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Two case/control studies with different phenotypes, marker den-
sities, and microarrays were examined for the most significant
single markers in defined regions. They show a pronounced bias
toward exaggerated significance that increases with the number of
observed markers and would increase further with imputed mark-
ers. This bias is eliminated by Bonferroni adjustment, thereby
allowing combination by principal component analysis with a
Malecot model composite likelihood evaluated by a permutation
procedure to allow for multiple dependent markers. This interme-
diate value identifies the only demonstrated causal locus as most
significant even in the preliminary analysis and clearly recognizes
the strongest candidate in the other sample. Because the three
metrics (most significant single marker, composite likelihood, and
their principal component) are correlated, choice of the n smallest
P values by each test gives <3n regions for follow-up in the next
stage. In this way, methods with different response to marker
selection and density are given approximately equal weight and
economically compared, without expressing an untested prejudice
or sacrificing the most significant results for any of them. Large
numbers of cases, controls, and markers are by themselves insuf-
ficient to control type 1 and 2 errors, and so efficient use of multiple
metrics with Bonferroni adjustment promises to be valuable in
identifying causal variants and optimal design simultaneously.

Bonferroni correction | principal component analysis | electrocardiographic
QT interval | empirical P values

he last century provided a leapfrog from linkage in Dro-

sophila to its slow development in human genetics, then to
acceleration as blood groups and isozymes were replaced by
DNA markers. This progress stimulated the Human Genome
Project that provided a physical reference, which led in turn to
the HapMap Project and endless diversity (1). Two milestones in
this progression were recognition of DNA block and step
structure (2) and advocacy of genome-wide association (GWA)
to identify common causes of disease (3). These developments
were dramatically capped by success in six of seven common
diseases (4), with most significant single markers (msSNPs)
localized in the physical map in base pairs without reference to
neighboring markers or a map in linkage or linkage disequilib-
rium (LDU). However, power to detect small effects, epistasis,
rare causal genes, and disease determinants other than SNPs is
low (5, 6). Will this simple method suffice if the numbers of cases,
controls, and markers are greatly increased? Should other
methods that may be more efficient be examined? It will be some
time before such uncertainties are resolved, but a beginning can
be made.

At this point it may seem that the many GWA studies now
being conducted offer an embarras de choix. However, public
tests are delayed necessarily by consortium agreements and
unnecessarily by the assumption that only consortium members
may be trusted to behave ethically (7). One way of filling this gap
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is to analyze simulated data that mimic some of the important
features of real data. We evade the limitations of this approach
to an unknown world by collaborating with two research groups
on large sets of single nucleotide polymorphisms (SNPs) geno-
typed in a substantial number of cases and controls, with the
understanding that the origin, disease, SNPs, locations, and
other confidential information not be divulged before publica-
tion by the consortia (sample A), whereas after publication, the
information is no longer confidential (sample B). In this way,
some of the many questions raised by advances in association
mapping can be realistically addressed before the expected flood
of association data requiring GWA mapping and meta-analysis,
without compromising anonymity of participants, data access
agreements, the authorship rights of consortia to first publica-
tion, and other ethical constraints. However, the scope of this
approach is presently limited to the first phase of GWA and is
therefore heuristic rather than decisive. Only the importance of
these issues justifies their examination at this time.

Stage 1 is typically a genome scan of nonoverlapping regions
with the object of identifying the regional msSNP in the physical
map or the maximum likelihood point estimate in a linkage or
LDU map with multiple markers specified by a commercial gene
chip, using conventional formula (8). Markers with rare minor
allele frequencies or violating Hardy—Weinberg proportions are
conventionally discarded. The most significant regions however
defined are then submitted to phase 2 analysis in a different and
preferably larger sample with more markers in the region of
interest. Typically, the selected set is <1% of the number of
regions in phase 1 and therefore can be studied in greater detail,
although absence of an appropriate gene chip increases effort.
More versatile phase 2 strategies that rely on sequencing are
being developed with potential to detect rare causal genes not
limited to SNPs (9). Limitations of any approach include choice
of markers, sample selection and size, and methods of analysis.
If msSNPs are used, regional significance is exaggerated relative
to composite likelihood unless a Bonferroni adjustment or other
appropriate correction is made as described in Materials and
Methods, which also gives the way in which composite likelihood
and the adjusted msSNP are combined by principal component
analysis to yield three metrics. A unique feature of our algorithm
is selection of the n most significant regions for each of the
metrics, which generates <3n regions for phase 2. The msSNP is
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Table 1. Number of regions (m) within a SNP range, with mean
S and Bonferroni correction (R)

