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Abstract
Background: We investigated the influence of genotyping errors on the type I error rate and
empirical power of two haplotype based association methods applied to candidate regions. We
compared the performance of the Mantel Statistic Using Haplotype Sharing and the haplotype
frequency based score test with that of the Armitage trend test.

Our study is based on 1000 replication of simulated case-control data settings with 500 cases and
500 controls, respectively. One of the examined markers was set to be the disease locus with a
simulated odds ratio of 3. Differential and non-differential genotyping errors were introduced
following a misclassification model with varying mean error rates per locus in the range of 0.2% to
15.6%.

Results: We found that the type I error rate of all three test statistics hold the nominal significance
level in the presence of nondifferential genotyping errors and low error rates. For high and
differential error rates, the type I error rate of all three test statistics was inflated, even when
genetic markers not in Hardy-Weinberg Equilibrium were removed. The empirical power of all
three association test statistics remained high at around 89% to 94% when genotyping error rates
were low, but decreased to 48% to 80% for high and nondifferential genotyping error rates.

Conclusion: Currently realistic genotyping error rates for candidate gene analysis (mean error
rate per locus of 0.2%) pose no significant problem for the type I error rate as well as the power
of all three investigated test statistics.

Background
The influence of measurement errors in explanatory vari-
ables on the properties of a test statistic, like its type I error

rate or power, has always been important to investigate.
For example, Bross [1] discovered that in a case-control
study with nondifferential errors independent of the dis-
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ease status, the type I error rate of the Chi-Squared test is
not increased, whereas the power to detect an association
is reduced.

In genetic association studies, where a large amount of
genotype data is produced, measurement errors in the
data are almost inevitable. Genotyping errors are reported
to occur with different frequencies and for different rea-
sons [2-4]. For candidate region association studies they
are mostly caused for example by contamination of the
DNA extract, low quality reagents or by human artefacts,
and occur with a frequency between 0.1% and 15% [3,4].
They are known to influence important issues, like the
selection of tagging SNPs [5,6] or haplotype frequency
estimation [7-9], and the properties of test statistics, e.g.
[10,11]. For family based studies, it has been shown that
the false-positive rate (type I error rate) of the Transmis-
sion/Disequilibrium Test (TDT) is dramatically inflated
due to undetectable genotyping errors causing an over-
transmission of common alleles [12]. Therefore, test sta-
tistics that account for genotyping errors have been
developed, e.g. TDTae [13,14]. Additionally, methods to
detect and deal with genotyping errors [3,15,16] have
been of great interest, for example the use of double-sam-
pling procedures [17,18]. Furthermore, it is still a matter
of controversy as to whether deviation from Hardy-Wein-
berg-Equilibrium (HWE) should be used to identify gen-
otyping errors [19-21].

So far, few studies have investigated the impact of geno-
typing errors on haplotype-based association methods,
while there are reports on their impact on haplotype fre-
quency estimation. It was previously shown that the type
I error rate of a haplotype-based TDT (HS-TDT) is inflated
in the presence of genotyping errors [22], but that the test
statistic can be robustified [23]. Moskvina et al. [24] dis-
covered in a theoretical approach that "genotyping errors
tend to make the genotype distribution more similar to
the stable distribution", which in genetic case-control
association studies generally leads to a loss in power for
nondifferential errors and to an increased type I error rate
in the presence of differential errors. The type I error rate
of a likelihood ratio test of independence of haplotype fre-
quency and affection status, based on two marker haplo-
types, was examined in a simulation study and found to
be inflated given differential genotyping errors even with
error rates lower than 1% for markers with small minor
allele frequencies (MAF) and markers in strong LD [25].

