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ABSTRACT

Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate
several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this
study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endo-
thelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl con-
jugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were
deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-
induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress
response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways
affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two
nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but
transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was
found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational
modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the
endothelium.
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INTRODUCTION
Acetylation of the lysine residue is a reversible post-translational
modification (PTM) that plays an essential role in the regulation of
protein stability and the activation of several signaling pathways [1].
The regulation of gene expression through the modification of core
histone tails by histone acetyltransferases (HATs) or histone deacety-
lases (HDACs) is well known [2, 3], but lysine acetylation is also
essential for p53-associated functions [1]. It has been suggested that
the ∼3600 acetylation sites identified so far contribute to the regula-
tion of almost all nuclear functions and to the control of a large array
of cytoplasmic functions [1].

The deacetylases responsible for the controlled removal of acetyl
groups can be categorized into four subgroups. The sirtuins,

representing Class III deacetylases, are nicotinamide adenine
dinucleotide (NAD+)-dependent enzymes, and include seven
members in humans [4]. The best characterized of these is sirtuin 1
(SIRT1) [5]. SIRT1 functions as a metabolic sensor involved in cell
cycle progression, the apoptosis or survival decision, senescence and
inflammation [6]. Sirtuin 3 (SIRT3) is located in mitochondria and
has been implicated in regulating metabolic processes [7, 8].

The deacetylation targets of SIRT1 have been studied extensively
over the recent years. Besides its ability to deacetylate histones H1,
H3 and H4 [9–11], SIRT1 was also found to deacetylate the master
regulator of DNA damage, the p53 protein, either directly [12, 13] or
by inactivating (deacetylating) the histone acetyltransferase TIP60
that is able to acetylate p53 [14]. In the case of DNA damage, such as
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that triggered by ionizing radiation, p53 is rapidly stabilized by phos-
phorylation and acetylation [15]. Acetylation competes for lysine resi-
dues that are also targets for ubiquitination, sumoylation and
methylation [16]. The stabilization of p53 rapidly triggers the transac-
tivation of several genes that are involved in cell cycle arrest, apoptosis
and metabolic changes [17–19]. The deacetylation of p53 by SIRT1
has been shown to increase cell survival [20], while SIRT1 deficiency
caused accumulation of p53 acetylation, thereby enhancing oxidative
stress-induced cellular senescence [21]. In an apparent feedback
loop, the transcription of the SIRT1 gene is negatively controlled by
active p53 [22]. Thus, SIRT1 plays a major role in its own transcrip-
tional regulation.

In addition to p53 deacetylation, SIRT1 has other essential func-
tions in the repair of DNA double-strand breaks: it contributes to the
formation of gamma-H2AX, BRCA1, Rad51 and NBS1 foci after
gamma irradiation [23]; it also induces Ku70-dependent DNA repair
[24]. Thus, SIRT1 seems to play a dual role in the radiation response
by, on the one hand, destabilizing p53 that is crucial for DNA repair
but, on the other hand, actively contributing to the formation of
DNA repair complexes. Indeed, we have previously shown a rapid
alteration in the expression of the Ku protein complex (Ku70/Ku80)
in the human endothelial cell line EA.hy926 after exposure to a
gamma dose of 2.5 Gy [25].

The endothelial response to ionizing radiation is of particular inter-
est because the epidemiological evidence indicates an enhanced risk
of cardiovascular disease after radiotherapy treatment of malignant
disease such as breast cancer if the heart is at least partially exposed
[26–28]. Recently, in addition to the cardiac macrovascular damage
and atherosclerosis, the role of microvascular damage and the subse-
quent reduction of capillary density has been suggested to be the initial
and promoting cause of radiation-induced heart disease [29].

In this study, we have investigated whether the acetylation/deace-
tylation process plays a role in the activation of known [25] or novel
pathways following a single acute radiation dose (2 Gy). For this
purpose we used primary human cardiac microvascular endothelial
cells (HCMEC) as the cellular model.