Sample A Sample B

SNP range m R S m R S
30 1,536 27.10 30.00 2,014 20.42 30.00
31-35 638 26.55 33.12 294 23.50 32.80
36-40 712 32.86 37.96 205 27.51 37.86
41-45 650 35.76 42.87 165 24.63 42.89
46-50 508 35.99 47.89 137 28.28 47.90
51-55 421 41.73 52.93 90 23.48 52.64
56-60 280 37.66 57.91 63 29.89 57.94
61-65 221 44.89 62.77

66-70 163 67.41 67.82

71-75 109 63.89 72.83 110 35.09 7183
76+ 149 71.06 84.63

Total 5,387 — — 3,078 — —

Brace indicates agroupedrange of 61+ forsample B. Dashes indicate values
not given.

most sensitive to omission of a causal SNP, whereas composite
likelihood is most sensitive to omission of neighboring SNPs.
These metrics are given approximately equal weight and may be
economically compared without expressing an untested preju-
dice or sacrificing the most significant result for any of them.
Given adequate allowance for N regions (for example by setting
P < 0.05/N), phase 3 may turn to sequence analysis with
reasonable assurance both of a causal locus in the region and
little probability of omitting an equally strong signal elsewhere.

Results

Composite Likelihood. Sample A with 5,387 regions gave 53
nominal P values <0.01 for composite likelihood under H;.
Sample B with 3,078 regions gave similar results, with 28 regions
having nominal P values <0.01. The number of permutation
replicates in these subsets was raised from 1,000 to 50,000 to
assure reliable estimates of variance and therefore P. The
smallest P value in sample A increased 10-fold from the initial
value with 1,000 replicates, but there was no systematic effect on
larger P values, which supports the conjecture that a number of
replicates >10/P assures a reliable estimate of P (9). Taking X =
—2InP for sample A, the estimates of its mean and variance over
all regions are u = 2.0 and V' = 4.2. Constraining V' to its
expected value of 4 under Hy, the estimate of . remains 2.0. For
sample B, the variance did not require adjustment because the
values were u = 2 and V' = 4. Regression analyses with P values
from composite likelihood as the dependent variable revealed no
significant effect of either regional LDU length or SNP number
for sample A or B.

Bonferroni Adjustment for msSNPs. Evidence from msSNPs is very
different. The value of nominal P falls far short of 1 in every
region. In both samples, the maximum P value is near 0.3,
showing the bias in selecting the msSNP from at least 30 SNPs
in each region. We therefore assigned regions to subsets with
limited SNP number diversity and determined R by regula falsi,
where R is the effective number of independent SNPs in a given
subset, and § is the weighted mean number of SNPs in a region.
Table 1 shows these values for each of the subsets for the two
samples. Sample A has more subsets and a more even distribu-
tion of regions per subset. Sample B has lower SNP density and
therefore often requires >10 LDU to have at least 30 SNPs. Not
surprisingly, regression on LD length is significant only in
sample B.

The highly significant relationship between § and R was
investigated by regression in each sample. Weighting by m, the

Gibson et al.

Table 2. msSNP fit of R by aS, aS + bS?, and a(1 — e~b5)

Sample Model A SE(a) Pforb=0 Foe
A as 0.818 0.027 0.80 —
B asS + bs? 0.622 0.034 0.0035 660.82
B a(1 — e bs) 41.02 7.21 — 717.96

Dashes indicate values not given.

regional number of markers, sample A gives a good fit to the
linear model R = aS. Sample B does not fit a linear model,
the quadratic term being significant (P = 0.0035). The best fit
with two parameters is to the model R = a(1 — ¢®5) (Table 2).
Compared with sample A, the lower SNP density in sample B has
a more variable distribution on the LD map. The relation
between R and S must vary among msSNP samples, just as the
error variance for composite likelihood does, but the Bonferroni
correction is easily made. By using these relationships, a value of
R can be calculated for each region based on the number of SNPs
in the region (). Then R is used to correct the P value, P = 1 —
(1 = Py Taklng x5 = —2InP,, for sample A, the estimates of
mean and variance over all regions are u = 2.0 and V' = 5.2.
Constraining V to its expected value of 4 under H, the estimate
of u becomes 1.8, corresponding to B = 1.1 (see Materials and
Methods). For sample B, the values are uw = 2and V= 4 as before.

