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Antilymphocytic Antibodies and Marrow Transplantation. XII. Suppression of
Graft-Versus-Host Disease by T-Cell-Modulating and Depleting Antimouse CD3
Antibody Is Most Effective When Preinjected in the Marrow Recipient

By Josef Mysliwietz and Stefan Thierfelder

A hamster antimouse CD3 monoclonal antibody {MoAb)
opened the way to experimental studies on the suppression
of allograft rejection and cytokine-related morbidity after
treatment with antibodies modulating the CD3/T-cell recep-
tor complex (CD3/TCR). Because earlier attempts to sup-
press graft-versus-host disease (GVHD) in patients by in vitro
treatment of donor marrow with anti-CD3 MoAb had re-
mained inconclusive, we used a rat lgG2b antimouse CD3
MoAb (17A2) with fewer side effects to analyze suppression
of GVHD in the mouse model. Detailed phenotyping of blood,
spleen, and lymphnode T cells after the injection of 400 pg
17A2 in C57BL/6 mice showed 60% CD3 downmodulation
and 50% T-cell depletion for spleen cells. Injection of these
spleen cells, together with bone marrow cells, in fully mis-
matched preirradiated CBA mice delayed GVHD by only 6
days. Ex vivo treatment of donor cells with 17A2 was not
effective. In contrast, conditioning of marrow recipients with

HE ANTI-CD3 monoclonal antibody (MoAb) OKT3!-3
is the immunosuppressive anti-T-cell MoAb that has
been studied in patients most extensively.** CD3 on T cells
is in close contact with the T-cell receptor (TCR) het-
erodimer. The CD3/TCR complex plays an important role
in signal transduction after binding to appropriately pre-
sented antigen. However, binding of anti-CD3 MoAb
induces TCR signaling in an antigen-independent way.

In the field of clinical bone marrow transplantation, early
studies reported reduction of graft-versus-host disease
(GVHD) after in vitro treatment of the donor marrow with
anti-CD3 MoAb.%7 Nevertheless, cases with severely acute
GVHD were observed even when heterologous comple-
ment had been added to the antibody.! This seemed
surprizing because OKT3 depleted circulating T lympho-
cytes when injected in patients with GVHD.? On the other
hand, OKT3-induced reversal of kidney graft rejection was
also seen in patients without clearly depressed T-lympho-
cyte counts, suggesting immunosuppression after dysfunc-
tion, sequestration of T cells, or modulation of the CD3/
TCR complex!®!! rather than pure T-cell elimination. The
generation of a hamster antimouse-CD3 MoAb (145-2C11)
was, therefore, an important step towards analyzing the in
vivo consequences of antibody binding to CD3.12-16

We have long been interested in analyzing antibody-
induced prevention of GVHD in mice, having studied
mouse and rat isotypes of T-cell-depleting MoAb. Only
strongly T-cell-depleting (>95%) rat IgG2b or mouse
IgG2a anti-Thy-1 MoAb prevented GVHD in fully mis-
matched mice, no matter whether used in vitro!” or applied
to the marrow donor!® or recipient.!?2! Therefore, we were
interested in studying the suppression of GVHD with
modulating anti-CD3 MoAb whose suppression of skin
graft rejection was accompanied by a lower degree of T-cell
depletion.!* We did not use the hamster anti-CD3 145-2C11
MoAD because of its well-documented cytokine-related
morbidity.!® It caused significant mortality even in our
control mice grafted with syngeneic bone marrow. Fortu-
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a single injection of 17A2 delayed 50% GVHD mortality by
100 days and prevented GVHD altogether after prolonged
treatment, with survivors showing complete chimerism and
specific transplantation tolerance. This difference in antibody
effect contrasts with earlier experiences with nonmodulating
but more strongly T-celi-depleting MoAbs of the same
isotype, which prevent GVHD no matter whether applied in
vitro or injected into donor or recipient mice. Our data
indicate that CD3/TCR reexpression in marrow recipients
with no circulating 17A2 is the reason why ex vivo donor cell
treatment with anti-CD3 MoAb is comparatively ineffective.
Our data, which allow separate evaluation of cell-depleting
and cell-modulating antibody activity, help to explain previ-
ous clinical failure to suppress GVHD and provide evidence in
favor of conditioning the marrow recipient with anti-CD3
MoAb as a therapeutic alternative.