MATERIALS AND METHODS
Cell culture, irradiation and harvesting of cells

Primary human microvascular endothelial cells were purchased from
Promocell (Berlin, Germany). The cells were originally isolated from
multiple donors (at least three); the doubling time of the cells was
approximately 31 h. The cells were cultured in T75 culture flasks at
37°C with 5% CO2 in air in Endothelial Cell Growth Medium MV2
(Promocell) containing supplements (5% fetal calf serum, 0.2 µg/ml
hydrocortisone, 0.5 ng/ml vascular endothelial growth factor, 10 ng/ml
basic fibroblast factor, 20 ng/ml IGF-1, 1 µg/ml ascorbic acid). Ioniz-
ing radiation was delivered to exponentially growing cells at the indi-
cated doses using a 137Caesium gamma source (HWM-D 2000,
Waelischmüller, Germany) operated at a dose rate of 0.49 Gy/min.
At 4 and 24 h after irradiation, the cells were harvested by scraping
and rinsing once with 10 mM Tris–250 mM sucrose (pH 7.0).
Detached cells were centrifuged 3 min at 220g, the supernatant was
removed and the cells were resuspended in 1 ml 10 mM Tris–250
mM sucrose (pH 7.0) and immediately frozen in a pre-cooled (4°C)
isopropanol-containing freezing device and stored at −80°C. Cell
pellets were lysed with a lysis buffer containing 1% Triton X100, 100

mM Tris HCl pH 7.6, protease and phosphatase inhibitor cocktails
(Roche) and lysine deacetylase inhibitors MS275 and suberoylanilide
hydroxamic acid (Alexis Biochemicals). The samples were diluted five
times with water for the protein concentration measurement in tripli-
cate by the Bradford assay.

Acetylome analysis
Protein extract (300 μg) from control and irradiated HCMEC (4 h)
in 1% Triton, 100 mM Tris buffer, pH 7.6 was subjected to overnight
in-solution tryptic digestion as described previously [30]. Acetylated
peptides in the lysate were enriched using agarose-conjugated anti-
body against acetylated lysine (ImmunChem) and eluted using 0.1%
TFA as described previously [31]. Peptides were separated by
reversed phase chromatography (PepMap, 15 cm × 75 μm ID, 3 μm/
100 Å pore size, liquid chromatography (LC) Packings) operated on
a nano-HPLC (Ultimate 3000, Dionex) with a non-linear 170-min
gradient with a flow rate of 300 nl/min as described previously [32].
The gradient settings were subsequently: 0 to 140 min: between 2%
and 5% to 31% B; 140 to154 min: 31% to 95% B; 145 to150 min:
constant at 95% B; 150–155 min 95% to 5% B. The nano-LC was
connected to a linear quadrupole ion trap mass spectrometer (LTQ
Orbitrap XL, ThermoFisher, Bremen, Germany) equipped with a
nano-ESI source. The mass spectrometer was operated in the data-
dependent mode to automatically switch between Orbitrap-MS and
LTQ-MS/MS acquisition. Survey full-scan mass spectra (from m/z 300
to 1500) were acquired in the Orbitrap with a resolution of R = 60 000 at
m/z 400. This method allowed up to 10 of the most intense ions to
be isolated sequentially, depending on signal intensity, for fragmenta-
tion on the linear ion trap using collision-induced dissociation. High-
resolution MS scans in the Orbitrap and MS/MS scans in the linear
ion trap were performed in parallel. Target peptides already selected
for MS/MS were dynamically excluded for 60 s. The acquired spectra
(Thermo raw files) were loaded into the Progenesis LC-MS software
(version 3.0, Non-linear) and label-free quantification was per-
formed as described before [32, 33]. Briefly, the profile data of the
MS scans as well as MS/MS spectra were transformed to peak lists
with Progenesis LC-MS using a proprietary algorithm and then
stored in peak lists comprising m/z and abundance. One sample
was set as a reference, and the retention times of all other samples
within the experiment were aligned (three to five manual land-
marks, followed by automatic alignment) to create maximal overlay
of the 2D feature maps. At this point, features with only one charge
or more than seven charges were masked and excluded from further
analyses, and all remaining features were used to calculate a normal-
ization factor for each sample that corrects for experimental vari-
ation. Samples were then allocated to their experimental group
(control or irradiated).

