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The epidermal growth factor receptor (EGFR) regulates several
critical cellular processes and is an important target for cancer
therapy. In lieu of a crystallographic structure of the complete
receptor, atomistic molecular dynamics (MD) simulations have
recently shown that they can excel in studies of the full-length
receptor. Here we present atomistic MD simulations of the mono-
meric N-glycosylated human EGFR in biomimetic lipid bilayers that
are, in parallel, also used for the reconstitution of full-length recep-
tors. This combination enabled us to experimentally validate our
simulations, using ligand binding assays and antibodies to monitor
the conformational properties of the receptor reconstituted into
membranes. We find that N-glycosylation is a critical determinant
of EGFR conformation, and specifically the orientation of the EGFR
ectodomain relative to the membrane. In the absence of a structure
for full-length, posttranslationally modified membrane receptors,
our approach offers new means to structurally define and experi-
mentally validate functional properties of cell surface receptors in
biomimetic membrane environments.

EGFR | lipids | MD simulation | lipid—protein interaction | proteoliposomes

eceptor tyrosine kinases (RTKs) are cell surface receptors

that receive and transduce signals mediating a variety of
critical cellular processes, including cell growth, migration, pro-
liferation, differentiation, and apoptosis. Among the many RTKs,
the most studied is the epidermal growth factor receptor (EGFR),
not least because of its involvement in the development and
progression of epidermoid cancers and its resulting importance
as a target for antineoplastic therapies.

Structurally, the EGFR consists of the ectodomain (ECD)
(further subdivided into four subdomains, DI-IV), the trans-
membrane domain (TMD), and the intracellular tyrosine kinase
domain (TKD). Ligand binding induces conformational tran-
sitions of the ECD that stabilize receptor dimerization, culmi-
nating in the activation of the intracellular TKD and subsequent
propagation of the activation signal (1). To prevent receptor ac-
tivation and signaling in the absence of ligand, the structurally
tethered ECD of monomeric EGFR blocks the intrinsic capacity
of the TMD and the intracellular TKD to dimerize (2). Ligand
binding is believed to release the self-inhibitory tether and facili-
tate receptor oligomerization and activation (3-6). A detailed
understanding of the structural regulation of the intact full-length
receptors in their native membranes promises to reveal the mo-
lecular basis for receptor regulation (7); however, the methodo-
logical limitations associated with crystallizing transmembrane
proteins, together with the high flexibility of the full-length re-
ceptor, have prevented high-resolution crystallographic analysis.

To fill this gap, extensive atom-scale molecular dynamics (MD)
simulations were recently performed to elucidate the structural
dynamics of the EGFR in a two-component lipid bilayer (8).
These studies suggest a large interfacial contact area between
the membrane and the ecto- and intracellular domains of the unli-
ganded monomeric and dimeric receptors. However, experimental
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data at the single-molecule level stipulate a greater distance
between the ECD of the receptor and the membrane in the
absence of ligand (9, 10).

To resolve this discrepancy, the present study considers two
key parameters that were not included in previous simulations of
the monomeric EGFR: N-glycosylation of the ectodomain of
EGFR that contributes up to 50 kDa of the total molecular
weight of ~178 kDa (11, 12), and a lipid environment that pre-
vents the EGFR from ligand-independent, and thus aberrant,
activation (13). Comparing glycosylated and nonglycosylated
EGFR, we find that N-glycosylation is critical for the confor-
mational arrangement of the ECD subdomains DI-IV and their
interfacial contact area with the membrane. In our simulations,
only the N-glycosylated receptor adopts a conformation that is in
good agreement with previous experimental FRET studies for
the distance between the EGFR ECD and the membrane (9, 10).
Experimental ligand and antibody binding assays on EGFR
proteoliposomes provide validation of the MD simulations.

