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Abstract: Nanotechnology is a broad, revolutionary field with promising advantages for new 

medicine. In this context the rapid development and improvement of so called nanocarriers is 

of high pharmaceutical interest and some devices are already on the market. In our project we 

aim to develop well characterized nanoscaled drug delivery systems for an inhalative 

application. To this end, we focus on the most adverse side-effects within the lung, the 

cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing 

any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and 

proinflammatory effects of the investigated particles on two murine lung target cell lines, the 

alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). 

Three different endpoints were estimated, (i) cellular metabolic activity, determined by the 

WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and 

(iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose 

two reference particles as benchmarks, (i) fine -quartz, and (ii) ultrafine ZnO particles. The 

investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the 

named cell lines provide an insight to a close evaluation of our cell based screening strategy. -

quartz is well known for its inflammatory and toxic potential caused by inhalation, and 

nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also 

cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. 

Preliminary experiments indicated not only particle and cell specific inflammatory responses, 

but also different susceptibilities of the cell types being exposed to our benchmark particles 

regarding their size and surface activities. Exposure to the µm-sized -quartz particles affected 

the viability of epithelia cells less than that of macrophages, pointing to the impact of particle 

uptake by phagocytosis. In contrast, the nanosized ZnO particles caused much stronger 

decrease in cell viability and higher levels of LDH in the macrophage cell line compared to 

epithelial cells, even though the hemolytic activity was much higher for the -quartz particles 

than for the nanosized ZnO. For the proinflammatory effects, we observed a clear dose-

dependent release of acute phase cytokines (TNF-, IL-6, G-CSF> CXCL10>CCL2) for both 

alveolar cell lines after Min-U-Sil exposure. After ZnO treatment the cytokine responses were 

negligible compare to control cells. In conclusion, our data attach value to the use of different 

cell types to detect different pathways of toxicity generated by different particle properties. 
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Therefore, we will establish both lung target cell lines for an in vitro screening to analyze 

proinflammatory and cytotoxicity effects of nanocarriers. The implementation of the two 

reference particles facilitate the validated classification of the cytotoxic responses caused by 

the NPs investigated. 

1.  Introduction: 

In the field of nanotechnology the emerging developments make demands more and more on 

considerations of ‘nano-hazards’ from nano-devices, -application or combustion-derived nanoparticles 

(NPs). To ensure the safety of such a material or device and to categorize nanomaterial regarding its 

toxic potential, many researchers focus now on the most crucial issues, namely cytotoxicity and 

proinflammatory effects, especially for the lung exposure [1]. These issues are of particular interest 

since instilled non-biodegradable nanospheres have been shown to induce pulmonary inflammation 

[2]. In addition, upon pulmonary delivery, for similar particles even systemic effects like enhanced 

thrombosis have been observed [3]. The commonly accepted model suggests, that the toxicity of 

particulate matter (PM) is related to their ability to generate free radicals and induce oxidative stress 

and inflammation. Inflammation sounds crucial for PM-exposure related diseases like exacerbations of 

airways disease and cardiovascular disease [4]. Since sub-micron sized particles could inherently be 

more toxic due to their increased surface area, this drawback has to be kept in mind [5]. 

In our project we aim to develop well characterized nanoscaled drug delivery systems for an 

pulmonary application. A lot of studies dealt with the physicochemical characterization and 

application behavior of these material [6], but only a few studies focus on the risk assessment [7]. 

In the literature it has been well described that particle size and surface area are the most important 

and toxicity driving parameters, and it is thus generally accepted, that at a given mass, smaller sized 

particles are more toxic than larger sized particles. 

In this study, we choose two particles as benchmarks, (i) fine -quartz, and (ii) ultrafine ZnO 

particles to estimate the related particle toxicity. Min-U-Sil-5 possess well characteristized physico-

chemical properties, is of high purity (98.3% silicium dioxide), and has over many years been 

extensively studied for its acute inflammatory and cytotoxic lung response [8-11]. Since this fine sized 

quartz  might not reflect the toxic aspects inherent to nanomaterials we additionally included 70nm 

ZnO particles, a well known lung-toxic nanoparticle from occupational medicine [12-14], as reference. 

Both particles are form high purity and well characterized by the manufacturers for their physico-

chemical properties, all these attributes mandatory for any ‘reference material’ being applied as 

positive control. To minimize animal experiments we start with an in vitro screening of the two 

different reference particles described above for better understanding of the involved toxicity driven 

pathways. 