MS/MS spectra were exported from the Progenesis LC-MS soft-
ware as a Mascot Generic file (mgf) and used for peptide identification
with Mascot (version 2.3) in the Ensembl database for human (release
72, 40 047 703 residues, 105 287 sequences). The following search
parameters were used: 10 ppm peptide mass tolerance and 0.6 Da frag-
ment mass tolerance, one missed cleavage was allowed, carbamido-
methylation (C) was set as fixed modification and oxidation (M),
deamidation (N,Q) as well as acetylation (K and protein N-terminus)
were allowed as variable modifications. A MASCOT-integrated decoy
database search calculated a false discovery of ≤1% when searching was
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performed on the concatenated mgf files with an ion score cut-off of
30 and a significance threshold of P≤ 0.01.

For quantification, all unique peptides (with Mascot score ≥30
and P < 0.01, see above) of an identified protein were included, and
the total cumulative abundance was calculated by summing the abun-
dances of all unique acetylated peptides derived from the respective
proteins. No minimal thresholds were set for the method of peak
picking or selection of data used for quantification.

Bioinformatics analysis
To further analyze the overlapping networks and pathways of radi-
ation-responsive proteins, we imported all identified proteins with
their corresponding accession numbers into GeneMANIA (http://
www.genemania.org/, 15 July 2014, date last accessed) and Ingenuity
Pathway Analysis (IPA) (Ingenuity System, http://www.ingenuity.
com, 22 October 2014, date last accessed) bioinformatics software.
GeneMANIA was used to identify the affected biological functions.
IPA was used to identify the significantly deregulated canonical path-
ways.

Immunoblotting analysis
For the validation of protein expression changes by immunoblotting,
20 mg of protein extract was separated on 8% and 12% SDS poly-
acrylamide gels according to Laemmli [34]. Proteins were transferred
to nitrocellulose membranes (GE Healthcare) using a semidry blot-
ting system at 100 mA for 90 min. Membranes were saturated for 1 h
with 5% advance blocking reagent (GE Healthcare) in TBS (50 mM
Tris.HCl, pH 7.6 and 150 mM NaCl) containing 0.1% Tween 20
(TBS/T).

Blots were incubated overnight at +4°C with antibodies against
either SIRT1, SIRT3, acetyl-p53, phospho-p53 or p21 protein (Cell
Signaling) with alpha-tubulin (Cell Signaling) as the loading control.
After washing three times in TBS/T, blots were incubated for 1 h at
room temperature with horseradish peroxidase-conjugated anti-mouse
or anti-goat secondary antibody (Santa Cruz Biotechnology) in block-
ing buffer (TBS/T with 5% w/v advance blocking reagent). Immuno-
detection was performed with ECL advance Western blotting detection
kit (GE Healthcare). The protein bands were quantified using Image-
Quant 5.2 software (GE Healthcare) by integration of all pixel values in
the band area after background correction, and normalized to the alpha-
tubulin expression. The level of alpha-tubulin is not affected by irradi-
ation in endothelial cells and was therefore used for normalization [25].

Isolation of total RNA and gene expression analysis
The mirVanaTM Isolation Kit (Ambion) was used to isolate and
purify total RNA from frozen HCMEC cells according to the manu-
facturer’s protocol. Total RNA was eluted with nuclease-free water.
The OD ratio of 260/280 of the lysates estimating the RNA quality
was measured using Nanodrop spectrophotometer (PeqLab Biotech-
nology; Germany). It ranged between 2.0 and 2.1. Lysates were
stored at −20°C until quantification of gene expression.