Our aim is to explore the impact of genotyping errors on
the type I error rate and the power of two haplotype-based
association test statistics for candidate regions. The com-
monly used haplotype-based score test (haplo.score, [26])
relies on estimates of haplotype frequencies. Thus, since
the influence of genotyping errors on haplotype frequency

estimation is known, they might also have a large impact
on the performance of haplo.score. The other haplotype-
based test statistic is the Mantel Statistic Using Haplotype
Sharing [27], which is of particular interest, since haplo-
type-sharing based association methods have not been
investigated in the presence of genotyping errors. Haplo-
type-sharing is a nonparametric approach that does not
rely on estimates of haplotype frequencies and assump-
tions on the underlying disease models, and may thus be
more robust against errors concerning the haplotype dis-
tribution. Both investigated test statistics use haplotype
information, but the Mantel Statistic Using Haplotype
Sharing is actually a pointwise test. Therefore, we addi-
tionally investigated the single-point Armitage trend test
as a comparison.

We simulated case-control scenarios with differential and
nondifferential genotyping errors, incorporated by fol-
lowing the unrestricted misclassification model, proposed
by Heid et al. [28]. Heid et al. estimated the occurrence of
genotyping errors by assessing genotypes in duplicates
and fitting several misclassification models given as the 3
× 3 misclassification matrix. We used their observed mean
error rate per locus of around 0.2% in a simulation sce-
nario to analyze the influence of a realistic amount of gen-
otyping errors, and additionally, investigated higher error
rates of 8 and 15.6% that are in the range of rates already
used in previous simulation studies [3,19,29]. The simu-
lated haplotype data was based on haplotypes across 15
SNPs as described in Heid et al. [30] to provide realistic
haplotype scenarios. We estimated the type I error rate
and empirical power for the Mantel Statistic Using Haplo-
type Sharing [27] and the haplotype-based score test
(based on haplotype frequencies) [26]) and compared
them with those of the Armitage trend test for all exam-
ined scenarios.

Methods
Data
The simulated data sets were based on a real haplotype
distribution including 18 different haplotypes with a fre-
quency of > 1%, describing a region in the APM1 gene, the
adiponectin encoding gene [30]. We standardized the
given estimated haplotype frequencies to achieve an over-
all frequency of 1 (see Table 1). Each haplotype consists of
15 carefully selected tagging SNPs. We simulated geno-
type data for different scenarios, containing either no, dif-
ferential or nondifferential genotype errors, respectively.
For each scenario, we generated 1000 replications with
each 500 cases and 500 controls. Two haplotypes were
drawn randomly to form an individual. For the analysis of
type I error rate, without loss of generality the first 500
randomly drawn haplotype pairs were chosen to be cases
and the last 500 haplotype pairs to be controls. For the
analysis of empirical power, case-control status was
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assigned based on a logistic regression model with a reces-
sive mode of inheritance. Here, we assumed a baseline
odds ratio for the disease to be 1.017 and an odds ratio for
carriers with two copies of the disease allele to be 3. Via
the logistic regression model a probability to develop the
disease based on their genetic components can be deter-
mined for each individual. According to these probabili-
ties an individual was stated to be a case or a control.
Haplotype pairs were drawn until the sample size of 500
cases and 500 controls was obtained. Marker 13 with a

minor allele frequency of 0.028 (see Table 1) was chosen
to be the putative disease locus.

Genotyping error
Genotype misclassification was incorporated independ-
ently at every marker for a haplotype pair following the
unrestricted misclassification model described by Heid et
al. [28]. A SNP genotype misclassification model is
described by a 3 × 3 misclassification matrix with each cell
containing the probability to assess a true genotype of 0,
1, 2 (coding the number of minor alleles of a SNP) as an

Table 1: Haplotype distribution

Haplotypes Frequencies

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.026
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0.021
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0.012
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0.035
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.074
0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0.044
0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0.139
0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0.049
0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0.108
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0.011
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0.061
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0.112
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0.074
0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0.028
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0.105
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0.021
1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0.060
1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0.018

0.078 0.108 0.099 0.329 0.29 0.338 0.157 0.061 0.727 0.074 0.309 0.401 0.028 0.55 0.092 MAF*

* MAF – Minor Allele Frequency
Haplotype distribution used in simulation studies. The distribution is based on Heid et al. [30].

