evaluation of the cooperative-inhibitory model displaying AUC values using 

different shape parameters a	and b	of the Beta prior probability for the terms to be active. 

The model was tested using different values for a and L, respectively. 
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Evaluation 

Figure 12 shows the results of the evaluation based on the synthetically generated 

data for the cooperative-inhibitory model (black), the cooperative model (yellow), 

the inhibitory model (blue) as well as for Fishers exact test on tree single species 

representing those species, which are used for the cooperative-inhibitory model. 

Regarding Figure 6, species 1 (violet) represents	�%, species 2 (brown) represents 

�%'(,% and species 3 (cyan)	�%%.  

 

 

Figure 12: Evaluation of the combined, the cooperative and the inhibitory model of 

MONA as well as Fisher's exact test using synthetic data sets. ROC curves are shown in 

black for the combined model, yellow for the cooperative model, blue for the inhibitory 

model and violet, brown and cyan for single species performed by Fisher’s exact test. 

 

It is observable that the cooperative-inhibitory outperforms all other approaches 

with an AUC value of 0.995. This supports the assumption, that using more 

information for the inference has a positive effect on the performance. The AUC 
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values for the cooperative and the inhibitory model were 0.978 and 0.937, 

respectively. ROC curves generated by Fisher’s exact test on the three species 

differ from the ROC curve generated by the cooperative-inhibitory model.  

Notably, results of miRNA alone enrichment with the Fishers exact test follow a 

random distribution. This will be further investigated in Section 5.4. As expected, 

the fusion of knowledge from the cooperative and the inhibitory model results in 

higher performance which is shown by a significantly better ROC curve in 

contrast to less complex MONA models as well as Fisher’s exact test on single 

species. 

 

5.2.2 Application to biological data 

In order to assign the genes to functional categories, annotations from GO, KEGG 

PATHWAYS and WikiPathways were retrieved. Table 1 lists the obtained gene 

sets for these ontologies.  For GO, a set of 14539 genes was obtained, containing 

304 genes, whose mRNA was up- or down-regulated, 51 genes with an associated 

hypomethylated CpG site and 1205 genes which were considered to be targeted 

by differentially expressed miRNAs. The respective numbers for KEGG 

PATHWAYS and WikiPathways are also listed in Table 1 In total, 9457 functional 

categories of GO, 216 from KEGG PATHWAYS and 323 from WikiPathways were 

used as input for MONA together with the respective gene sets. 

 

Table 1: Obtained gene sets for three different ontologies: GO, KEGG Pathways and 

WikiPathways. The columns show the number of determined genes whose mRNA was 

up- or down-regulated, genes with an associated hypomethylated CpG site, genes which 

were considered to be targeted by up- or down-regulated miRNA and the total number of 

genes in the respective gene set. 

 mRNA methylation miRNA total size 

GO 304 51 1205 14539 

KEGG Pathways 177 27 505 6576 

WikiPathways 127 20 477 5288 
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The heatmaps displayed in Figures 13-15 show the predicted categories from the 

adipocyte differentiation dataset using GO, KEGG PATHWAYS and 

WikiPathways, respectively. To have a comparison with respect to other models 

of MONA, the cooperative, the inhibitory and the single species model were 

additionally applied.  

For GO, 12 terms were obtained with a probability of above 0.5. Comparing the 

resulting terms of the cooperative-inhibitory model to the remaining models, it is 

obvious that there is not much overlap of predicted terms between the 

cooperative-inhibitory models and the other ones. In contrast, it is observable that 

the cooperative and the single mRNA model clearly overlap meaning that mRNA 

alone has a great impact on the cooperative model. Note that the single model 

applied to the methylation data did not predict any term to be active. This may be 

due to the small number of genes with an associated hypomethylated CpG site. 