© 1992 by The American Society of Hematology.

nately, the rat antimouse-CD3 17A2, which cross-competes
with the hamster 145-2C11 anti-CD3 MoAb on the CD3e
chain and similarly stimulates interleukin-2 (JL-2) produc-
tion?? and proliferation of T cells, was better tolerated. We
measured an approximately 15% weight loss 3 days postin-
jection compared with 30% weight loss with the hamster
antibody. However, delay of skin graft rejection was compa-
rable. 17A2 is an IgG2b antibody of the isotype, which was
shown to be the most immunosuppressive of the T-cell-
depleting rat MoAb.17232* This allowed us to more directly
compare 17A2 with primarily T-cell-depleting anti-Thy-1
MoAb. We found that anti-CD3 MoAb 17A2 in fact
suppresses GVHD, even in fully allogeneic H2 mismatched
mice, but only when injected and circulating in the marrow
recipient - at the time of bone marrow transplantation.
Treatment of marrow donors or marrow donor cells was
clearly less effective, probably because mature T cells in the
marrow inocculum recovered their CD3/TCR and GVHD-
inducing potential in marrow recipients when no 17A2 was
circulating. In connection with earlier clinical failures, our
conclusions help to explain why maximal suppression of
GVHD by CD3 modulating MoAb cannot be expected
when the latter are used for ex vivo T-cell treatment rather
than for conditioning of the marrow recipient.
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MATERIALS AND METHODS

Animals. C57BL/6 mice originally obtained from the Jackson
Laboratory (Bar Harbor, ME) were raised and maintained in our
breeding facilities. CBA and (C57BL/6 x CBA)F1 mice were bred
from stock in our own laboratory. Three-month-old female animals
were used as bone marrow recipients.

Antibodies and flow cytometry. Flow cytometry was performed
as described previously,?-? using fluorescein (FITC)- or phyco-
erythrin (PE)-conjugated anti-L3T4 (Becton Dickinson, Heidel-
berg, Germany), anti-Lyt2 (Serva, Heidelberg, Germany), anti-
B220 (Medac, Hamburg, Germany), anti-Thy-1.2 (Medac), MoAb,
or polyclonal mouse F(ab),-antirat IgG (Dianova, Hamburg, Ger-
many). 17A2 (rat2b-antimouse-CD3) was donated by Dr R. Mac-
Donald (Ludwig Institute for Cancer Research, Lausanne, Switzer-
land),?? anti~IL-2R (TIB 222; ATCC) and anti-NK-1.1 (HB-191;
ATCC) were purified from culture supernatant using protein G
chromatography. Ascitic fluids of anti-H2K* and anti-H2D® MoAb
(Camon, Wiesbaden, Germany) were purified as described else-
where.2 MoAb 17A2, anti-H2Kk, anti-IL-2R, and anti-NK-1.1
were FITC-labeled as described elsewhere?’; MoAb anti-H2Db
was biotinilated as described previously.?

In vivo modulation of CD3 and T-cell depletion after 1742
treatment. C57BL/6 mice were injected intravenously (IV) with a
single 400 (20 mg/kg), 100, or 25 ug dose of purified anti-CD3
(17A2) MoAb. Heparinized blood, spleen, and lymphnodes (axil-
lary, inguinal, mesenteric) from three mice were pooled 1, 3, 7, and
10 days after injection, a cell suspension was prepared, and
leukocytes were counted. One million leukocytes were double-
labeled using saturating concentrations of anti-L3T4(PE)/anti-
17A2(FITC), anti-Lyt2(PE)/anti-17A2(FITC), mouse F(ab),-
antirat IgG(FITC)/anti-Thy-1.2(PE), or anti-IL-2R(FITC)/
anti-B220(PE) and, after standard NH,CI lysis of erythrocytes,
were processed on FACScan (Becton Dickinson). The quantitative
fluorescence measurements of CD3 expression were performed
directly using FITC-labeled 17A2, or indirectly using purified 17A2
and mouse F(ab’), antirat IgG (FITC), as described previously.?
FCSC Microbead Standards (Becton Dickinson) were used as
fluorescence standards.