Table 2: Misclassification matrix

Observed genotype Mean error rate per locus (%)
0 1 2

0 0.99951 0.00039 0.00010
1 0.00243 0.99602 0.00155 0.2
2 0.00138 0.00023 0.99839

True Genotype 0 0.975 0.018 0.007
1 0.02 0.97 0.01 8
2 0.01 0.018 0.972

0 0.95 0.039 0.011
1 0.035 0.945 0.02 15.6
2 0.015 0.036 0.949

Misclassification matrix for the unrestricted error model with mean error rate per locus of 0.2%, 8% and 15.6%. The homozygous major allele 
genotype is coded as 0, the heterozygote as 1 and the homozygous minor allele genotype as 2. For each true genotype (0, 1, 2), the relative 
frequencies to observe the corresponding true or false genotypes are presented. Misclassification probabilities for an error rate per locus of 0.2% 
are based on Heid et al. [28].
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observed genotype of 0, 1, 2. The mean error rate per locus
is then calculated as the sum of frequencies of all discord-
ant genotypes [3].

Table 2 shows the relative frequencies of possible geno-
typing errors corresponding to a mean error rate per locus
of 0.2%, 8% and 15.6%, respectively. For example, a
mean error rate of 0.2% is achieved when a true homozy-
gote major allele genotype (0) is correctly classified with a
relative frequency of 0.99951, whereas it is misclassified
as a heterozygote (1) or a homozygous minor allele geno-
type (2) with a relative frequency of 0.00039 or 0.0001,
respectively.

In previous studies, different genotype mean error rates
per locus between 0.1% and 15% have been reported and
used in simulation studies [3,19,29]. Therefore, we inves-
tigated the influence of genotyping errors with the
observed rate of 0.2% by Heid et al. [28], but also high
error rates of 8% and 15.6%. The influence of nondiffer-
ential errors was investigated by incorporating genotype
errors in cases and controls following the same error
model with the same misclassification probabilities. Dif-
ferential genotype errors might occur, e.g. when cases and
controls were genotyped in different laboratories or when
data from different sites or different populations were
combined. These differential errors were simulated by
introducing errors (1) in cases, but not in controls, or (2)
in the first seven markers in cases and in the last seven
markers in controls.

Association statistics
We compared the type I error rate and the empirical power
of three different statistics testing association in candidate
regions or genes.

Mantel Statistic Using Haplotype Sharing
We applied the pointwise Mantel Statistic Using Haplo-
type Sharing [27] which uses the information of neigh-
bouring markers. It correlates genetic and phenotypic
similarity across all pairs of haplotypes, where the genetic
similarity is measured as the shared length between hap-
lotypes and the phenotypic similarity is the mean-cor-
rected cross product based on the coded phenotypes (the
disease status). Significance was assessed by Monte Carlo
permutation of the disease status, while the haplotype
pair of an individual was kept together.

Haplotypes used for the Mantel Statistic Using Haplotype
Sharing were estimated from the genotypes via the EM
algorithm, implemented in R [31]. For comparison we
additionally estimated haplotypes via fastPHASE [32].

Armitage Trend Test
The second pointwise test we applied was the Armitage
trend test. The Armitage trend test is a 2 × 3 (1 df) Chi-
squared test for independence and was calculated via
logistic regression with the count of the minor alleles (0,
1, 2) as the independent variable.

Haplo.score
The third statistic we used was a haplotype-based score
test (haplo.score, [26,31]). The test describes haplotype
association in a generalized linear model framework. It is
carried out under the global null hypothesis of no haplo-
type association and relies on the probability distribution
of haplotype pairs conditional on the observed individual
genotype.

Test for deviation from Hardy-Weinberg Equilibrium
We used the standard asymptotic Chi-squared test with 1
degree of freedom to test for deviations from Hardy-Wein-
berg-Equilibrium at a nominal significance level of 0.05
([33], p.64f). This test was applied to each marker for each
replication on controls only. As a data quality check on
genotyping errors, all markers not in Hardy-Weinberg-
Equilibrium (HWE) were then excluded from the analysis
for the corresponding replication.