Total RNA isolates (100 ng) from sham-irradiated and 2-Gy–
irradiated cells (4 h post-irradiation) were used to quantify the expres-
sion of 84 genes related to the p53 signaling pathway (RT2 Profiler
PCR array PAHS-027Z – Quiagen). The assays were performed
according to the manufacturer’s instructions, including genomic DNA
elimination, first-strand cDNA synthesis, preamplification of cDNA

target templates and real time PCR via RT2 SYBR Green Mastermix.
The StepOnePlus device (Applied Biosystems) was used to detect the
thermal cycles accompanied with fluorescence emission using the man-
ufacturer’s instructions. Normalization of relative expression levels of
each mRNA was done against the median of all 84 target genes using
the equation 2−ΔΔCt, where:

ΔΔCt ¼ ΔCtirradiated � ΔCtsham and ΔCt

¼ Cttarget � Ctmedian-of-84-targets:

Statistical analysis
Two biological replicates, each representing a pool of at least three
different biological donors, were used for analysis of protein acetyl-
ation changes by MS 4 h after irradiation. The mean ratio value of
acetylated peptide amounts between controls and irradiated samples
were calculated. Proteins showing increased expression levels by
≥1.40 fold or decreased expression levels by ≤0.714 were considered
to be deregulated by acetylation/deacetylation.

Western blots were quantified using at least three replicates (two
biological and one technical). The differences in the protein amount
were considered significant if they reached a P-value of ≤0.05
(unpaired Student’s t-test, n = 3).

Gene expression changes were considered significant if they
reached a P-value of ≤0.05 (unpaired Student’s t-test, n = 3) and had
a fold-change of ≥1.2 or ≤−1.2. The threshold of ±1.2 is based on
the average experimental technical variance (9.2%) of a set of 14 over-
lapping target genes from two different RT2 Profiler PCR arrays
(unpublished data). Thus, a fold-change of ±1.2 enables confident
target gene expression quantification.

Data deposition of proteomics experiments
The MSF files of the obtained MS/MS spectra can be found under
http://storedb.org/project_details.php?projectid=50

RESULTS
Changes in the acetylation status of HCMEC

after irradiation
Radiation-induced effects on the HCMEC acetylome were investi-
gated using a label-free proteomic quantification approach after
enrichment of acetylated peptides. We identified 119 peptides, corre-
sponding to 88 acetylated proteins, of which 54 were changed in their
acetylation status significantly (fold change ≥1.30 or ≤0.77). At 4 h
after irradiation, 23 proteins were deacetylated, while 31 showed a sig-
nificant increase in the acetylation status (Supplementary Table S1).

Proteins with a changed acetylation status were imported to Gene-
MANIA and IPA software tools for network analysis. The imported
proteins in GeneMANIA resulted in a creation of a large protein
network according to the known interactions between these proteins in
the literature. We show here the most significant subnetworks based on
biological functions according to the number of affected proteins. The
analysis by GeneMANIA showed the initiation of translation to be the
most affected pathway involving 21 proteins (6 deregulated proteins
from our proteomics results and 15 predicted proteins) with a changed
acetylation status as an early response to irradiation (Fig. 1a). The pro-
teins involved in this network were ribosomal proteins and elongation
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initiation factors. The actin cytoskeleton signaling (5 deregulated and
4 predicted proteins) and nuclear transport (8 deregulated proteins
and 1 predicted protein) were also indicated as affected by the
GeneMANIA analysis (Supplementary Fig. S1a, S1b).

The most important biological processes identified by the IPA
software were cell death and survival, cellular movement, cellular
development, cellular morphology and protein trafficking. The most
significantly affected network was the stress-related response

Fig. 1. Pathway analysis of radiation-induced acetylated and deacetylated proteins. All differentially regulated acetylated and
deacetylated proteins were imported into the GeneMANIA and IPA software tools. (a) GeneMANIA identified translational
initiation as the most significant protein class affected by irradiation on the acetylation level. The striped brown and gray circles
represent the identified acetylated/deacetylated proteins, whereas the uniquely colored circles represent the predicted interactive
proteins. The brown color shows the network involved in protein synthesis; the gray color indicates proteins only indirectly
related to protein synthesis. (b) The most affected biological networks from the IPA analysis were cell death and survival,
cellular movement, cellular development, cellular morphology and protein trafficking; these are shown as a merged network.
The gray molecules represent proteins found to be altered in their acetylation status in this study; the white molecules are
interaction partners predicted by the software. The solid arrows and lines represent direct interactions, and the dotted arrows
and lines indirect interactions.