Serum concentration of 1742 (anti-CD3) MoAb and anti-1742
antibodies after in vivo treatment. Concentration of 17A2 (rat
IgG2b) was determined in enzyme-linked immunosorbent assay
(ELISA), using mouse-antirat IgG (Dianova) as the capture and
the same peroxidase-labeled antibodies as the indicator. Sera from
treated mice or purified 17A2 as the concentration standard were
titrated twofold and the concentration of rat Ig in serum was
calculated. To determine anti-17A2 antibodies, ELISA microtiter
plates (Greiner, Niirtingen, Germany) were coated with purified
17A2. Sera from 17A2-treated mice or affinity-purified polyclonal
mouse-antirat IgG (Dianova) as the concentration standard were
titrated twofold and indicated with peroxidase-labeled rat-
antimouse IgG (Dianova). The concentration of anti-17A2 antibod-
ies was calculated from mouse-antirat IgG standard curves.

Bone marrow transplantation and X-radiation were performed
as described in detail previously.!? Briefly, in vivo treatment was as
follows: groups of six irradiated (8.5 Gy) CBA (H-2¥) or (C57BL/
6 x CBA)F1 recipient mice were injected IV with a given concen-
tration of purified anti-CD3 (17A2) MoAb. A mixture of 5 x 107
spleen and 2 x 107 bone marrow cells from C57BL/6 (H-2") donors
was injected 4 hours later. Alternatively, prospective C57BL/6
donors were injected with 17A2 or control antibody of the same rat
IgG2b isotype, but irrelevant specificity (anti-DNP); bone marrow
and spleen cells were removed 3 days later and injected into
recipient mice at the same proportion as above. For in vitro
treatment, a mixture of 35 x 107 spleen and 14 X 107 bone marrow
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cells from C57BL/6 mice was incubated in 1 mL minimal essential
medium (MEM; Biochrom, Berlin, Germany) with 5x saturating
concentration of purified 17A2 MoAb for 30 minutes at room
temperature. Afterwards 150 pL of a mixture of 2 x 107 bone
marrow and 5 x 107 spleen cells per mouse was injected into
lethally irradiated CBA or (C57BL/6 x CBA)F1 recipient mice.
Statistical evaluation of survival curves was performed using the
logrank method.?

Test for chimerism and specific transplantation tolerance. Hepa-
rinized blood was collected from the tails of mice who received
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Fig 1. T-cell depletion and CD3 antigen modulation in lymph node,
spleen, and blood of C57BL /6 mice 1, 3, 7, and 10 days after a single IV
injection of 400 pg of 17A2 (anti-CD3 MoAb). Double-color FACS
analysis and quantitative fluorescence measurements were per-
formed as described in Materials and Methods. (*) CD3 antigen
expressed as number of directly (FITC) labeled 17A2 molecules b d
per cell x103. (**) CD3 antigen downmodulation: diminution of
fluorescence intensity of T cells {(mean of CD4+ and CD8*) from
17A2-injected mice expressed as a percentage of untreated control.
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Fig2. Serum concentration of 17A2 {anti-CD3) 1, 3, 7, and 10 days
after IV injection of C57BL/6 mice with 400 g, 100 ug, or 25 pg of
17A2 was measured in ELISA as described in Materials and Methods.

bone marrow transplants and the cells were double-labeled with
anti-H2* FITC and biotinylated anti-H2® MoAb. After probing
with avidin-PE and FACScan processing, live lymphoid cells were
evaluated and compared with cells of untreated control mice. Bone
marrow-reconstituted mice were tested for specific tolerance 50
days after transplantation. They were grafted with marrow donor-
type (C57BL/6) and third-party (Balb/c) tail skin grafts, both
placed on the lateral thoracic wall. Dressings were removed on day
12 and grafts were inspected every day for signs of rejection.