Combination of Evidence. We applied principal component anal-
ysis to all regions for the y? values of composite likelihood and
msSNPs, calculated as —2InP. and adjusted to V' = 4 where
necessary. The first principal component was converted to a
rank which was then transformed (10) to P and x3. For sample

A, the largest combined x? (2 df) is 17.2, and the top 50 are all
>9 3. For sample B the largest 3 is 16.1, and the top 50 are all
>8.2. As with composrte likelihood and msSNPs examined
separately, no regron met the critical significance level of 0.05/N,
corresponding to x5 of 23.17 for sample A and 22.06 for
sample B.

Among the 100 most significant regions (50 from each sample)
identified by combination of the two x? values, 4 had a second
principal component with value >4, indicating substantially
greater significance for the msSNP than for composite likeli-
hood. In no instance was the converse observed (second prin-
cipal component less than —4). Local LDU maps for these
outlier regions were constructed from control data, and the
derived composite likelihoods were compared with initial results
from the cosmopolitan HapMap. There was little difference
between the LDU maps in terms of the fit to the data and the
structure and length of the maps. The composite likelihood x?
values were also very similar (Table 3). These 4 cases had the
largest difference in x?> between the msSNP and the next most
significant SNP in their respective samples, as expected for an
LDU subregion with low SNP density.

The high rank of the 4 msSNPs even after Bonferroni cor-
rection is not paralleled by composite likelihood, the rank of
which exceeds 500 and shows no suggestion of association even
in local LDU maps constructed from control data that give
slightly larger estimates of e for the rate of LDU decline. This
inconsistency cannot be resolved until meta-analysis of multiple
samples has determined the error rate of the two methods.
Provisionally, the first principal component PCl1 is favored
because it combines the evidence, providing an intermediate P
value that lies within the top regions without competing with the
most significant ones. Absence of a standard error for the msSNP
complicates meta-analysis, whether or not the PCI is used.

Tables 4 and 5 summarize all regions within the 10 most
significant by composite likelihood, msSNP, or combined rank
(PC1). The last is most significant in sample A for one region and
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Table 3. Outliers favoring evidence from msSNPs

Composite Combined
Sample msSNP x3 HapMap x3* Local map x3* Local map & likelihood rank msSNP rank PC1 rank
A 19.20 6.33 5.20 1.1 569 4 16
A 23.06 1.49 0.96 1.07 3,695 1 19
A 21.15 0.68 0.45 1.12 4,731 3 29
B 15.19 0.71 1.19 1.12 2,660 3 47
Total 9.21 7.80

*Composite likelihood.

least significant for another, whereas in sample B the distribution
is 1 most significant and 2 least significant. All five differences
are small and occur among the combined ranks of 10 or less.
Sample A has greater variability than sample B in composite
likelihood rank, despite its greater number of individuals. This
variability may well be an artifact of the greater number of
regions in sample A generated by more SNPs and the convention
of at least 30 SNPs per region. Instead of the 30 tests expected
if the three metrics were independent, there are 20 tests for
sample A, in 8 of which x3 is greater for composite likelihood
than for the Bonferroni-adjusted msSNP. In sample B, there are
16 tests, in 9 of which x3 for composite likelihood is greater. The
most powerful test has yet to be determined, but prejudice in
phase 2 can be avoided by selecting regions with the smallest P
values for any metric. If a large number of cases, controls, and
markers is used, we conjecture that minimal rank need not
exceed 10 as in Tables 4 and 5.

Discussion

“Classical genetics emerged in 1900 with the rediscovery of
Mendelism and ended in 1953 with the publication of the
double-helical structure of DNA” (11). Its definitive character-
istic was experimental as anticipated by Mendel (12), and
therefore the observational priority of de Maupertuis (13) in
deducing dominant inheritance from a human pedigree of
polydactyly is seldom recognized, although the decisive role of

Table 4. Comparison of association tests (sample A)

cytogenetic observation in the emergence of classical genetics is
generally acknowledged. Human genetics (despite continued
reliance more on observation than experimentation) played an
increasing role in science during the postclassical half century,
culminating in the Human Genome Project and its HapMap
successor. For the first time, tests of the assumptions underlying
evolutionary genetics were becoming feasible, although not
probative. Genetic epidemiology has become less family-
oriented in rising to a new challenge: “The success of the
HapMap will be measured in terms of the genetic discoveries
enabled, and improved knowledge of disease etiology” (1). As
the unit in all branches of genetics shrinks from the species to the
cell, distinction between observation and experimentation be-
comes fastidious. However designated, the challenge will be to
determine how to exploit the massive accumulation of genomic
data soon to be released.