Results

To follow the dynamics of membrane-embedded monomeric
EGFR, we have performed extensive atomistic MD simulations of
the near-full-length receptor [lacking the unstructured C-terminal
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tail of the kinase domain, as in previous MD simulations (8)].
N-glycosylation is required for EGFR trafficking, efficient ligand
binding, and receptor activation (12, 14-17), suggesting this
modification confers an additional informational level to the un-
derlying polypeptide structure (18), required for achieving
a functional receptor state. Although number, sequence, size
of branches, and fucosylation of glycans vary between specific
proteins and cell types, Man;GIlcNAc, residues constitute the
cell type-independent minimal core for all N-glycans attached to
proteins, critical for protein folding in the endoplasmic reticulum
(19, 20). Here, we compared the receptor conformation either
lacking or containing Man3GIcNAc, glycan residues at 10 well-
described positions of the ectodomain (21, 22) (SI Appendix,
Fig. S1).

The receptor was embedded in a membrane composed of a
ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), N-stearoyl-D-erythro-sphingosylphosphorylcholine (SM),
and cholesterol, a plasma membrane mimetic composition that
recapitulates as closely as possible the experimental conditions
for biochemical reconstitution of the EGFR in proteoliposomes
(81 Appendix, Table S1) (13). In synthetic membranes, similar ter-
nary lipid compositions give rise to two immiscible fluid membrane
phases: a DOPC-enriched liquid-disordered and a cholesterol/SM-
enriched liquid-ordered phase (23). Using this lipid composition
for EGFR proteoliposomes, we previously showed that the pres-
ence of both phases is critical to prevent ligand-independent ki-
nase activation, whereas membranes with low cholesterol levels
allowed ligand-independent receptor activation (13), in agree-
ment with aberrant EGFR activation in cellular membranes on
cholesterol depletion (24).

Atomistic simulations of membrane receptors are challenging
because the time scales of conformational changes are relatively
slow, and therefore adequate sampling of receptor conformation
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is an important concern. In this work, we have accounted for this
issue by carrying out a number of complementary simulations. For
both the glycosylated and the nonglycosylated receptors, the MD
simulations covered 1,000 ns (together these constitute “simulation
17; for PDB files, please see Datasets S1 and S2). To improve
sampling, we next started from different (independent) initial con-
ditions and repeated 1,000-ns runs for both the glycosylated and the
nonglycosylated EGFR (“simulation 27; for PDB files, please see
Datasets S3 and S4). In addition, the intermediate config-
urations of the first simulations at 300 and 1,000 ns were used to
consider how the glycosylated EGFR evolves toward the non-
glycosylated structure after the removal of glycans.

Conformational Arrangement of the EGFR Ectodomain. In all config-
urations (nonglycosylated and glycosylated), the ECD of the EGFR
underwent large-scale conformational changes within the first 500 ns
(Fig. 1) as a consequence of the hinge-bending domain motions at
two different regions of the ECD (SI Appendix, Fig. S2).

The first of the identified hinges (H1) was formed by a short loop
(amino acid residues 615-621) connecting the ECD to the TMD of
the receptor. The second hinge (H2) encompassed the residues 230
239 and 259-261 of subdomain DII. Within the first nanoseconds,
the ECD bending motion around hinge H1 resulted in the forma-
tion of a large contact interface area between subdomain DIV and
the membrane, in all configurations (Fig. 1 C and D). In the
nonglycosylated receptor, hinge H2 caused a rotation of sub-
domain DI toward the membrane. Once stably attached, sub-
domain DI buried ~1,000-2,000 A2 of the solvent-accessible
surface area (SASA) in the interface with lipids (Fig. 1 B and D).

The presence of MansGIlcNAc, glycan residues significantly al-
tered the relative arrangement of the individual receptor subdomains
and their alignment on the membrane (Fig. 1, ST Appendix, Fig. S3,
and Movies S1 and S2). The glycan moieties attached at positions
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Fig. 1. The endpoint structures (1,000 ns) of the (A) glycosylated and (B) nonglycosylated EGFR in DOPC/SM/cholesterol membranes. The receptor structure is