RESULTS

Suppression of GVHD by anti-CD3 MoAb (17A2) was
tested after antibody treatment of marrow donors or
recipients or of donor cells in vitro. Changes in T-cell
depletion and modulation after treatment of C57BL/6
donor mice were measured by detailed immunophenotyp-
ing.

T-cell depletion with anti-CD3 MoAb. Single injections
of 400 g 17A2 in C57BL/6 mice produced a reduction of T
cells, which were measured on day 1, 3, 7, and 10 postinjec-
tion in blood, spleen, and lymphnode cells (Fig 1). Cell
depletion was most pronounced in blood (80%) on day 1
and approximately 50% T-cell reduction was measured in
spleen and lymphnode cell suspension pooled from axillary,
inguinal, and mesenteric lymphnodes. Splenic T cells had
reached a 50% reduction by day 3, at which time peripheral
blood lymphocytes (PBL) T-cell counts had already in-
creased, although CD3 was still modulated (see below).
T-cell counts on days 7 and 10 had stabilized at about half
the normal values. Virtually the same pattern was observed
after a single injection of 100 png 17A2. Markedly dimin-
ished T-cell depletion and modulation were noted in blood,
lymph nodes, and spleen after the injection of 25 pg 17A2
(data not shown).

Fifty days after a single injection of 400 pg of 17A2,
CD4+ cells had reached normal values; CD8* cells recov-
ered slowly, reaching some 65% to 75% of untreated
controls (data not shown).

T-cell modulation after anti-CD3 MoAb. Figure 1 shows
expression of CD3 on CD4* and CD8* T cells. Reduction
of CD3 expression on T cells was measured by staining
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17A2 after incubation with FITC-labeled mouse F(ab'),-
antirat Ig secondary antibody and/or by using FITC-labeled
17A2 directly. Fluorescence was related to FCSC Mi-
crobead Standards. The use of sensitive double staining
with mouse (Fab'),-antirat IgG(FITC) and mouse anti-Thy-
1(PE) was crucial for detection of in vivo 17A2-coated celis,
showing strongly diminished CD3 expression. The sensitiv-
ity threshold using other reagents, such as complete goat-
IgG antirat Ig or even IgG mouse-antirat Ig, was not
sufficient. On day 3 postinjection of 400 g, the day when a
mixture of spleen cells and bone marrow cells was used for
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Fig 3. Survival of lethally irradiated CBA recipients (groups of 6
mice) of 5 x 107 spleen cells together with 2 x 107 bone marrow cells
from C57BL/6 donors. Recipient: CBA recipients (400 pg + 3 x 200
ng) received 400 pg 17A2 IV 4 hours before transplantation of
BM/spleen from C57BL/6 mice and additionally 200 pg 17A2 IV 3, 6,
and 9 days after transplantation; the other recipients received single
injections of 400 pg or 200 pg 17A2. Donor: C57BL/6 donor mice
received 400 ng IV 17A2; spleen and bone marrow cells were
prepared 3 days later and transplanted into CBA mice. Donor cells:
hone marrow and spleen cells from C57BL /6 donors were incubated
in vitro with 17A2 and transplanted into CBA recipients. No antibody:
survival of control mice grafted with untreated bone marrow and
spleen cells. Analysis of the survival curves by the logrank method
gave the following P values of statistical significance: experiment 1: 1
v2,P=.0081v3,P=.010;1v4,P=.012;,1v5P=.011;1v6,P=
.005;4v6,P=.057;5v6,P=.202; experiment2: 1v2,P =.010; 1v3,
P=.014;1v4,P = 076;1v5 P =.003;3v5 P=.122;4v5,P = .179.
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Table 1. Blood Cell Phenotype, Antibody, and Antiantibody Concentration in Serum After Prolonged Treatment of Bone Marrow Transplanted
Mice With Anti-CD3 (17A2) MoAb