Type I error rate and power
For each replication, we determined the pointwise p-value
for the Armitage trend test and the Mantel Statistic Using
Haplotype Sharing as well as the global p-value for the
haplo.score test. Significance was then defined with a p-
value less than the significance level of α = 0.05. The
number of significant replications was counted and
divided by the number of total replications. When no dis-
ease locus was simulated, this number reflects the type I
error rate. If there is a disease locus, it represents the
empirical power at the disease locus.

Results
Quality of haplotype estimation
Comparison of estimated haplotypes based on genotypes with or 
without errors
We counted the number of correctly estimated SNPs per
haplotype as a measure for quality of haplotype estima-
tion. When no genotyping errors or errors with a low error
rate of 0.2% are incorporated, we observed for both phas-
ing algorithms that nearly all 1000 haplotype pairs (for
each replication) are estimated correctly. With increasing
genotype error rate, the number of accurately estimated
haplotypes decreases. For an error rate of 8%, on average
800 haplotype pairs are correctly estimated, whereas with
an error rate of 15.6%, only 600 are. This effect is inde-
pendent of differential and non-differential error scenar-
ios. However, at least 10 of 15 SNPs are estimated
correctly for all scenarios, i.e. the estimated haplotypes
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did not differ from the true haplotypes (without genotype
errors) at more than five SNPs

Estimated haplotype frequencies and number of estimated 
haplotypes
When genotype errors are not incorporated, all data sets
consist of 18 different haplotypes with frequencies
between 0.011 and 0.139. For both haplo.em and fast-
PHASE, the number of different haplotypes increases
drastically with increasing genotyping error rates, as
shown for haplo.em in Figure 1. With a mean error rate
per locus of 0.2%, 38 different haplotypes can be
observed, of which 20 have a frequency of less than 1%.
With higher error rates of 8% and 15.6%, the number of
different haplotypes becomes 198 and 319, respectively,
most of which have a frequency of less than 1%. Again
this is observed for differential and non-differential error
scenarios. The large number of rare haplotypes seems to
be the reason for the influence of genotyping errors on
haplotype frequency based association test statistics and
has also an influence on the computational time to deter-
mine haplotypes via the EM-algorithm or fastPHASE.

Type I error rate is inflated only for differential genotyping 
error rates
Figure 2 shows the calculated type I error rate for the poin-
twise tests, the Mantel Statistic Using Haplotype Sharing
and the Armitage trend test. When genotyping errors are
incorporated with a mean error rate per locus of 0.2%,
both association test statistics achieve the nominal signif-
icance level of 5% at every marker, independent of the
presence of genotyping errors (see Figure 2a). When gen-
otyping errors are incorporated with a higher error rate of
8% (see Figure 2b) or 15.6% (see Figure 2c), the type I
error rate of both the Armitage trend test and the Mantel
Statistic Using Haplotype Sharing is increased in the pres-
ence of differential genotyping errors. For the Armitage

trend test it increases to 0.25 or 0.6, respectively and the
type I error rate of the Mantel Statistic Using Haplotype
Sharing increases to 0.65 and nearly 0.99, respectively.
The global type I error rate of the haplotype specific score
test (haplo.score) is also only inflated in the presence of
differential genotyping errors appearing with the higher
rates of 8% or 15.6%, see Table 3.

Further investigations show that this dramatic increase in
the type I error rate for differential genotyping errors is
strongly dependent upon sample size. The inflation of the
type I error rate of the Mantel Statistic Using Haplotype
Sharing as well as of the Armitage trend test increases with
sample size as it can be seen in Figure 3 for a mean error
rate per locus of 15.6%, when genotyping errors were
incorporated in cases only. The incorporation of differen-
tial genotyping errors in cases in the first seven markers
and in controls in the last seven markers yields the same
results (data not shown). The haplotype-based score test,
haplo.score, rejects always the null hypothesis for all
investigated sample sizes when genotyping errors are
present in cases only. When differential genotyping errors
are in cases in the first seven markers and in controls in the
last seven markers, the type I error rate of the haplo.score
test is increased with increasing sample sizes. With a sam-
ple size of 100 the type I error rate is 0.07, but for a sample
size of 300 it is 0.34 and for a sample size of 500 0.72.
Hence, an increase of the type I error rate can be seen, but
is not as high as for differential errors in cases only. When
genotype errors are present with a mean error rate per
locus of 0.2%, the type I error rate of all three association
test statistics remain at the nominal level of 0.05, inde-
pendent of sample size.