Active terms predicted by the inhibitory model, were neither predicted by the 

miRNA single model, nor by the mRNA single model. The cooperative and the 

inhibitory model have no active terms in common, whereas the combination of 

both models reveals further active terms. The most interesting term revealed is 

positive regulation of fat cell differentiation which implies the maturation of 

preadipocytes into adipocytes [44]. Further terms which could only be inferred by 

the cooperative-inhibitory model and which are shown to be altered in adiposity, 

are vitamin metabolic process [45], fatty acid metabolic process [46], response to 

toxic substance [47], one-carbon metabolic process [48] and selenium compound 

metabolic process [49]. These results show that the cooperative model is able to 

infer meaningful functional GO terms which are altered in adipocyte 

differentiation and therefore are enriched between the gene sets. In addition, it 

also predicts positive regulation of fat cell differentiation, a term, which is 

referred to as adipocyte differentiation. Consequently, the outcome of the new 

model shows that the combined information of both, the cooperative and the 

inhibitory model, produces a model which enables the identification of 

meaningful GO terms with respect to adipogenesis. 
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Figure 13: Heat map showing the biological processes of adipocyte differentiation 

predicted by the cooperative-inhibitory, cooperative and inhibitory models as well as 

single model for mRNA, miRNA and methylation, using GO. The color indicates the 

functional category in the respective run. No terms could be predicted by the single model 

for methylation data. 

 

Regarding the outcomes predicted by the cooperative-inhibitory model and the 

remaining models using KEGG PATHWAYS, Figure 14 shows that the overlap of 

terms predicted by cooperative-inhibitory model and the remaining models is 

higher than their overlap using GO terms showed in Figure 13. Nevertheless the 

number of predicted KEGG terms of the cooperative-inhibitory is definitely 

higher compared to the other models. There are some terms predicted only by the 



40 
 

new model. The first one is Metabolism of xenobiotics by cytochrome p450. As 

for GO, the single species model applied to methylation data did not infer any 

terms. Xenobiotics are harmful, lipid-soluble chemical substances that are foreign 

to the human body meaning neither naturally produced by nor expected to be 

present within that organism [50]. It has been proposed that there is a link 

between exposure to certain xenobiotics and obesity by showing that some 

xenobiotic-metabolizing forms of P450 were expressed in white adipose tissue 

[51]. Another term is Phenylalanine metabolism which is also associated with 

human obesity [52]. Further terms known to be changed between preadipocytes 

and adipocytes are Vitamin digestion and absorption [53], 

Glycolysis/Gluconeogenesis [54], Biosynthesis of unsaturated fatty acids [55], 

taurine and hypotaurine metabolism [56], Retinol metabolism [57] and ABC 

transporters [58]. All these terms were revealed only by the combined model and 

are either shown or proposed to be altered in adipose tissue.  
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Figure 14: Heat map showing the biological processes of adipocyte differentiation 

predicted by the cooperative-inhibitory, cooperative and inhibitory models as well as 

single model for mRNA, miRNA and methylation, using KEGG PATHWAYS as 

ontology. The color indicates the functional category in the respective run. No terms were 

predicted by the single model for methylation data. 
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Considering the inferred terms of WikiPathways which are displayed in Figure 15, 

some aspects are becoming apparent. First, in contrast to other models handling 

more than one species in parallel, the cooperative model inferred a significantly 

smaller number of terms. Furthermore, there are more terms identified to be active 

by the cooperative-inhibitory model then by the remaining models (except the 

miRNA single species model). There are also terms arising which were shown to 

be altered in adiposity: Irinotecan pathway [59], blood clotting cascade [60], the 

alpha-linoleic acid metabolism [61], Fatty Acid Beta Oxidation [62] and 

Arachidonic acid metabolism [63]. 

Concerning three different ontologies, the application of the cooperative-

inhibitory model, on the one hand, enhances the probabilities of terms which were 

also predicted separately by the other models, and on the other hand, it 

additionally infers some meaningful terms which were not inferred by the other 

models. Using biological process terms from the GO, the cooperative-inhibitory 

model infers many terms which could not be identified by several other models of 

MONA, regardless of whether cooperative, inhibitory or single species. These 

retrieved terms are possible processes which are altered during adipogenesis. 