Many of our initial results in GWA tests were not anticipated.
It proved surprisingly easy to obtain a Bonferroni adjustment for
msSNPs, despite the diversity of their regional lengths and SNP
densities, but as shown in Table 2, the two samples conform to
different two-parameter models. We conjecture that this repre-
sents different sampling rules. When evidence was combined in
the PC1, the most significant region in sample B gave a point
location that coincided with a gene identified in multiple samples
as causal. Its region ranked 8 for composite likelihood and 1 for
msSNP and PC1. However, when the 50 most significant regions

Composite
Combined metrics MsSNP likelihood
Rank X2 PC1 PC2 Rank X%2 Rank X%2 Difference* SNPs*
1 17.18 11.17 1.37 2 22.19 1 16.30 0.00 75
2 15.80 8.37 1.06 7 17.18 17 12.67 0.04 60
3 14.99 8.19 0.21 9 15.53 7 13.64 0.09 37
4 14.41 7.68 0.00 12 14.37 13 13.20 0.36 55
5 13.97 7.49 -1.63 37 11.44 3 15.31 0.16 45
6 13.60 7.32 -1.51 38 11.36 4 14.87 0.23 a4
7 13.29 7.15 -2.13 54 10.09 2 15.53 0.00 30
8 13.03 7.13 2.39 5 17.34 64 8.94 0.00 37
9 12.79 7.1 —-0.80 23 12.16 8 13.54 0.52 32
10 12.58 6.99 -0.27 19 12.83 18 12.59 0.00 31
11 12.39 6.95 -1.05 35 11.52 6 13.68 0.24 38
13 12.05 6.66 -2.11 75 9.33 5 14.78 0.83 34
16 11.64 6.25 4.44 4 19.20 569 4.68 0.00 30
19 11.30 6.10 6.98 1 23.06 3,695 0.76 7.51 51
20 11.19 6.04 3.45 6 17.29 325 5.82 0.00 55
22 11.00 5.92 -1.92 115 8.45 9 13.43 0.1 55
23 10.91 5.84 3.16 8 16.48 307 5.94 0.00 30
29 10.45 5.33 6.56 3 21.15 4,731 0.26 1.33 30
45 9.57 4.81 -2.94 520 5.03 10 13.31 1.24 30
126 7.51 3.50 4.75 10 15.30 4,798 0.23 4.90 35
*Difference in LDU between estimates from the msSNP and composite likelihood.
TNumber of SNPs in the region.
2594 | www.pnas.org/cgi/doi/10.1073/pnas.0711903105 Gibson et al.
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Table 5. Comparison of association tests (sample B)

Composite
Combined metrics msSNPs likelihood
rs Rank X%2 PC1 PC2 Rank X% Rank X% Difference SNPs
6683968 1 16.06 10.29 3.15 1 20.91 8 12.08 1.14 30
242596 2 14.68 9.30 —-0.26 4 14.72 1 15.50 0.01 31
2328529 3 13.87 8.94 —-0.44 5 13.95 2 15.25 0.00 30
10496704 4 13.29 7.14 -0.17 9 11.81 6 12.32 0.40 30
2037028 5 12.85 7.02 2.56 2 15.47 48 8.28 0.00 31
10495719 6 12.48 6.82 -1.15 20 9.98 3 13.25 0.01 30
1895684 7 12.17 6.40 -0.89 22 9.75 7 12.29 0.26 56
1113314 8 11.91 6.34 —1.60 41 8.67 4 13.22 0.21 40
714048 9 11.67 6.20 1.62 6 13.00 44 8.45 0.51 30
6766101 10 11.46 6.12 1.46 7 12.66 40 8.56 0.18 30
1190281 14 10.79 5.22 —-2.51 167 5.80 5 12.91 1.21 30
240431 18 10.28 4.88 —-1.84 121 6.27 10 11.49 0.13 31
17190837 19 10.18 4.81 1.93 10 11.49 155 6.06 0.06 30
10513645 34 9.01 4.43 —2.56 303 4.63 9 11.87 1.12 30
7748118 47 8.36 4.09 5.29 3 15.19 2,660 0.28 1.62 30
10485218 62 7.81 3.77 3.42 8 12.11 855 2.48 0.01 30