In summary, the type I error rate is only increased for
higher genotyping error rates with differential genotyping
errors, but its magnitude depends on the sample size.

Estimated haplotype distributionsFigure 1
Estimated haplotype distributions. Number of estimated haplotypes and their distribution according to haplotype fre-
quencies for different error rates. The number of rare haplotypes is increased with increasing mean error rate per locus.
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Power is reduced in the presence of high, non-differential 
genotype error
For small genotyping error rates of 0.2%, the empirical
power of all three association test statistics was unaffected
by nondifferential or differential genotyping errors. For
haplo.score, power remains at 89–92%. The Armitage
trend test and the Mantel Statistic Using Haplotype Shar-
ing have a power of 92% to 94% to detect the disease
locus (see Figure 4a). The influence of genotype errors
with higher mean error rates per locus of 8% (Figure 4b)
or 15.6% (Figure 4c) on the two pointwise tests are shown
in Figure 4b and 4c, respectively. Here, the empirical
power at the disease locus (marker 13) is decreased for the
Armitage trend test and the Mantel Statistic Using Haplo-
type Sharing for non-differential genotyping errors to
achieve only a level of around 80%. This decrease in
power for nondifferential genotype errors is also observed
for haplo.score, which achieves, for example, only a level
of 48% in the presence of genotyping errors with an error
rate of 15.6%. Furthermore, Figure 4b and 4c show that
the power of the Mantel Statistic Using Haplotype Sharing
is increased for differential genotyping errors, which
might be due to the inflated type I error rates.

In summary, with low genotyping error rates, the empiri-
cal power of all three association test statistics remains
high at around 89% to 94%. But power is decreased by
high, nondifferential genotype errors.

Test for deviation from Hardy-Weinberg Equilibrium
With a mean error rate per locus of 8% and a sample size
of 1000, genotype errors are expected to occur on average
in 80 individuals per marker. We observed that genotype
errors occurred in each of the markers for all replications.
Table 4 presents the number of replications where the
marker was tested to deviate significantly from the
assumption of Hardy-Weinberg Equilibrium for the sce-
nario of non-differential genotype errors with a mean
error rate per locus of 8%. Thus, the proportion of geno-
type errors detected by testing for deviation from HWE
can be quite low, especially for markers with common
alleles. This is also observed for all other error rates, for
differential as well as for non-differential genotype errors
(data not shown).

One possible approach after the detecting deviation from
HWE in certain markers is to exclude the corresponding
markers from the analysis. Our data show that excluding
markers not in HWE from the analysis when non-differen-
tial genotyping errors are present does not have any effect
on the type I error rate, which remains at the nominal sig-
nificance level of 0.05, as for example in Figure 5 for a
mean error rate of 15.6%. The observed inflation of the
type I error rate due to differential genotyping errors is
only moderately decreased when markers not in HWE are
excluded from the analysis. Thus the type I error rate can
be still around 0.2–0.3 for the Armitage trend test and
0.2–0.5 for the Mantel Statistic Using Haplotype Sharing
in the presence of differential genotyping errors with a
mean error rate per locus of 15.6% (Figure 5). This can
also be observed for a mean error rate per locus of 8%
(data not shown). As expected, the power of all three test
statistics is decreased when markers not in HWE are
excluded regardless of whether genotyping errors are dif-
ferential or non-differential since the total number of
SNPs studied is reduced (data not shown).