 

2.  Materials and Methods: 

2.1.  Cell culture 

Cell culture experiments were carried out using the murine alveolar epithelial – like type II cells (LA4; 

ATCC No. CCL-196
TM

) and the murine alveolar macrophages (MH-S; ATCC No. CRL-2019). LA4 

cells were grown in HAM’s F12 medium with stable Glutamax containing 15% fetal bovine serum 

(FBS, Gibco, Germany) and 1% non essential amino acids and 100U/ml penicillin and 100mg/ml 

streptomycin, MH-S cells were cultured in Dulbecco’s modified Eagle’s medium with stable 

Glutamax  supplemented with 10% fetal bovine serum (FBS, Gibco, Germany) and 100U/ml penicillin 

and 100 mg/ml streptomycin at 37°C and 5% CO2. All cells were passaged every 2-3 days. All 

reagents were obtained from Biochrom AG, Seromed, Germany or otherwise signed. 
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2.2.  Particle preparation 

Min-U-Sil 5 (-quartz) was obtained from U.S. Silica Company, Berkerly Springs, WV, USA, with a 

median diameter of 1.7µm declared on the datasheet from the manufacturer. Zinc oxide (CAS-No: 

1314-13-2) was obtained from Alfa Aesar (A Johnson Matthey Company, Karlsruhe, Germany) and 

the manufacturer declares a avarage diameter of 70nm. Stock suspensions (10mg/ml) of each particle 

were prepared in sterile, double-distilled water. Each suspension was sonicated for 15min. prior to 

exposure and subsequently diluted in sterile, double-distilled water to reach a range of particle 

concentration from 20-1000µg/ml.  

2.3.  Cell viability 

Cell viability was determined using the Cell Proliferation Reagent WST-1 (Roche Diagnostics, 

Germany) according to the method of Mosmann [15]. Briefly, LA4, MH-S cells were seeded at a 

density of 0.25*106 cells/well/2cm² in 24-well-plate in cell culture medium containing FBS and 

grown overnight in an incubator at 37°C and 5%CO2. For the treatment, the cell culture medium was 

replaced by freshly, pre-warmed, serum-reduced (2% FBS) cell culture medium without antibiotics. 

Particles were exposed to the cells for 2h, 6h and 24h and the relative viability [%] related to control 

samples (untreated cells) was calculated by following equation: Cell viability = ( ODsample/ 

ODcontrol )*100. All data represent at least three independent experiments. 

2.4.   Cytotoxicity 

For detection of the cytosolic enzyme lactate dehydrogenase (LDH) characteristically for membrane 

damage effects we used the Cytotoxicity Detection Kit (Roche Diagnostics, Germany) according to 

the manufacturer protocol. The experiments were carried out according to the conditions at the WST-1 

assay. After three different time points (2h, 6h, and 24h, the LDH concentration in the cell culture 

supernatant was spectrophotometrically determined in an ELISA reader (Labsystems iEMS Reader 

MF) at a wavelength of 492nm. As control served cells treated with 2% (w/v) Triton X-100 according 

to the manufacturer protocol and set as maximum of LDH release (100%). The relative LDH release is 

defined by the ratio of LDH released over total LDH in the intact cells (high control). Less than 10% 

LDH release were regarded as non-toxic effect level in our experiments [16]. All data represent at least 

three independent experiments. 

2.5.  Hemolysis test 

The hemolytic activity was determined according to [17].Fresh blood were taken from human 

volunteers and collected in heparinized tubes. Blood was centrifuged at 700g at 4°C for 10min. and 

washed several times with PBS until the supernatant was colorless. The supernatant was removed and 

a 2.5% (v/v) suspension of erythrocytes was prepared. 500µl of the 2.5%(v/v) suspension of 

erythrocytes  was mixed with 500µl of the appropriate particle dilution in eppendorf cups. After 

60min. incubation time in a shaking water bath, the red blood cells were removed by centrifugation, 

and the supernatants were investigated spectroscopically at a wavelength of =540nm for detection of 

the release of hemoglobin. As references served PBS (negative) and 0.2% Triton X-100 solution 

(positive). All experiments were performed in triplicates. 