Fig. 2. Immunoblot analysis of the SIRT1 and SIRT3 expression. The extracted proteins from control and irradiated cells at 4 or
24 h post-irradiation were separated by 12% SDS-PAGE and analyzed by immunoblotting with antibodies against (a) SIRT1; (b)
SIRT3. The columns represent the average ratios with standard errors of the mean (SEMs) of relative protein expression in
sham-irradiated and irradiated cells. The protein bands (E) were quantified using ImageQuant 5.2 software (GE Healthcare) by
integration of all the pixel values in the band area after background correction and normalized to alpha-tubulin expression.
Three biological replicates were used for each experiment. *P≤ 0.05; **P≤ 0.01 (Student’s t-test).
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(Fig. 1b) with extracellular-signal-regulated kinases (ERK; ERK1/2),
p38 mitogen-activated protein kinases (p38 MAPK) and protein
kinase B (Akt) as central hubs.

In accordance with the GeneMANIA analysis, IPA identified initi-
ation of translation, Rho and actin cytoskeleton signaling to be
among the most affected pathways by radiation-induced changes in
the acetylation status (Supplementary Fig. S1c).

Additional proteins showing a change in their acetylation status
after radiation exposure included calmodulin 2, beta-catenin, alpha-
catenin, actin related 2/3 complex (subunits 1B and 4), actin (gamma
1 and beta), twinfilin, S100 calcium-binding protein, thymosin beta, G
protein, protein tyrosine phosphatase-like A domain containing 1 and
microtubule-associated protein 4. All these proteins are members or
downstream targets of the canonical and non-canonical Wnt pathways.
This suggested that the Wnt pathway is highly affected by the acetyl-
ation after ionizing radiation.

Radiation-induced alterations in the levels of SIRT1
and SIRT3

As many ribosomal proteins and elongation factors found to be deace-
tylated in our study are putative SIRT1 targets [35], we assessed the
expression of SIRT1 by immunoblotting. The level of SIRT1 was sig-
nificantly upregulated several fold 4 h but not 24 h after irradiation
(Fig. 2a).

Some mitochondrial proteins (cyclophilin A, fission 1 and NADH
dehydrogenase (ubiquinone) 1 beta subcomplex, 9) were changed

in their acetylation status after radiation exposure (Supplementary
Table S1). Therefore, the level of the mitochondrial deacetylase
SIRT3 was also studied 4 and 24 h after irradiation. Figure 2b shows
that, similar to SIRT1, SIRT3 was significantly upregulated 4 but not
24 h after radiation exposure.

The acetylation and phosphorylation status of p53
and the expression of p21

We also investigated the acetylation status of p53 by performing
immunoblotting against its acetylated form (lysine-382) (Fig. 3a).
We found an upregulation of the acetylated form at both time-points
(4 and 24 h) after irradiation. The phosphorylated p53 (serine-15)
was also found to be upregulated at both time-points (Fig. 3b). The
p21 protein, the expression of which is tightly controlled by p53, was
also upregulated 4 and 24 h after irradiation (Fig. 3c). The immuno-
blots are shown in Supplementary Fig. S1.

Cell cycle/p53 gene expression profiles
Acetylation and phosphorylation of p53 leads to activation of p53-
related pathways. We tested 84 genes that are involved in cell cycle/
p53 signaling as regulators or downstream targets. A total of 13 genes
were found to be significantly upregulated and 4 downregulated
(P < 0.05) 4 h after irradiation (Supplementary Table S2). However,
at 24 h there were no significant radiation-induced changes in the 84
investigated genes (data not shown).