% of Positive PBL*

Serum Concentration (wg/mL}

CcD3* CD3- CD3+ CD3-
Dayt CD4+ CD4+ cbg+ cDg+ H2b* NK1.1+ 17A2 a-17A2
4 0.0 3.9 0.0 9.6 97.7 17.9 6.5 0.13
8 0.7 0.5 5.1 2.5 ND 16.9 0.7 0.09
15 0.9 0.1 1.4 0.4 ND 14.0 0.0 0.0
50 5.3 0.0 1.4 0.0 97.9 21.8 ND ND
200 7.7 0.0 6.3 0.0 98.7 129 ND ND
Untreated 14.1 11.9 99.1 6.9 ND ND

CBA recipients were injected with 400 ng 17A2 IV 4 hours before transplantation of bone marrow/spleen cells from C57BL/6 mice and additionally

with 200 n.g IV on days 3, 6, and 9 after transplantation.
Abbreviation: ND, not determined.

*Heparinized tail blood from four to six animals was pooled, double-stained, and processed in FACScan as described in Materials and Methods.

TDays after last injection of 17A2.

transplantation, all splenic CD4* and CD8* cells were
saturated with circulating 17A2; CD3 downmodulation can
be assumed because the concentration of bound 17A2 was
60% lower than for untreated controls. The diminished
antigen density was still seen, even after 17A2 had disap-
peared from serum on days 7 and 10 after treatment (Figs 1
and 2). Complete modulation must have occurred on PBL
because approximately 40% to 50% of PBL on day 3 post
injection of 100 or 400 pg 17A2 did not stain with directly
labeled 17A2 nor with FITC-labeled antirat Ig secondary
antibodies. They had lost their CD3 antigen completely, at
least below the threshold of sensitivity of the FACS. During
in vivo treatment with 17A2, we did not find increased
expression of IL-2R on T cells as reported for 145-2C11.14
Effect of anti-CD3 MoAb on GVHD. Transplantation of
5 x 107 spleen cells together with 2 x 107 bone marrow cells
to irradiated, minor and major MHC class 1 and II-
mismatched CBA mice induced acute mortality, which was
only slightly delayed if donor or donor cells were pretreated
with anti-CD3 MoAb (Fig 3). In contrast, the injection of
400 or 200 pg antibody in marrow recipients 20 hours after
irradiation and 4 hours before transplantation suppressed
GVHD mortality by about 50% on day 100 posttransplanta-
tion and 20% to 40% on day 200. In one experiment,
permanent survival of 80% of chimeras was observed after
single injection of 200 ug 17A2 (Fig 3, experiment 2).
Prolonging antibody treatment by further injections of 200
pg on days 3, 6, and 9 after transplantation led to long-term
survivors with 90% to 97% chimerism on days 50 and 100.
Compared with untreated controls, GVHD suppression in
17A2-treated recipients was statistically significant (P < .05)
for all above described treatments. The differences in
survival resulting from dose of 17A2 or prolonging of
treatment were not statistically significant (Fig 3). Chime-
ras showed long-lasting changes in blood T—cell frequency
(Table 1). Even 50 days after the last injection of 17A2, the
frequency of CD4* cells was reduced to about 50% and
CD8* cells were reduced to 10% of untreated controls. On
day 200 posttransplantation, recovery of blood CD8* cells
improved to 50% of untreated controls; percentage of
splenic CD4" cells had reached control values and splenic
CD8* cells were reduced by 65%. CS57BL/6-into-CBA

chimeras (chimerism was proved on days 30, 50, and 100
posttransplantation and regularly found to be greater than
90%), grafted 50 days after bone marrow transplantation
with donor C57BL/6 or third party (Balb/c) skin, accepted
donor skin and promptly rejected third-party skin. Besides
changes in the frequency of CD4* and CD8* lymphocytes,
we regularly observed an increase in donor NK 1.1 cells
(Table 1); however, this was not predictive for GVHD in
our mice. The formation of antiantibodies against 17A2 was
negligible in these experiments (Table 1).