Regarding KEGG PATHWAYS and WikiPathways, it is observable, that the 

cooperative model, the inhibitory model as well as the single species model 

applied to mRNA data had a strong impact on the results of the cooperative-

inhibitory model. The single species model for miRNA predominantly predicted 

terms originating from signaling and DNA modification pathways whereas the 

single species model for methylation data did not infer any categories, maybe due 

to the low number of differentially methylated CpG sites. However, the combined 

integration of mRNA, methylation and miRNA data in MONA enables the 

determination of functional categories exceeding the ability of the separate models 

of MONA. 
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Figure 15: Heat map showing the biological processes of adipocyte differentiation 

predicted by the cooperative-inhibitory, cooperative and inhibitory models as well as 

single model for mRNA, miRNA and methylation, using WikiPathways as ontology. The 

color indicates the functional category in the respective run. No terms could be predicted 

by the single model for methylation data. 
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In order to set up a framework for the application on data sets which comprise 

measurements from mRNA, methylation and miRNA levels, the cooperative and 

the inhibitory model were combined. The cooperative-inhibitory model was 

shown to outperform the cooperative and the inhibitory model as well as Fisher’s 

exact test on synthetic data sets. In addition, the application of the combined 

model to mRNA, methylation and miRNA data from adipocyte differentiation 

using categories from GO, KEGG PATHWAYS and WikiPathways, revealed 

meaningful functional terms which could not be inferred by the cooperative 

and/or the inhibitory models alone. Figure 16 shows a part of the GO tree 

containing those nodes predicted by the cooperative-inhibitory model (yellow) 

and Fisher’s exact test (cyan). Nodes predicted by both approaches are colored 

blue. It shows that the newly implemented model overcomes term redundancies 

while Fisher’s exact test predicts a huge number of redundant terms. 

 

Figure 16: Visualization of a cutout of the GO tree containing biological processes. The 

colored nodes display biological processes which were predicted to be active by MONA’s 

cooperative-inhibitory model (yellow) and Fisher’s exact test (cyan). Terms identified by 

both methods are shown in blue.  
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5.3 CMONA 

The drawback of (binary) MONA is that it makes use of binary input values 

requiring an arbitrary threshold. To overcome this, we derived a working model, 

named cMONA, which allows continuous input values in terms of p-values. 

CMONA takes into account the expression strength and is the first step towards a 

model-based functional analysis incorporating statistical significances without an 

arbitrary threshold.  

 

5.3.1 Evaluation of generic model for p-value distribution 

sampling 
 

The generic model was applied to p-values which were previously obtained from 

the experimental data set comprising mRNA expression measurements from 

adipocyte differentiation. Using the R package fdrtool, which can be used for 

estimation of local false discovery rates [64], the proportion of p-values under H0 

was estimated, meaning the proportion of p-values of not differentially expressed 

genes. Within the mRNA expression data set, about two-thirds of the mRNAs 

were estimated to be differentially expressed. Mean and precision of the log-log-

normal distribution were predicted to be about 0.325 and 1.79. These parameters 

were then used for p-value sampling: If a gene was considered to be differentially 

expressed, its transformed log-log p-value was expected to come from a normal 

distribution with the previously inferred mean and precision parameters, otherwise 

from a uniform distribution. These assumptions were used to sample p-values 

starting from the gene set which was previously given as input for mean and 

precision estimation. Figure 17 displays the distribution of the p-values obtained 

from the data set (blue) as well as the sampled p-value distribution (pink) in both, 

the transformed space (left) and the original space (right).  
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Figure 17: Histograms of p-value distribution of the experimental mRNA expression data 

set obtained from the moderated t statistic (blue) and sampled p-values (pink). Left: 

distributions in the transformed space (log-log-space). Right: distributions in the original 

data space. 