Fig. 3. Immunoblot analysis of the radiation-induced changes in the p53 acetylation and phosphorylation status and in the p21
expression level. The extracted proteins from control and irradiated cells at 4 or 24 h after exposure were separated by 12% SDS-
PAGE and analyzed by immunoblotting with antibodies against (a) anti-acetyl-p53; (b) anti-phospho-p53; (c) p21. The
columns represent the average ratios with standard errors of the mean (SEMs) of relative protein expression/modification in
sham- and irradiated cells. The protein bands (E) were quantified using ImageQuant 5.2 software (GE Healthcare) by
integration of all the pixel values in the band area after background correction and normalized to the alpha-tubulin (αTub)
expression. Three biological replicates were used for each experiment. *P≤ 0.05; **P≤ 0.01 (Student’s t-test).
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The gene expression levels of three proteins (SIRT1, HDAC1,
KAT2B) involved in the acetylation/deacetylation process were
found to be upregulated 4 h after irradiation. The upregulation of
SIRT1 gene expression was in agreement with the immunoblotting
results at this time-point. However, it is conceivable that p53 is not a
target of SIRT1 in this study because both SIRT1 and the level of
acetylation of p53 are simultaneously upregulated.

To further analyze the interaction of the p53-dependent network,
we imported the deregulated genes from gene expression data in the
IPA software tool (Fig. 4). In accordance with the immunoblotting
results, the gene expression data predicted a significant activation of
the p53 gene (2.156 activation z-score and P-value of 5,39E10).

DISCUSSION
Lysine acetylation is a major post-translational modification involved in
a broad array of physiological responses and it coregulates key cellular
functions [31], including DNA damage [36–38]. In this study we
aimed to study the acetylation changes of human cardiac microvascular
cells after an acute gamma radiation exposure of 2 Gy. A total of 54 pro-
teins were found to be altered in their acetylation status, 31 of which
were acetylated and 23 deacetylated. The deacetylases SIRT1 and
SIRT3 were transiently upregulated 4 but not 24 h after the exposure.

Acetylation in protein synthesis and stress signaling
The acetylation status of a number of proteins involved in translational
initiation was altered after irradiation. As protein synthesis is the most
energy-consuming cellular process [39], translational regulation has to
be strictly controlled under cellular growth and stress [40–42]. Conse-
quently, an inhibition of global protein synthesis by blocking cap-
dependent initiation will reduce energy demand during cellular stress
[43], such as that following irradiation. It has been reported, however,
that ionizing radiation stimulates protein synthesis immediately and
transiently in non-transformed cells through activation of the mTOR
pathway [40]. This initial activation of de novo translation is rapidly lost
through assembly of the DNA damage-response apparatus and activa-
tion of ATM and p53 [40]. We have shown previously that the majority
(81%) of proteins showing immediate (4 h) significant changes in
expression after ionizing radiation (2.5 Gy) are downregulated [25].
However, while global translation is blocked by inhibition of cap-
dependent initiation, translation of cap-independent transcripts involved
in survival still takes place, making the latter the predominant mode of
translation under stress [43]. We observed a rapid stabilization of the
p53 protein by acetylation, its subsequent phosphorylation and activa-
tion of p53-regulated gene expression.

EIF1, EIF4E and EIF5A, all translational initiation factors, were
found to be changed in their acetylation status in our study (EIF1
deacetylated; EIF4E and EIF5A acetylated). Whereas the effect of
EIF1 and EIF4E acetylation in protein synthesis is not known, acetyl-
ation of EIF5A regulates its subcellular localization, increased acetyl-
ation leading to nuclear accumulation [44].

In total, four ribosomal proteins were found increasingly acetylated
and one deacetylated after irradiation. It is suggested that ribosomal
protein N-terminal acetylation is necessary for maintaining the ribosome’s
protein synthesis function, whereas deacetylation of ribosomal proteins
may have an inhibitory effect on protein synthesis, because the acetylation
is a prerequisite for both the rate and fidelity of translation [45].