in each sample were examined, none met the conservative
Bonferroni level of 0.05/N, where N is the number of regions in
a given genome scan. Of the 100 most significant regions when
the two samples were pooled, 4 gave evidence only from the
msSNP, with no support from composite likelihood. Were those
msSNPs type 1 errors or wrongly placed? When the cosmopol-
itan HapMap was replaced by the local map, evidence from
composite likelihood became even weaker. Was SNP coverage
inadequate in those regions? At present, there can be no
objective recognition of the more reliable test, and so we include
PCI1 that places the 4 outliers among the most significant regions,
but far from the top. The second principal component was used
only to detect discrepancies between evidence from msSNPs and
composite likelihood and thereby to retain for meta-analysis the
4 outliers that were not identified by composite likelihood.

During the past year much has been learned about association
mapping, but the field is still in its infancy compared with a
century for linkage. Whereas composite likelihood has proved its
utility in regional studies, reliance on msSNPs in genome-wide
tests has produced some notable successes that account for a
small fraction of disease association. Many causal markers must
remain to be identified (5, 6). Very large numbers of cases and
controls have been invoked as a panacea, either for a single
incisive study or meta-analysis of multiple smaller studies that by
luck or design use the same most predictive SNP. One alternative
is to infer SNPs that may exist and if so may be correctly imputed
(14). The authors of that approach note that “the optimal way to
combine called genotypes with imputed data is not clear.” A
valid analysis requires Bonferroni correction of significance
attributed to the inferred msSNP based on both observed and
imputed SNPs. The type 1 and 2 errors of these alternatives have
not yet been examined. If association mapping is approached as
carefully and from as many directions as linkage analysis of
major loci in the last century, high power and reliability will be
attained.

Materials and Methods

Samples and Regions. Sample A is composed of affected and normal sub-
samples, termed case and control, respectively. It has >200,000 SNPs typed in
403 cases and 395 controls, analyzed on an Illumina 300M gel. Because no
results have yet been published, we are committed in this work to minimal
description. Sample B dichotomizes the 7.5% tails of a quantitative trait: for
our present purpose we classify high values as cases and low values as controls.
This German sample is part of the material that led to recognition of the NOS1
regulator NOS1AP as a modulator of cardiac repolarization. The quantitative
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trait is the electrocardiographic (ECG) QT interval with ~30% heritability.
Typing was by Affymetrix oligonucleotide arrays containing 115,571 SNPs as
described in detail (15). Our sample differs from these data only by inclusion
of males and females, both corrected for heart rate, age, and sex as published
and giving 208 cases and 201 controls. Hardy-Weinberg tests were conducted
on controls in both samples A and B, excluding SNPs with x? >10. The
remaining SNP data in each sample were split into nonoverlapping regions,
each of which covers at least 10 LDU and contains a minimum of 30 SNPs
without breaking blocks of LD. Because of differences in SNP density, doing so
gives 5,387 regions in sample A and 3,078 regions in sample B.

LDU Maps and CHROMSCAN. Genomic patterns of LD are informative for
locating disease genes, and power increases when a causal marker is typed.
LDU maps describe these patterns more accurately than kilobase maps (16).
Physical locations were taken from build 35 of the human genome sequence
(University of California, Santa Clara, May 2004). Unlike physical maps, study-
specific and various genome-wide LDU maps are available corresponding to
the four HapMap samples separately and combined (17). The LDU map with
the highest SNP density, largest sample size, and closest to the experimental
data should be optimal. We therefore use the cosmopolitan LDU maps con-
structed from Phase Il HapMap data (release no. 20, January 2006) and
available at www.som.soton.ac.uk/research/geneticsdiv/epidemiology/
LDMAP/map2.htm.