We repeated the GVHD experiments with C57BL/6
donors in semiallogeneic (CBL/6 x CBA)F1 recipient mice.
This donor-recipient incompatibility is notoriously easy to
overcome. Even the injection of normal rabbit Ig causes
some delay of GVHD. Again, conditioning of recipient
mice with 17A2 was most effective. Pretreatment of donors
or donor cells ex vivo showed a clearly delayed, but 100%
mortality (Table 2). Taking advantage of the sensitivity of
this mouse model, we titrated the spleen cells from donors
pretreated with an MoAb of irrelevant specificity in the

Table 2. Effect of Anti-CD3 MoAb on Suppression of GVHD in the
C57BL/6-to-(C57BL/6 x CBA}F1 Combination

Survival (%}*

Anti-CD3
Treatment Day 30 Day 50 Day 100
Donor cellsT 66 50 0
Donorst
400 pg 100 66 0
Recipients$
400 png 100 100 83
200 ng 83 83 50
100 ng 100 83 66
25 ug 83 50 33
Untreated control 0 0 0

*Groups of 6 (C57BL/6 x CBA)F1 mice were irradiated with 9 Gy 24
hours before transplantation of 5 x 107 spleen cells and 2 x 107 bone
marrow cells of C57BL/6 donors.

tBone marrow and spleen cells from C57BL/6 donors were incu-
bated in vitro with 17A2 and transpianted.

$Donors were injected IV with 400 pg 17A2; bone marrow/spleen
cells were prepared 3 days later and transplanted.

§17A2 injected IV at indicated dose 4 hours before transplantation.
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semiallogeneic GVHD model. The cell-dose-dependent
delay of GVHD was correlated to a delay of GVHD after
the transplantation of 5 X 107 spleen cells from donors who
had been pretreated with 17A2 (Fig 4). Because 17A2
induced 50% T-cell depletion in the spieen (see above), we
expected a delay of GVHD mortality corresponding to the
delay after the transfer of 2.5 x 107 spleen cells of our
control mice. However, anti-CD3 MoAb delayed GVHD
significantly more (P = .009, Fig 4). These results support
the conclusion that immunosuppression by 17A2 cannot be
explained by its T-cell depletion alone. The CD3/TCR
modulation must at least have played a role.

DISCUSSION

The present observations concern an interrelationship
between antibody action and type of conditioning for
suppression of GVHD. Extending experimental studies on
antimouse CD3 MoAb to the suppression of GVHD, we
show in the mouse GVHD model that this modulating
antibody is relatively ineffective in ex vivo T-cell treatment,
but successful when used for conditioning bone marrow
recipients. This difference in immunosuppressive effect
contrasts with that of primarily T-cell-depleting MoAbs,
which are equally effective in both types of treatment.!”1?
Whereas purging with anti-T-cell antibodies depends on
their Fc-parts,® an important anti-CD3 antibody effector
function extends to its variable T-cell-binding part that
causes downmodulation of the CD3/TCR complex. F(ab'),
fragments of anti-CD3 MoAb have thus been shown to
conserve much of its immunosuppressive activity by prolong-
ing survival of skin allografts.!