2.6.  Enzyme-linked immunosorbent assay 

22 cytokines/chemokines were detected simultaneously in the cell culture supernatant by using 

Luminex technology (Linco Research, St. Charles, MO). In this study, the secretion of following 

cytokines/chemokines was investigated: IL-1, IL-1ß, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p70, 

IL-13, IL-15, IL-17, TNF-alpha, INF-, G-CSF, GM-CSF, CXCL1 CXCL10, CCL2, CCL3, and 

CCL5. The assay was performed as described previously [18]. The mean fluorescence intensity (MFI) 

was detected by the Multiplex plate reader (Luminex System, Bio-Rad Laboratories, Germany) for 

each sample (50µl) with a minimum of 50 beads per region being analyzed. The raw data (MFI) were 
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captured using the Multiplex plate reader software (Bioplex Manager, Version 2.0). For data analysis, 

a 4-parameter logistic curve fit was applied to each standard curve and sample. 

2.7.  Statistics 

All values are presented as meansstandard error (SEM) of at least three independent experiments. 

Significant differences between two groups were evaluated by Student’s t-test or between more than 

two groups by one-way ANOVA followed by Tukey’s multiple comparison test. Statistical analysis 

was performed using the program STATGRAPHICS PLUS Version 5.0 (Statpoint, Inc., Virginia, US).  

 

 

 

 

 

Figure 1: Cell viability as determined by WST-1 Cell Proliferation Assay. Values are expressed as 

meansSEM (n=4-5). Five different concentrations (20, 100, 400, 500, and 1000µg/ml) of Min-U-Sil 

5 (left figures), and ultrafine ZnO (right figures) were exposed to alveolar epithelial cells (LA4, black 

bars) and alveolar macrophages (MH-S, open bars). Differences to control (untreated cells) with 

(p)<0.05 were considered statistically significant and marked with an asterisk. 
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3.  Results and Discussion: 

3.1.        Cell viability 

In both alveolar cell lines the cell viability decreased in a time- and dose-dependent manner, which 

was more prominent in the alveolar macrophages (MH-S). Regarding the two different particle 

exposures, namely the -quartz particle with a mean diameter of 1.2µm and the ultrafine ZnO particles 

with an average diameter of 70nm, we observed a statistically significant higher decrease in metabolic 

activity after ZnO treatment (Figure 1).  

Already after 2h particle exposure the cell viability decreased statistically significant in both cell 

lines in a dose-dependent manner. After -quartz treatment the cell viability in the alveolar epithelial 

cells remained constantly around 80%, even after 24h the cell viability was around 60% with the 

highest quartz dose. Nevertheless, in the alveolar macrophages we detected a statistically significant 

decrease in cell viability with a dose more than 100µg/ml Min-U-Sil. Remarkably, after 6h and 24h 

exposure of the two particles to the alveolar cell lines we could distinguished between a dramatically 

loss of metabolic activity after ultrafine ZnO treatment and a sustained decrease in cell viability after 

-quartz exposure, especially for the alveolar epithelial cells. In all cases the alveolar macrophages 

(MH-S) were more susceptible than the alveolar epithelial cells. The different particle effects could be 

explain in general because of the different sizes and surface areas of these paticles.   

3.2.  Cytotoxicity (LDH release) 

In agreement to the WST-1 data, the -quartz exposure caused much less membrane damage detected 

by LDH release in the supernatants than the ultrafine ZnO exposure and again, the alveolar 

macrophages were more sensitive to these particles (Figure 2).  

After both particle treatments LDH release was negligible after 2h, less than 10%, which is 

considered as a threshold for membrane toxic behavior [16]. Upon -quartz exposure the LDH release 

remained under 10%, but yielded some statistically significance compare to control (untreated cells). 

In contrast, after the ultrafine ZnO treatment high levels of LDH were observed in the alveolar 

macrophages after 6h and 24h, and the maximum was reached after 6h, but not in a dose-dependent 

manner. In the alveolar epithelial cells the LDH release was under the 10% threshold for membrane 

toxicity and were therefore negligible similar to the -quartz exposure. Again, we could show that the 

ultrafine ZnO particles caused a much higher toxicity, which we correlate to the higher surface area of 

these particles in comparison to the -quartz particles according to [19]. 
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Figure 2: Influence of cell membrane integrity was observed by measuring LDH in the cell culture 

supernatant after three different time points (2h, 6h, and 24h) in the alveolar epithelial cell line (LA4, 

black bars) and the alveolar macrophages (MH-S, open bars). Cells were exposured to Min-U-Sil 5 

(left figures) and ultrafine ZnO (right figures) with five different concentrations (20, 100, 400, 500, 

and 1000µg/ml). Values are expressed as meansSEM (n=4-5). Propability (p)<0.05 was considered 

as significant compared to control (untreated cells) and indicated with an asterisk. 