The advent of GWA analysis led to dramatic increase in the computation
time of CHROMSCAN, which analyses regions sequentially. Therefore, a par-
allel version (CHROMSCAN-cluster) has been developed to analyze multiple
regions simultaneously (18; www.som.soton.ac.uk/research/geneticsdiv/
epidemiology/chromscan/). In this way, large datasets can be studied without
difficulty. These and earlier applications of composite likelihood are based on
the Malecot model, two subhypotheses of which are used to test for a causal
polymorphism within each region. Model A, which assumes no association
between affection status and SNPs, is taken as the null hypothesis and com-
pared with model D, which estimates disease location (S), its intercept under
complex inheritance (M), and residual association (L). The test statistic de-
pends on the composite likelihoods of these two models. To account for
autocorrelation between SNPs as a result of LD, significance is determined
empirically by a rank-based permutation test. To determine accurate levels of
significance, the number of permutation replicates must approach 10/P. We
therefore use 1,000 replicates to perform preliminary screens and, where
necessary, increase this number to 50,000. The only deviation from the recent
description of CHROMSCAN (9) is that P values are now taken from Ewens (10)
instead of Tukey (19) because the former more closely approximates a uniform
distribution (last section). CHROMSCAN assumes allelic additivity because a
causal SNP may well not have been tested and nonadditivity degrades with
recombination.

msSNPs. To compare evidence from composite likelihood and single SNPs, we
identify the msSNP for each region. Selecting the msSNP from such a large
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number of SNPs (30 or more) biases the nominal X% and conventional P value
computed on the null hypothesis. This bias was confirmed by regressing msSNP
P values on LDU length and SNP number. Under Ho, the P values for random
SNPs should correspond to x3 = —2/nP (20), with variance V = 4 and mean . =
2. If selection of msSNPs were unbiased, adjustment of V would give an
estimate of w near 2, whereas p is less sensitive to small values of P and
therefore would not provide a good estimate of V. We must reduce the bias
in u before adjusting V.

Step 1. Because regions defined above vary in the number of SNPs, our first
problem s toselect subsets with limited diversity but including a large number
of regions so that estimates of the Bonferroni parameter R will be accurate.
For a given subset, the weighted mean number of SNPs is S = Sfimi/2f,, where
fi is the number of regions with m; SNPs.

Step 2. Let R be the effective number of independent SNPs in a subset assigned
SSNPs. The Bonferroni model assumes a corrected Pvalue of Pii =1 — (1 — Py)R.
To obtain a mean of x3. = 2 when x3; = —2InPg, we take

[ - 221;:1%} =22 In0 - (1-Pyt0 -
2 f 2 f

and solve the equation

Dfit > [l — (1 - P)<l=0 [2]

by regula falsi to give the Bonferroni P; with the desired mean x3. of 2. This
method requires two estimates of R flanking the final estimate so that one
gives a negative solution and the other gives a positive solution. These values
of R are then iterated until a solution sufficiently close to 0, in this case to five
decimal places, is obtained (Table 1). The relationship between R and S was
then determined by regression so that a value of R could be assigned to each
region given S. Corrected P values for msSNPs are then given by 1 — (1 — Py)R.
Step 3. To set the variance of x2 to 4 requires dividing both y3. and u by

_ E(X%ci_ 2)2
P Va Y- 1) 31

to give the desired variance with mean 2/8, which is acceptable only if 8 ~ 1.

This calculation greatly reduces the significance of msSNPs but conserves
the order of the nominal P values without consideration of smaller effects of
numbers of SNPs tested in the region and length of the region in kilobases or
LDU. Analysis of composite likelihood is simpler because steps 1 and 2 are not
required. Whereas the power of an msSNP depends on its inclusion in a sample
that is a small fraction of all SNPs in the genome, composite likelihood does
not require inclusion of a causal SNP. Instead of a single P value, composite
likelihood gives a point estimate, standard error, and information that allow
inference of confidence intervals and efficient meta-analysis.

Combination of Evidence. The relationship between the corrected msSNP x3
and composite likelihood converted to x5 was determined by using correlation
analysis. A principal component analysis based on this correlation matrix gives
a PC1 with positive coefficients and a second principal component (PC2) that
is negative when the msSNP has a lower rank than composite likelihood. PC1
was used to order and rank all N regions. Following Ewens (10), this was

Table 7. Moments of P distribution for increasing n

Table 6. Mean and variance of P; for n = 10 under Ho (df = n)

Ref. A B Mean Variance P,

22 -1 1 0.5909 0.06818 0.18182
10 0 0 0.5500 0.08250 0.10000
23 0 1 0.5000 0.06818 0.09091
24 0.3 0.4 0.5000 0.07628 0.06731
19 1/3 1/3 0.5000 0.07726 0.06452
25 3/8 1/4 0.5000 0.07852 0.06098
24 0.5 0 0.5000 0.08250 0.05000
Adjusted* 0.525 —0.050 0.5000 0.08333 0.04774

Skewness (y1) = 0, Excess (y;) = —1.22.
*See Results.

converted to a Pvalue by rank/IN to give x3 = —2InP for each region based on
the combination of evidence. For each sample, the regions with the highest x3
defined in this way were examined further.