color-coded throughout the panels as follows: subdomains DI (blue), DIl (green), DIlI (yellow), and DIV (red); TM domain (orange); intracellular TKD (salmon);
glycans (purple). (C and D) The distances of the center of mass of subdomains DI and DIl to the membrane (Upper) and membrane interface area of ECD
subdomains DI-DIV (Bottom), for (C) glycosylated and (D) nonglycosylated EGFR. For corresponding PDB files, see Datasets S1-54.
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N151 (DI), N172 (DII), N389 together with N420 (DIII), and N504
(DIV) were found to behave as molecular cushions, lifting these
domains away from the plane of the membrane and changing their
relative arrangement to each other. The elevation of the EGFR
structure above the membrane surface relates particularly to sub-
domains DI and DIII, which together contribute to ligand binding (4,
25). The glycan moiety at position N151 in subdomain DI reduced its
rotation around H2, elevating subdomain DI and drastically de-
creasing its interface area with the membrane (Fig. 1 C and D and S
Appendix, Table S2). Notably, the Man;GIcNAc, residues in DIII
entirely prevented membrane contacts of this domain (Fig. 1C).
Moreover, the glycan residue at position N328 functioned as a spacer,
defining the relative arrangement of subdomains DI and DIII to each
other (Fig. 14 and SI Appendix, Fig. S3). Interestingly, N328 is one of
the four N-glycosylation sites within subdomain DIII that are prob-
ably sufficient to induce a ligand-binding competent receptor con-
formation (12).

To further test the contribution of glycans on ECD arrange-
ment, we performed a control simulation starting at the 1,000-ns
configuration of glycosylated simulation 1. After removal of all
glycans, the receptor would be expected to convert toward the
nonglycosylated end-structure. The receptor evolved gradually,
but the changes observed during additional microsecond MD
simulations were limited, presumably as a consequence of already
stabilized membrane—protein interactions. We therefore repeated
this approach but removed all glycans after 300 ns, a point at
which membrane-contact sites had not yet been stabilized. Inter-
estingly, within the next 900 ns, the in silico deglycosylated receptor
evolved toward the end configuration of the nonglycosylated re-
ceptor simulations, confirming the importance of N-glycosylation in
EGFR ECD arrangement. In the absence of glycan residues, DI
and DII now formed again a contact site, and DIII steadily ap-
proached the membrane until it formed an interface with the lipid
bilayer (SI Appendix, Fig. S4).

Experimental Validation of the MD Simulations for the ECD Conformation.
In the crystal structures of the enzymatically (partially) deglycosy-
lated and ligand-stabilized ectodomain dimer, EGF is bound
between subdomains DI and DIII (4, 5). However, according to
our simulations, the ligand-binding site at DI in the non-
glycosylated monomeric receptor would be masked by the mem-
brane, constraining placement of a ligand at this position without
significant alteration of the ECD conformation (Fig. 2D). This is
not the case for the glycosylated receptor, where the ECD
adopts an elevated and more defined arrangement. These
observations motivated us to experimentally test whether ECD
glycosylation has an influence on ligand-binding properties in
EGEFR proteoliposomes. In all our ligand-binding assays, equi-
librium dissociation constants of the ligand were in the range of
~2 nM (Fig. 2B, Inset), representing the low-affinity receptor
class (26).

To experimentally validate the structural rearrangement of the
EGFR subdomains predicted by our simulations, we compared
the maximum number of binding sites (Bp.x) of two monoclonal
antibodies at saturating conditions: C225 (cetuximab) and 2E9
(27, 28). The therapeutic monoclonal antibody C225 recognizes
an epitope on DIII that completely inhibits ligand binding. In our
in vitro proteoliposomal assay, C225 binding to the receptor was
independent of receptor glycosylation (Fig. 2B), and we could
recapitulate the complete inhibitory action of C225 on EGFR
ligand binding (Fig. 2C). This is in very good agreement with
our MD simulations that suggest no dependence of C225
epitope accessibility on EGFR glycosylation (Fig. 2D). We re-
peated the binding assay with the monoclonal antibody 2E9 that
specifically inhibits EGF binding to the low-affinity class of
receptors (~95-98% of all receptors present at the plasma
membrane). Unlike the original paper (29), we limited the in-
cubation time with the 2E9 antibody to 1 h, precluding complete
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Fig. 2. (A) Western blot analysis of enzymatically (partially) deglycosylated