Conclusion
We investigated the impact of genotyping errors on the
performance of the Mantel Statistic Using Haplotype
Sharing and the haplotype-based score test, haplo.score.
Both are haplotype-based tests that have been applied to
case-control data in population-based candidate gene
association studies. The haplo.score is based on genotypes
incorporated in a generalized linear model framework,
but accounts for the uncertainty of haplotype phase
within the calculations. On the other hand, the Mantel
Statistic Using Haplotype Sharing needs the complete
phase information of the individuals under study, i.e. the
corresponding haplotype pair for each individual. For bet-
ter comparison of the two haplotype-based methods we
used the individuals' haplotype pairs determined via the
EM-algorithm, implemented in R (haplo.em) [31]. This
algorithm is also used by haplo.score and provides the
same haplotype frequency distribution as incorporated in
the haplo.score procedure. Haplo.score tests the global
hypothesis of whether an association between any exam-
ined haplotype exists, whereas the Mantel Statistic Using
Haplotype Sharing is a pointwise test that only incorpo-

Table 3: Results on Type I error rate of haplo.score

Mean error rate per locus (%) Nondifferential Differential (errors only in cases) Differential (cases: first 7 markers, controls: last 7 markers)

Without errors 0.047
0.2 0.047 0.384 0.057
8 0.049 1 0.333

15.6 0.037 1 0.973

Type I error rate of the haplotype based score test (haplo.score) for the unrestricted model with different mean error rates per locus.
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Results on Type I error rateFigure 2
Results on Type I error rate. Type I error rate of the Armitage trend test and the Mantel Statistic Using Haplotype Sharing 
with no (dots), differential (triangulars) and nondifferential (squares) genotype errors incorporated following the unrestricted 
misclassification model for different error rates per locus. With a small error rate of a) 0.2% both pointwise tests hold the 
nominal significance level of 0.05 (horizontal line), but with a higher error rate of b) 8% or c) 15.6% the type I error rate is dra-
matically increased for differential genotyping errors.
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rates the information of neighbouring markers. Hence,
the comparison of these two methods might be hampered
by the fact that they test different null hypotheses. We
therefore additionally investigate the pointwise Armitage
trend test as a third association test statistic. It has been
shown that the trend test achieves greatest power, com-
pared to other Chi-Squared tests, when there is no prior
knowledge of the underlying disease model or in the pres-
ence of deviation from HWE [29]. Since the disease model
in this simulation study is known to be recessive, the 2 ×
2 (1 df) Chi-Squared test for independence with the count
of the homozygote minor alleles (0, 0, 1) should be the
most powerful test [34]. However, in the presence of gen-
otyping errors, the advantage in power of this 1 df Chi-
Squared-test over the Armitage trend test, for a known
recessive disease model, could not be confirmed [29].

We find that in the presence of genotyping errors, with a
mean error rate per locus of 0.2%, the type I error rate and
the empirical power of all three statistics are not affected
at all. The type I error rate is highly inflated only for high
and differential genotyping error rates (8% and 15.6%).
The magnitude of increase in type I error rate depends on
the sample size, i.e. type I error rate is more inflated with
a larger than with a smaller sample size, which was also
previously reported by Moskvina et al. [25] and can be
explained by the fact that differential errors are systematic
errors ([35], p. 116). In the presence of high differential
error rates, the two haplotype-based approaches were
more sensitive, i.e. showed clearly higher type I error rates
compared to the Armitage trend test.

Results on Type I error rate in dependence on sample sizeFigure 3
Results on Type I error rate in dependence on sample size. Type I error rate of the Armitage trend test (dotted lines) 
and the Mantel Statistic Using Haplotype Sharing (dashed lines) in the presence of differential genotyping errors (5% in cases, 
no errors in controls) for different sample sizes (100, 200, 300, 400, 500 case-control pairs).