Calculation of Empirical P Values from Composite Likelihood. Association
mapping of a gene contributing to complex phenotypes requires an efficient
estimate of genomic location and its standard error, derived from autocorre-
lated markers whose complex relationships must be parsimoniously approx-
imated. This is a classical problem for composite likelihood formed by adding
together individual component log likelihoods, each of which corresponds to
a marginal or conditional event (21). Composite likelihood is often used in
statistical genetics to make inferences about current or ancestral populations.
It invariably encounters the problem that its component log likelihoods are
not independent, and so conventional estimates of P values and standard
errors are approximate. However, reliable values can be obtained by simula-
tion of nreplicates. Under Ho, the rank-based distribution of Pis uniform with
mean 1/2 and variance 1/12 in the limit as n — . Many recipes have been
proposed for reliability with smaller values of n, all of the form P; = (i — A)/(n
+ B) for the ith value of P, where A and B are constants. Because the mean of
the arithmetic progression fromi=1,....,nis7= (n + 1)/2, the mean of P,
is (n + 1 — 2A)/2(n + B), which equals Y2 only if B = 1 — 2A or n — . Two
suggestions for Monte Carlo methods, A=B =0and A= —1,B = 1, are biased
in opposite directions with finite n. Because the mean is specified without
error, the variance is computed with df = n.

This is shown in Table 6 for n = 10, which is unrealistically small but shows
how different values of A and B behave. Taking A = B = 0, the mean for a
uniform distribution is exceeded and the variance is underestimated, but the
smallest P value (Py) is uniquely 1/n. This is critical because P for single samples
under Hy is estimated by interpolation from replicates under Ho, requiring
higher accuracy for the smallest values that are of greatest interest. All models
that give the expected mean of 0.5 underestimate P, most grossly when A is
set at 0.525 to recover the correct variance, by using regula falsi to estimate A
so that the variance is correct to five decimal places (i.e., 0.08333). Progress
with increasing n is shown in Table 7. The estimate of skewness v, is 0 and of
excess y; is —1.2, as expected for a uniform distribution. The variance ap-
proaches 1/12 in the last three models for n = 100 but more slowly as B
increases. The ad hoc fit of the variance by the last model for n = 10 deviates
for n = 100 and 1,000. Even at n = 100,000 (data not shown), A = B = 0 is the
only model that gives Py = 1/n, although A = 0, B = 1 converges quickly. The

n =100 n = 1,000 n = 10,000

Ref. Mean Variance Pq Mean Variance P4 Mean Variance P4
22 0.5099 0.08168 0.0198 0.5010 0.08317 0.0020 0.5001 0.08332 0.00020
10 0.5050 0.08332 0.0100 0.5005 0.08333 0.0010 0.5001 0.08333 0.00010
23 0.5000 0.08168 0.0099 0.5000 0.08317 0.0010 0.5000 0.08332 0.00010
24 0.5000 0.08266 0.0070 0.5000 0.08327 0.0007 0.5000 0.08333 0.00007
19 0.5000 0.08277 0.0066 0.5000 0.08328 0.0007 0.5000 0.08333 0.00007
25 0.5000 0.08291 0.0062 0.5000 0.08329 0.0006 0.5000 0.08333 0.00006
24 0.5000 0.08332 0.0050 0.5000 0.08333 0.0005 0.5000 0.08333 0.00005
Adjusted* 0.5000 0.08341 0.0048 0.5000 0.08334 0.0005 0.5000 0.08333 0.00005
*As for n = 10.
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latter has the advantage of giving a correct mean but at the cost of a more
conspicuous underestimate of the variance. All of the other models give
misleading estimates of P; unless n is substantially >10,000.

Ourrole hasbeentodetermine the properties of different models that until
now have been considered competitive to estimate significance levels for
composite likelihood by Monte Carlo methods, widely used for association
mapping and other applications of population genetics. This evidence dem-
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onstrates that the model of Ewens is best among the several alternatives that
have been disputed and the infinite number that could be proposed. Alter-
natives should be abandoned.
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