EGFR (postreconstitution in proteoliposomes), using either peptide-N-
glycosidase F or deglycosylation mix. (B) Relative binding efficiencies at
Bmax of EGF (150 ng/mL), mAb-C225 (1 pg/mL), or mAb-2E9 (1 pg/mL) to
glycosylated or deglycosylated EGFR proteoliposomes. Insert shows EGF
dissociation constant at equilibrium (Kp) before and after deglycosylation
of reconstituted EGFR. (C) Relative EGF binding efficiency at Bmax after
preincubation of the proteoliposomes with mAb-C225 (1 pg/mL) or mAb-
2E9 (1 pg/mL). EGF binding in the absence of antibodies was used as control
and normalized to 100%. All measurements were performed in three in-
dependent experiments, each of them in either duplicates (Kp) or triplicates
(antibody and ligand-binding efficiencies at Bmax). (D) Representation of
EGFR ectodomain after 1,000 ns, with highlighted EGF binding sites color-
coded in blue (based on crystal structure 1NQL) (4), mAb-C225 in orange
(based on 1YY8 and 1YY9) (27), and the predicted mAb-2E9 epitope in
green (based on the data presented in this work).

receptor inhibition. Enzymatic deglycosylation of the receptor re-
duced the binding efficiency of 2E9 by ~75% (Fig. 2B), also
translating into less-efficient inhibition of ligand binding (Fig. 2C).
Previous work suggested that 2E9 would recognize an epitope
located on DI (30), but no structural evidence is available.
According to our experimental data, the 2E9 epitope is partially
obscured in the enzymatically deglycosylated EGFR structure
(Fig. 2B).

To identify residues that are likely part of the 2E9 epitope, we
used the atomistic simulation data and performed SASA calcu-
lations for the ECD and averaged the results over the last 50 ns. The
average ASASA (ASASA = SASAyyco — SASApongiyco) Was used to
map those residues with major changes in solvent accessibility within
all four major simulations. Interestingly, the residues we identi-
fied in DI (with a cutoff filter of ASASA > 0.4 nm?) are part of,
or located in the vicinity of the reported ligand-binding site in DI
(4) (Fig. 2D and SI Appendix, Fig. S5). An alternative scenario is
the direct involvement of glycosylation moieties in the 2E9
epitope. This, however, is unlikely, as branching and length of
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glycosylation patterns are cell type-specific, whereas 2E9 inhibits
low-affinity EGFRs in various cell types (29, 31, 32), as well as the
recombinant insect SF+ cell protein product in our experiments.
Overall, our data support the view that DIII is the primary ligand-
binding site, and the 2E9 antibody inhibits low-affinity EGF
binding through preferential interactions with DI.

Conformational Coupling Across the Membrane. The EGFR trans-
membrane domain has been previously described to be critically
involved in the communication between the ECD and the in-
tracellular TKD. Therefore, the possible regulatory function of
the TMD has received substantial attention (2, 8, 33-38). Two
GxxxG dimerization motifs present on both ends of the TMD are
supposed to regulate the association of ligand-free and ligand-
bound dimers (2, 8). In our MD simulations, we did not observe
glycan-based structural changes in the C-terminal dimerization
motif (“*’ALGIG*"') (SI Appendix, Fig. S6 A and B), whereas
the N-terminal motif (*’ GMVGA®*®) was flexible and eventu-
ally even unfolded in nonglycosylated EGFR simulation 1.

N-terminal TMD dimerization is also required as a regulatory
step for asymmetric dimer formation, and hence activation of the
intracellular TKD, a process guided through membrane proxi-
mal, intracellular juxtamembrane segments A and B (JM-A and
JM-B). Upon N-terminal TMD dimerization, the JM-A seg-
ments interact with the membrane and form an «-helical, anti-
parallel homo-dimer (8, 39, 40). The a-helical structure of the
JM-A dimer has been confirmed in NMR and MD simulation
studies of TMD-JM-A fragments (2, 8, 41) and in MD simula-
tion of the active EGFR dimer (8).