 

Since the experimental data set contains two-thirds of differentially expressed 

genes, the distribution of transformed p-values is slightly right-shifted. But as we 

expected a normal distribution of transformed log-log p-values, further 10 data 

sets from the Gene Expression Omnibus were evaluated. Both the obtained and 

the sampled p-value distributions of these data sets are displayed in the 

Supplementary Section (Figure A).  
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5.4 Excursion: Application of MONA to miRNA enrichment 
 

To gain a deeper insight into the regulatory mechanisms, gene set enrichment 

using miRNAs as observations became more important. Starting from miRNAs as 

observed species, the characterization of enriched pathways of targeted genes 

poses a difficult challenge, since functional properties of miRNAs are 

characterized by their targets [65]. To identify enriched pathways for measured 

miRNAs, enrichment methods make use of miRNA-target binding predictions 

[66]. Methods for such predictions are known to produce many false positive 

relationships [67]. In addition, there is a many-to-many relationship between 

miRNAs and multiple genes [66]. If these relationships are taken into account for 

correlation analyses which are based on one-to-one relationships, the biological 

context of cell signals are ignored [66]. Considering these issue, MONA was 

evaluated by application to miRNA alone enrichment. This evaluation was 

performed on synthetic data sets which were generated based on miRNA-target 

matrices of TargetScan [35], StarBase [36], MiRanda [37] and MiRTarBase [38] 

as well as on combinations of them. In addition, Fisher’s exact test was equally 

evaluated for performance comparison. 

The generation of the data is displayed by Figure 18. For each data set, five non-

redundant GO terms containing five to hundred genes were sampled, then mapped 

to their corresponding genes followed by mapping these genes to their targeted 

miRNAs for each miRNA-target matrix.  Consequently, twenty gene-sets were 

generated per miRNA-target matrix for the evaluation. As MONA uses a 

category-to-gene relationship for the inference, the resulting miRNAs could not 

directly be used as input and thus had to be mapped back to their corresponding 

targeted genes. If the expression of these miRNAs is considered to be altered, then 

their targeted mRNAs and thus the resulting gene products are also considered to 

be altered. However, miRNA-target predictions may infer large amounts of false 

positive mRNA targets for individual miRNA regulators. Thus different selection 

criteria were chosen which should keep the number of the gene set reduced. It was 

decided not to take all miRNAs for the last mapping step. Instead, the occurrence 

of all mapped miRNAs was determined and it was decided to take the most 
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common one to the most common five miRNAs for the last mapping step. The 

same was done for the rarest miRNAs. After their creation, MONA’s single model 

and Fisher’s exact test were applied to all data sets followed by generating ROC 

curves. 

 

 

 

Figure 18: Schematic representation displaying the generation of synthetic data sets for 

the miRNA alone enrichment. First, non-redundant GO terms were sampled which were 

mapped to the corresponding genes.  Secondly, genes were mapped to miRNAs by which 

they are targeted, using different miRNA-target predictions. In the next step, a selection 

criterion is applied to the resulting miRNAs to reduce their number. Afterwards, the 

obtained miRNAs were mapped back to genes which were then considered as 

differentially expressed and used for the single enrichment by MONA (and Fisher’s exact 

test). 

 

Figure 19 and 20 show the results of the inference of MONA and Fisher’s exact 

test, for the most 1 to 5 most common as well as rarest obtained miRNAs, 

respectively. Taken together, one can say that the performance of MONA is near 

to random, which is shown by ROC curves near the diagonal of the ROC space. 

Nevertheless, there are exceptions regarding the performance of MONA’s miRNA 
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alone enrichment, for example taking in account only the most common miRNA 

predicted by MONA and using MiRTarBase for miRNA-target relationship 

(Figure 19, Top 1). It shows a ROC curve clearly better than random, but on the 

other site, the shape of the curve also shows that MONA was not able to perform 

a successful inference for all data sets. An inference was considered to be 

successful, if the mean of the inferred Beta distribution of the shape parameter for 

the term probabilities not to be ‘active’, was above 0.8, since it was expected that 

only a small fraction of terms is active. Another performance of MONA not being 

random is shown in Figure 20 using the Top 2 rarest miRNAs for generating the 

data by MiRanda. It appears that miRNA-target relationships which are 

experimentally validated, like in the case of MiRTarBase, are more suitable for 

miRNA enrichment. An argument is that ab initio and sequence-based miRNA-

target predictions may infer false positives. This can, for example, be avoided by 

using experimentally validated. Figures displaying the performances using 

combinations of miRNA-target predictions can be found in the Supplementary 

Section (Figure B1 and B2). 