 

3.3.  Hemolytic activity 

In addition, we investigated the hemolytic activity of both particles. After 60min. treatment of human 

red blood cells we observed a dose-dependent elevated release of hemoglobin upon -quartz 

treatment, whereas the ultrafine ZnO particles indicated a sustained release of hemoglobin 

independent from the dose. Both particles caused significantly high hemolytic activity, but in a 

different manner with regard to the dose. 

Remarkably, the hemolytic activity of Min-U-Sil particles was much higher and dose-dependent, 

whereas Min-U-Sil particles released less LDH, which indicated only few membrane damage effect. 

In contrast, the ultrafine ZnO particles caused very high sustained LDH release already after 6h as 

well as a very high sustained release of hemoglobin, but much lower compare to the hemolytic activity 

of the -quartz particles. The different underlying mechanism regard to cell death need to be observed 

in further experiments. 
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Figure 3: Measurement of the hemolytic activity after 60min. treatment of human red blood cells 

(2.5% (v/v)) with five different concentration of Min-U-Sil particles (grey bars) and ultrafine ZnO 

particles (hatched bars). Values are represented the meanSEM of three independent experiments. 

Propability (p)<0.05 was considered as significant compared to control (untreated cells) and indicated 

with an asterisk. 

3.4.  Cytokine response 

The cytokine secretion of 22 proinflammatory cytokines were detected by multiplex technique. From 

this cytokine profiling five cytokines, mainly acute phase cytokines (TNF-, IL-6, G-CSF, CXCL10, 

and CCL2) were induced more than 2-fold compare to controls (untreated cells), see table 1. For Min-

U-Sil we observed the most significant changes in a dose-dependent manner in both cell lines. In 

contrast, ZnO exposure caused only slightly elevated cytokine levels, but without any statistically 

significance. Due to very high cytotoxic effects we observed the proinflammatory effects of ZnO 

particles only for two non toxic concentrations (1.25µg/ml and 2.5µg/ml), where the cell viability is 

more than 80% and the LDH release is negligible after 24h treatment (data not shown).  

 

 

Table 1: Relative cytokine secretion in LA4 and MH-S cells after 24h treatment of Min-U-Sil 

(20µg/ml,100µg/ml, and 400µg/ml) and ultrafine ZnO (1.25µg/ml, and 2.5µg/ml) determined 

by multiple analyte detection immunoassay. Means were normalized to control cells 

(untreated cells). Values represent mean  SEM, n=2-3; b.d.l. = below detection limit; 

statistically significant (p<0.05) changes compared to control levels (untreated cells) are 

marked with an asterisk. 
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4.          Conclusion: 

In this study, we detected different time- and dose-dependent cytotoxic and proinflammatory 

responses of the two different particles. The ultrafine ZnO particles caused high, but sustained 

membrane damage effects confirming to a high decrease in metabolic activity, whereas the -quartz 

particles revealed much less decrease in cell viability and no significant LDH release, but higher 

hemolytic activity in a dose dependent manner. Regarding the two different cell lines cytotoxic effects 

were more prominent in the alveolar macrophage cell line (MH-S). For the proinflammatory effects, 

we observed a clear dose-dependent release of acute phase cytokines (TNF-, IL-6, G-CSF, CXCL10, 

CCL2), and to a higher extent in the macrophages, and only after Min-U-Sil exposure. After ZnO 

treatment the cytokine responses were negligible compare to control cells, but this might be because of 

the very low doses (1.25µg/ml and 2.5µg/ml).  

In summary, we aimed to etablished two positive reference particles for our in vitro assessment of 

nanoscaled pulmonary drug delivery and discovered high cytotoxic effects in a dose- and time-

dependent manner for both particles, most prominent in macrophages and for the ultrafine ZnO 

particles. Interestingly, the proinflammatory effects seem to be more pronounced after Min-U-Sil 

treatment. Thus, we concluded that for further in vitro assessment of nanocarriers for pulmonray 

applications it is necessary to estimated additionally the effects of two positive reference particles such 

as fine Min-U-Sil and ultrafine ZnO.  
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