In both of our simulations of the nonglycosylated receptor, the
JM-A segment is primarily a-helical (Fig. 3). Interestingly, the
helical property of the JM-A segment strikingly correlates with
the formation of a rapidly evolving and stable contact interface
area of the TKD with the membrane (Fig. 3B, SI Appendix, Fig.
S7, and Movie S2). In the glycosylated EGFR, this feature can be
observed in simulation 2 only. In simulation 1, the TKD does not
form a large membrane contact interface with the same kinetics,
although its membrane interactions are stable and increase
gradually (SI Appendix, Fig. S7, and Movie S1). As a conse-
quence, the initially a-helical JM-A segment unfolds promptly at
the beginning and remains unfolded throughout the entire sim-
ulation. We also observe that the membrane interaction of the
TKD is not restricted to a preferred orientation.

Discussion

High-performance atomistic MD simulations of the full-length
EGFR embedded in membranes in combination with experi-
mental reconstitution systems are a promising approach to
bridge the gap between biochemistry and classical structural
methods. With this multipronged approach, we have evalu-
ated the effect of N-glycosylation of the EGFR in a defined
lipid environment that promotes ligand-dependent EGFR
activation.

Unique among posttranslational modifications, glycosylation is
immensely diverse, with different cell lines exhibiting distinct
patterns of protein glycosylation, largely as a result of the ex-
pression of varying repertoires of glycosidases and glycosyl-
transferases (20). Hence, the sugar sequence, number and size of
branches, and fucosylation of additional glycans vary between
specific proteins and cell types.

The heterogeneity, considerable size, and flexibility of glycan
residues hinder protein crystallization. For the human EGFR,
among other proteins, this problem can be bypassed by recombinant
production of the receptor in insect cells (27, 42, 43) in which gly-
cosylation sites, ligand binding, and receptor activation properties
are not compromised, although glycan branching and branch
length are significantly reduced. Alternatively, the receptor is
expressed in mammalian cells and then partially enzymatically
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Fig. 3. (A) Secondary structure changes of the intracellular JM-A and JM-B
segments, color-coded in green and red, respectively. (B) The structure of the
EGFR intracellular domain and hydrogen bonding between JM-A and lipids
at the 1,000 ns endpoints of the respective simulations. Amino acid residues
that interact with lipids for more than 50% of the simulation time are
highlighted as stick representation. Corresponding residue occupancy times
can be found in S/ Appendix, Tables S3 and S4.

deglycosylated before crystallization (4, 5). The resulting
polypeptide retains some N-glycosylation residues, possibly be-
cause they are structurally inaccessible to enzymatic cleavage in
the folded receptor complex. However, even when present, glycan
structures are only partially resolved in crystal structures of the
EGFR ectodomain (4, 5, 27, 42, 43). Therefore, the structural
consequences of glycosylation, and the resulting functional effects
on receptor regulation are difficult to assess.

On the basis of our MD simulations and experiments, glyco-
sylation critically determines the structural arrangement of the
ECD, and in particular, of the ligand-binding domains DI and
DIII. Our data confirm the notion that DIII is the major site of
ligand binding, whereas DI has only a minor contribution (30, 44).
Additionally, DIII is known to bind the ligand when expressed as
soluble protein (25) or upon proteolytic cleavage of the ECD (45);
antibodies and nanobodies that bind to DIII [C225 (cetuximab),
IMCI11F8, VHH 7D12] compete with EGF for the binding site on
this subdomain (27, 42, 46).