 

Most common miRNAs 
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Figure 19: Plots showing the performances of bot MONA and Fisher's exact test for the 

most common (Top 1) to the five most common (Top 5) miRNAs for single miRNA 

enrichment. . The data sets were generated using following miRNA-target predictions: 

TargetScan (TS), StarBase (SB), MiRanda (MR) and MiRTarBase (MTB). 
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Rarest miRNAs 

 

 

 

Figure 20: Plots showing the performances of bot MONA and Fisher's exact test for the 

rarest (Top 1) to the five rarest (Top 5) miRNAs for single miRNA enrichment. The data 



52 
 

sets were generated using following miRNA-target predictions: TargetScan (TS), 

StarBase (SB), MiRanda (MR) and MiRTarBase (MTB). 
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6 Summary and Outlook 

Multi-level Ontology Analysis (MONA) provides a model-based framework, 

which is capable of integrating results across multiple molecular species for the 

assessment of functional gene responses. This thesis comprises extensions of 

MONA regarding functionality and flexibility. Therefore, three additional models 

were implemented. 

First, the cooperative model was adjusted in order to handle any number of 

species, which can be considered as independent observations, for example 

mRNA expression, DNA methylation and protein expression. The extended 

model showed to perform more accurately by the integration of three instead of 

two species. 

Second, the cooperative and the inhibitory model were fused into one combined 

model allowing for the investigation of measurements that can be interpreted as 

both independent and dependent. It performs better than less complex MONA 

models and Fisher’s exact test. The application of the cooperative-inhibitory 

model to experimental data (comprising mRNA, DNA methylation and miRNA 

expression levels) of adipocyte differentiation revealed meaningful functional 

terms. 

Finally, a working model, named cMONA, was developed to overcome MONA’s 

drawback by allowing for p-values continuous observed input values instead of 

binary values. In the context of this thesis, the model could not be fully 

implemented but essential work interrogating p-value distribution assumptions. 

Up to now, a generic mixture model was implemented, which estimates p-value 

distribution. It was applied to mRNA expression data as well as to ten randomly 

selected data sets from the Gene Expression Omnibus database. 

 

Future implementations of cMONA should include the implementation of 

cMONA for single species with the here determined distribution assumptions for 

(not) significantly regulated genes. Furthermore, other models for the assessment 

of gene responses could be implemented, including an “activating” model which 

could be applied e.g. to protein phosphorylation measurements as many enzymes 

are “activated” by phosphorylation events.   
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8 Supplementary 

 

 

Figure A: Distributions of experimental (blue) and sampled p-values (pink) in the 

transformed log-log-space. The experimental data of the 10 sets was randomly taken from 

the Gene Expression Omnibus Database. The sampled p-value distribution was generated 

by the generic model of cMONA. 
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Figure B1: Plots showing the performances of bot MONA and Fisher's exact test 

for the most common (Top 1) to the five most common (Top 5) miRNAs for 
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single miRNA enrichment. The data sets were generated using combinations of 

certain miRNA-target predictions: TargetScan and StarBase (TS & SB), 

TargetScan and MiRanda (TS & MR), TargetScan and MiRTarBase (TS & MTB) 

as well as combination of TargetScan, StarBase and MiRTarBase (TS, SB & 

MTB). 
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Figure B2: Plots showing the performances of bot MONA and Fisher's exact test for the 

rarest (Top 1) to the five rarest (Top 5) miRNAs for single miRNA enrichment.  The data 

sets were generated using combinations of certain miRNA-target predictions: TargetScan 

and StarBase (TS & SB), TargetScan and MiRanda (TS & MR), TargetScan and 

MiRTarBase (TS & MTB) as well as combination of TargetScan, StarBase and 

MiRTarBase (TS, SB & MTB). 

 