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

marker no.

ty
pe

 I 
er

ro
r

100 cases, 100 controls
200 cases, 200 controls
300 cases, 300 controls
400 cases, 400 controls
500 cases, 500 controls

Mantel
Armitage
Page 8 of 12
(page number not for citation purposes)



BMC Genetics 2009, 10:3 http://www.biomedcentral.com/1471-2156/10/3

Page 9 of 12
(page number not for citation purposes)

Results on empirical powerFigure 4
Results on empirical power. Empirical power of the Armitage trend test and the Mantel statistic Using Haplotype Sharing 
for no (dots), differential (triangulars) and nondifferential (squares) genotype errors incorporated following the unrestricted 
misclassification model for different error rates per locus. With a small error rate of a) 0.2% both pointwise tests achieve a 
power of around 90–100%. With higher error rates of b) 8% or c) 15.6% the power is reduced for nondifferential genotyping 
errors.
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Genotyping errors affect the number of haplotypes and
shift the haplotype distribution towards an increased
number of rare haplotypes. The amount of rare haplo-
types increases with higher genotype error rates. The size
of the study sample is also positively correlated with the
number of additional haplotypes due to genotype errors.
Our results indicate that this large amount of rare haplo-
types is the reason for the inflation of the type I error rate
of the Mantel Statistic Using Haplotype Sharing, since the
statistic is based on all haplotypes, including the many
rare ones. Our results agree with the previously reported
observations of an inflated type I error rate in the presence
of undetectable or sample-specific errors (differential
errors) of former investigations [6-8,29].

The power gain for all three association test statistics for
high and differential genotype errors is coherent in view
of the above mentioned inflated type I error rate. We also
observe a loss in power for nondifferential genotyping
errors, as reported by Heid et al. [28]. On the other hand,
the observation of Moskvina et al. [25] that the type I error
rate of a haplotype-based association statistic is highly
inflated even in the presence of a small genotyping error
rate of less than 1% cannot be confirmed with this simu-
lation. Moskvina et al. [25] draw this conclusion for mark-
ers in high LD and a relatively low minor allele frequency,
whereas the markers we examined comprise haplotypes in
two blocks of high LD and have MAFs of between 0.028
and 0.45. Nevertheless, we are able to confirm the effect
of sample size on the type I error rate in the presence of
genotyping errors, which Moskvina et al. [25] reported.

Table 4: Amount of genotype errors

SNP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of replications with at least 
1 genotype error

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Number of replications with 
deviation from HWE

804 534 830 43 58 122 247 602 64 424 69 108 874 80 437

For each SNP the number of replications where a genotype error occurs in at least one person compared with the number of replications with a 
significant deviation from Hardy-Weinberg Equilibrium (p-value < 0.05). These numbers have been calculated for the scenario of nondifferential 
genotype errors with a mean error rate per locus of 8%.

Results on Type I error rate regarding deviations from HWEFigure 5
Results on Type I error rate regarding deviations from HWE. Type I error rate of the Armitage trend test and the 
Mantel Statistic Using Haplotype Sharing with no (dots) and differential (triangulars) genotyping errors (mean error rate per 
locus 15.6%). The type I error rate is only slightly decreased, when markers not in HWE are excluded from the analysis.
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There has been a lively discussion on whether the exclu-
sion from data analysis of markers that are not in HWE is
an appropriate way to deal with genotyping errors [19-
21]. Our results support the criticism of this approach,
showing that the proportion of genotyping errors detected
by testing for deviation from HWE can be quite low. Espe-
cially, in the case of common alleles, deviation of HWE is
not a sufficient indicator for genotyping errors. We should
point out that the chosen cut-off of p < 0.05 to indicate
significant deviation from HWE is already very strict.
Choosing a less stringent cut-off, as often suggested and
conducted in practice, would further decrease the number
of genotyping errors detected. Differential errors have
been simulated to occur either only in cases or in different
markers for cases and controls, as in most real situations.
Thus, the test of deviation from HWE applied to controls
only is not at all appropriate to detect such differential
errors. Hence, the exclusion of markers not in HWE does
not reduce the inflated type I error rate substantially. Fur-
thermore, the exclusion of markers leads to a general loss
in power, since markers truly associated with disease may
also be eliminated.

We show that in the presence of a realistic amount of gen-
otype errors (with a mean error rate per locus of 0.2%), all
three examined methods to test association in candidate
regions perform well. The Mantel Statistic Using Haplo-
type Sharing and the Armitage trend test hold their point-
wise and the haplo.score its global nominal significance
level of 5%. The power to detect the putative disease locus
or a haplotype specific association remained high with
89%–94%.
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