The stress response in general is known to lead to the formation
of cytoplasmic RNA–protein complexes referred to as stress granules
[46]. The EIF5A and karyopherin (importin) that were found to be
acetylated in this study are required for the formation of stress gran-
ules [47, 48]. The RhoA signaling pathway that was also shown to be
affected by acetylation changes is involved in promoting stress
granule formation or initiating apoptosis during stress [49]. In add-
ition, KAT2B, a histone acetyl transferase that was found upregulated
on the gene level, is required to stabilize stress granules [50].

Acetylation of RNA splicing proteins
Removal of introns by splicing from the primary RNA transcript is an
essential process in the biosynthesis of mature mRNAs in eukaryotic

Fig. 4. p53-related deregulated target genes using IPA
software tool. The predicted interactions between TP53
(p53) and its target genes are shown by arrow (activation) or
blocked arrow (inactivation). SIRT1 = sirtuin 1,
CDC25C = cell division cycle 25C, EGFR = epidermal growth
factor receptor,MCL1 = myeloid cell leukemia 1,
SIAH1 = E3 ubiquitin-protein ligase 1; CDKNA1 = cyclin-
dependent kinase inhibitor 1A, E2F1 = transcription factor
E2F1,MDM2 = E3 ubiquitin-protein ligase, BRCA1 = breast
cancer 1, BTG2 = BTG family member 2, anti-proliferative
protein, CCNG1 = cyclin G1, EP300 = E1A-binding protein
p300. Ingenuity upstream analysis predicted activation of the
p53 gene by 2.156 activation score and overlap P-value of
5,39E10. Given the observed differential regulation of a gene
(‘up’ or ‘down’) in the dataset, the activation state of an
upstream regulator is determined by the regulation direction
associated with the relationship from the regulator to the
gene. The overlap P‐value measures whether there is a
statistically significant overlap between the dataset genes and
the genes that are regulated by a transcriptional regulator. It
is calculated using Fisher’s Exact Test, and significance is
generally attributed to P‐values < 0.01.
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cells. This process is performed by a large complex, the spliceosome,
consisting of five small nuclear RNAs and more than 150 proteins.
We found two spliceosome proteins to be changed in their acetylation
status after irradiation, U2 small nuclear RNA auxiliary factor 1 by
deacetylation and DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B by
increased acetylation. Previous proteomic analyses have shown that
numerous spliceosomal proteins are acetylated [31] and that small-
molecule inhibitors of acetylation block spliceosome assembly in vitro
at distinct stages before activation [51]. This, together with our data,
suggests that acetylation plays a role in splicing. However, due to the
small number of proteins being altered in our study it is not possible
to say how the spliceosome is affected by irradiation.

Acetylation and mitochondrial proteins
The NDUFB9 subunit of the mitochondrial respiratory Complex I
showed a significantly increased level of deacetylation (fold change
0.095) 4 h after irradiation. Acetylation of respiratory chain subunits,
including the NDUFB9 subunit, is known to regulate the production
of ATP and efficiency of the respiratory chain [52]. In fact, a prote-
omic analysis of intracellular proteins that had internal acetylation

residues demonstrated that a disproportionate fraction of identified
proteins were in the mitochondria and/or associated with energy
metabolism [53]. The mitochondrial SIRT3 has been shown to be a
stress-responsive deacetylase, and its increased expression protects car-
diomyocytes from genotoxic and oxidative stress-mediated cell death
[54]. Mice lacking SIRT3 showed hyperacetylation of mitochondrial
proteins and decreased levels of ATP by 50% [55]. Our data suggest
that increased SIRT3 levels and deacetylation of NDUFB9 result in
increased activity of Complex I immediately after irradiation. Our previ-
ous results showed increased amounts of some respiratory chain subu-
nits of Complex I in the heart muscle shortly after irradiation [56]. It is,
therefore, tempting to suggest a direct link between SIRT3 and deace-
tylation of key proteins in mitochondrial respiration.