C57BL/6 ——> (C57BL/6 x CBA)F1

100

80

60

% survival

40
Fig4. Survival of lethally irra-

diated (C57BL/6 x CBA)F1 mice
(6 per group) after transplanta-
tion of 2 x 107 bone marrow cells
and different numbers of spleen 20
cells as indicated from 17A2-
treated donors or control mice
pretreated with MoAb of the
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In the present study, pretreating of C57BL/6 donor mice
with 17A2 resulted in dose-dependent T-cell elimination
and downmodulation of the CD3/TCR receptor complex,
which were most pronounced in blood and spieen cells. We
transplanted spleen and bone marrow cells of mice injected
with up to 400 wg 17A2 3 days earlier. At this time, splenic
T cells had decreased to about 50%. They also showed a
reduction in CD3 expression of about 60%, as measured by
binding 17A2 (Fig 1). The spleen T cells, despite their
reduced number and TCR downmodulation, hardly de-
layed acute GVHD mortality at all (Fig 3). In vitro tests for
T-cell function, in which spleen cells from mice injected
with anti-CD3 MoAb 145-2C11 and tested for generation of
cytotoxic T-lymphocyte-mediated lysis (CTL) of complete
MHC-disparate target cells, showed no CTL activity for at
least 5 weeks posttreatment.!® Clearly, in vivo conditions for
GVHD-inducing T cells must be quite different. Other
factors, eg, preirradiation of marrow recipients, cytokines,
or upregulation of target antigens, may have contributed to
in vivo T-cell stimulation and early recovery of graft-versus-
host response. On the other hand, successful marrow-
recipient conditioning-—not only in the notoriously ‘easier’
parent-to-F1 system, but also in fully mismatched CBA
mice—proved the potential anti-GVHD effectiveness of
17A2. It underscores the importance of circulating anti-
CD3 MoAb for maintaining inhibition and dysfunction of
donor cell TCR in the early stages after transplantation. It
is conceivable that T-cell-depleting antibodies like anti—
Thy-1 MoAb (and we found the same for antimouse
CD4/CD8 antibody pairs [data not shown]) are equally
effective in donor, donor-cell, or recipient treatment as long

1—— 5x10" + 17A2
2 —8— 5x10’

3 —&-- 2,5x107
4~5-- 2.0x10

5~e- 1.25x10’

6 ~o-- 1.0x10"

70 0.625x107

same isotype but irrelevant spec- 0
ificity. Statistical analysis was

identical as in Fig3: 1v 2, P =

017; 1v3,P=.009 1v4P=

018; 1v5 P =.623;1v6, P =

.049; 1v7,P = .643.

days after transplantation
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as they cause sufficient T-cell elimination.!”2! The 50%
T-cell-depletory effect of 17A2 is clearly insufficient to
explain its suppression of GVHD in fully mismatched mice.
A rat IgG2¢ antimouse Thy-1 MoAb, causing 92% T-cell
suppression, hardly delayed GVHD in fully mismatched
mice, in contrast to the IgG2b isotype with 98% depletion
and prevention of GVHD.?! Therefore, we conclude that
TCR modulation in addition to T-cell depletion must be
operative in suppressing GVHD with anti-CD3 MoAb. Qur
observation that prolonged recipient treatment with 17A2
can lead to specific transplantation tolerance is more
difficult to understand. Whether transferred donor T cells
underwent programmed cell death (apoptosis)’! or were
gradually substituted by tolerant T cells deriving from
transplanted stem cells and differentiated in the marrow
recipient’s thymus was not further investigated. Even sub-
clinical GVHD cannot be dismissed completely, consider-
ing the reduced frequency of CD4* and CD8* cells that we
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had observed in some chimeras beyond day 100 posttrans-
plantation.

OKT3 is presently used for treatment of GVHD symp-
toms after bone marrow transplantation. It may not be
completely academic to discuss conditioning marrow recip-
ients with anti-CD3 MoAb for GVHD prophylaxis. Bone
marrow engraftment, a clinical problem when T-cell-
depleting MoAbs are used, has been shown to be promoted
by anti-CD3 treatment.3? Mitogenic side effects of anti-CD3
MoAb can be mitigated or avoided by isotype-matching,33
steroids,>* pentoxphilline, by antibodies to tumor necrosis
factor,37 or by anti-CD3 F(ab'), fragments.!53
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Antilymphocytic antibodies and marrow transplantation. XII.
Suppression of graft-versus-host disease by T-cell-modulating and
depleting antimouse CD3 antibody is most effective when preinjected
in the marrow recipient
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