To further interrogate the credibility of the simulated struc-
tures, we compared the computed protein membrane distances
to the previously reported simulations of the monomeric EGFR
(8), as well as to experimental data (9, 10). Although our simu-
lations of the nonglycosylated receptor are in good agreement
with the previous simulations (8), significant differences in the
arrangement of the ECD subdomains DI and DIII are observed
for the glycosylated receptor (SI Appendix, Table S2). Here, the
presence of glycans propelled DI, and especially DIII, away from
the membrane, up to ~1.9 and 3.2 nm, respectively (the distance
computed along the membrane normal from the center of mass

Kaszuba et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1503262112/video-2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1503262112/video-1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503262112/-/DCSupplemental/pnas.1503262112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1503262112

L T

/

1\

=y

of the ECD subdomain to the average position of phosphorous
atoms in lipid headgroups) (Fig. 1C and SI Appendix, Table S2).
FRET studies with N-terminally fluorescence-tagged EGFR
suggested that the distance between the fluorescent label and the
membrane ranges from ~6.2 to 8 nm (9, 10). This is in dis-
crepancy with the simulations of the nonglycosylated receptor,
where the N terminus of the receptor is located ~3.1-3.5 nm
away from the membrane (SI Appendix, Table S2). In compari-
son, the N-terminal distance from the membrane for the glyco-
sylated receptor is 4.5 nm. Assuming that a fluorescent dye or
probe would contribute additionally at least 1 nm, the total
distance would increase to 5.5 nm, which is in much better
agreement with the published experimental data of 6.2-6.4 nm
and 8 nm for the acyl carrier protein (9) and YFP-tagged EGFR
(10), respectively. The difference between simulations and the
experimental single-molecule data is still discernible, but is
expected since we have considered the MansGIcNAc, core gly-
cosylation only, accounting for about 30% of total glycans of the
EGFR expressed in mammalian cells. Moreover, the plasma
membrane also contains glycolipids known to interact with the
EGFR ECD (13, 47, 48), which may also increase the observed
distances at the cellular level.

Critically, however, for our understanding of receptor activa-
tion, the coupling mechanism between the ECD and the in-
tracellular kinase domain across the biological membrane
remains ambiguous. Very recently, Arkhipov et al. presented
MD simulations of the ligand-stabilized and glycosylated human
EGFR dimer that lacks the intracellular juxtamembrane and ki-
nase domains (49). Compared with their previous simulations of
the liganded, but nonglycosylated full-length EGFR dimer (8), the
ECD now significantly interacts with the membrane. Truncation
of the ectodomains, in contrast, leads to aberrant dimerization and
activation of the EGFR kinase domain (2). The ill-defined linkage
mechanism between ligand binding and stabilization of the active
kinase domains stems, at least partially, from methodological
limitations resulting from solubilized receptors being studied in
detergent micelles, augmenting flexibility of the membrane
proximal sequences; that is, the kinase domains of ligand-
bound dimeric receptors can adopt flexible conformations (50)
that correlate with the active or inactive state of EGFR dimers
(51). Tt is therefore tempting to conclude that the membrane itself
holds the key for understanding domain coupling (7).