In addition, two other mitochondrial proteins had increased levels
of acetylation: cyclophilin A and fission protein 1. Cyclophilin A is a
pro-inflammatory mediator secreted as a response to reactive oxygen
species in a highly regulated manner. Extracellular cyclophilin A acti-
vates vascular smooth muscle cells (VSMCs) and endothelial cells
(ECs) promoting inflammation, cell growth and cell death. Recently,
it was shown that ROS-dependent acetylation of cyclophilin A is

Fig. 5. Wnt canonical and non-canonical pathways affected 4 h after irradiation in HCMEC. Blue color represents proteins
regulated by acetylation; green color represents proteins regulated at the level of total expression in endothelial cells [25, 73];
and red color represents proteins predicted activated using bioinformatics tools. Gray color represents proteins not found to be
deregulated after irradiation.
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required for its import to the extracellular space, where it regulates
VSMC and EC activation [57].

Acetylation in Rho and Wnt signaling
We found several members of the Rho signaling pathway to have dif-
ferent acetylation levels after irradiation (calmodulin 2, alpha-catenin,
beta-catenin, gamma 1 and beta forms of actin, actin-related 2/3
complex, twinfilin, S100 calcium-binding protein, thymosin beta 10,
protein tyrosine phosphatase-like A domain containing 1 and G
protein). Several members of RhoGDI/actin cytoskeleton signaling
have been previously shown to be regulated on the level of acetylation
[58]. Deacetylation means in this case activation of the signaling
pathway [59]. Previous studies suggest that activation of this pathway
by inflammatory cytokines and agonists of G-protein-coupled recep-
tors effectively triggers vascular disease [60]. We have previously
shown that the Rho signaling pathway is affected by irradiation in
endothelial cells [25, 61], even with doses as low as 200 mGy [62].
In addition, with regard to the response of Rho/cytoskeleton signal-
ing, we found highly deacetylated cystatin B protein. Cystatin B is
thought to play a role in protecting cytosolic and cytoskeletal proteins
against the cysteine proteases accidentally released from lysosomes.

Rho GTPases are key mediators of Wnt pathway signals that
promote morphological and transcriptional changes affecting cell
behavior [63, 64]. In this study, several proteins belonging either to
canonical and non-canonical Wnt signaling pathways were found to
be changed in their acetylation status: G protein, profilin, beta-
catenin, calmodulin 2, S100 calcium-binding protein, nucleophosmin,
and transforming growth factor beta-1-induced transcript 1 protein
(Fig. 5). Beta-catenin, a key protein in the Wnt pathway, showed an
increased level of acetylation after irradiation. The acetyltransferase
p300/CBP-associated factor (PCAF) directly binds to and acetylates
beta-catenin, leading to its stabilization and activation of transcrip-
tional activity [65]. SIRT1, which was shown to be upregulated after
irradiation, promotes transient and constituent Wnt signaling
through regulation of Dishevelled proteins [66]. KRAS, HDAC1 and
BTG2 (upregulated in the gene expression analysis) and p21 (upre-
gulated using immunoblotting) are known to stimulate Wnt signaling
[67–69]. SIAH-1 (upregulated in the gene expression analysis) is also
activating Wnt signaling through activation of ß-catenin by ubiquiti-
nation [70]. In addition, negative regulators of Wnt signaling, E2F1
and CDC25C, were downregulated at the gene expression level [71,
72]. These data suggest radiation-induced activation of Wnt signaling
via acetylation/deacetylation processes.

CONCLUSION
This study highlights the role of post-translational modification of
proteins by changing their acetylation status as an immediate endo-
thelial response to ionizing radiation. Several pathways previously
shown to be radiation responsive may be regulated by this mechan-
ism. Such pathways include initiation of translation, stress signaling,
energy metabolism, and Rho signaling. The involvement of Wnt sig-
naling in the radiation response suggested by these data needs to be
confirmed in future studies. Increased knowledge concerning the
regulation of the radiation-induced acetylation process may help in
preventing cellular and tissue injury after exposure situations.
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