Eukaryotic cells tune the composition of their membranes
through directed lipid sorting along the secretory pathway and
selective lipid transport across the bilayer. As a consequence, the
physicochemical properties of their membranes vary significantly
throughout the cell (52), exemplified by the plasma membrane
being highly enriched in cholesterol (~35-40 mol%) and sphin-
golipids, both critically regulating membrane fluidity and thick-
ness (53). Upon cholesterol depletion, the EGFR kinase do-
main is activated in a ligand-independent manner (24, 54). A
very similar effect was observed in synthetic reconstitution
experiments: ligand-dependent EGFR activation was observed
only in bilayers with high cholesterol and sphingomyelin levels,
while reconstitution of EGFR into bilayers enriched in low
melting temperature phosphatidylcholine led to aberrant recep-
tor activation (13). Previous MD simulations and NMR studies
have not accounted for the compositional and physicochemical
particularities of the plasma membrane. Occasionally used syn-
thetic lipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
and 1,2-distearoyl-sn-glycero-3-phosphocholine do have high
transition temperatures (41 °C and 55 °C), but these do not mimic
the fluidity of natural membranes in the absence of cholesterol.
In contrast, short-chain lipids such as 1,2-dimyristoyl-sn-glycero-3-
phosphocholine form thin and homogenous bilayers, and therefore
are expected to energetically constrain the TMD, as described
for synthetic transmembrane helices in membranes of varying
thickness (55).
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For our MD simulations, we have used a lipid composition
that is as close as possible to the ternary lipid mixture that was
used in the reconstitution experiments, which are themselves
a reasonable (although dramatically simplified) mimic of the
three key lipid types (saturated, unsaturated, cholesterol) pres-
ent in live cell plasma membranes. The advantage of this ap-
proach is that it provides mutual validation between computational
and biochemical experiments. Although the MD simulations of the
glycosylated receptor lead to a highly reproducible structural ar-
rangement of the EGFR ECD on the membrane, the properties of
the juxtamembrane fragments and orientation of the TKD are
flexible throughout all simulated systems. In the MD simulations of
Arkhipov et al. (8), the TKD and JM-A fragment are attracted to
the membrane by the presence of negatively charged phosphati-
dylserine. In our systems, the TKD and JM-A fragment still are
capable of interacting with the membrane (Fig. 3 and SI Appendix,
Fig. S7, Tables S3 and S4), although it contains neutral lipids only.
In contrast to the well defined ECD arrangement, the intracellular
modules interact with the membrane without any preferred orien-
tation. The presence of negatively charged lipids could possibly
change this into a guided process. Moreover, the stability of the
a-helical JM-A segment seems to depend on a critical threshold of
the membrane contact area interface of the entire TKD, rather than
the direct interactions of this fragment with the lipids. Unlike the
other simulations, in simulation 1 of the glycosylated receptor, JM-A
unfolds promptly and remains unfolded throughout the simulation,
which correlates with the limited formation of the membrane in-
terface. This finding, together with the previously described
electrostatic membrane interactions with lipids, highlights the
capacity of the intracellular JM-A domain to sense and interact
with various lipid environments, possibly in an electrostatic
switch-like mechanism (6, 8, 56, 57). It should also be noted that
the orientation of the TKD and the helicity of the JM-A segment
do not seem to have an influence on the properties of the kinase
active site of the TKD. Independent of glycosylation state or
membrane association, the TKD retains the previously described
and characterized features of the nonactive conformation, with
the activation loop inserted in the kinase active site and the in-
active orientation of the helix aC (39, 51) (SI Appendix, Fig. S8).

In summary, glycosylation of the EGFR appears to be critical
for the conformational arrangement of the ECD and its mem-
brane contact sites, whereas the influence on TMD properties, JIM-A
segment, and the orientation and membrane association of the TKD
are not significantly affected. Our approach to study the full-length,
posttranslationally modified EGFR by high-performance MD
simulations supplemented with proteoliposomal reconstitution
systems has the potential to become a comprehensive toolbox for
studying membrane proteins in biomimetic lipid environments.

Materials and Methods

Reconstruction of EGFR Receptor Structure for Atomistic MD Simulations. A
nearly full-length receptor (2-994) that lacks only the very C-terminal auto-
phosphorylation tail (residues 995-1,186) was reconstructed from separately
crystallized PDB structures: 1YY9 (27) for the extracellular domain and 2RGP/
3GOP (40, 51) structures for the intracellular TK domain. The structure of the
TM helix was built de novo. The fully reconstructed EGFR chain was sub-
sequently embedded in a ternary lipid mixture (DOPC/SM/cholesterol). The lipid
compositions of these systems were designed to match the previously reported
in vitro reconstitution conditions (13). The receptor was N-glycosylated in silico
with core MansGIcNAG, residues at documented sites (4, 5, 21, 22, 27, 42, 43).

We performed atomistic MD simulations for the glycosylated and the
nonglycosylated receptor. Both systems were simulated for 1,000 ns. These
studies are referred to in this work as simulation 1. In addition, we improved
sampling by carrying out simulation 2, in which we repeated the 1,000-ns
simulations for the glycosylated and nonglycosylated receptors by starting
from different (independent) initial conditions. The results of these replicas
were largely consistent with those of simulation 1, as discussed earlier (S/
Appendix). A more detailed description of system construction, simulation
conditions, additional simulation data as well as experimental methods are
provided in S/ Appendix.
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