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Kingdom, 40 Folkhälsan Research Center, Malmska Municipal Health Center and Hospital, Jakobstad, Finland, 41 Department of Medicine, Helsinki University Central

Hospital, University of Helsinki, Helsinki, Finland, 42 Finnish Institute of Occpational Health, Oulu, Finland, 43 Centre National de Genotypage, Evry, France, 44 The William

Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 45 Department of Surgical
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Abstract

To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide
association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We
selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR)
was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689
individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC,
P = 1.9610211) and MSRA (WC, P = 8.961029). A third locus, near LYPLAL1, was associated with WHR in women only
(P = 2.661028). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass,
whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of
central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
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Introduction

The accumulation of abnormal amounts of intra-abdominal fat

(central adiposity) is associated with serious adverse metabolic and

cardiovascular outcomes, including type 2 diabetes (T2D) and

atherosclerotic heart disease [1]. Indeed, because the medical

consequences of increasing fat mass are disproportionately

attributable to the extent of central adiposity, measures of overall

adiposity, such as body mass index (BMI), fail to capture all of this

risk [2,3].

Measures of central and overall adiposity are highly correlated

(BMI has r2,0.9 with waist circumference [WC] and ,0.6 with

waist-hip ratio [WHR], Table S1). WC and WHR are correlated

with more precise measures of intra-abdominal fat measured by

MRI in obese women (r2,0.6 and 0.5, respectively) [4]. Several

lines of evidence indicate that individual variability in patterns of

fat distribution involves local, depot-specific processes, which are

independent of the predominantly neuronal mechanisms that

control overall energy balance. First, anthropometric measures of

central adiposity are highly heritable [5] and, after correcting for

BMI, heritability estimates remain high (,60% for WC and

,45% for WHR) [6]. Second, there are substantial gender-specific

differences in fat distribution, and these appear to reflect genetic

influences [7]. Third, uncommon monogenic syndromes (the

partial lipodystrophies) demonstrate that DNA variants can have

dramatic effects on the development and/or maintenance of

specific regional fat-depots [8].

Efforts to identify common and rare variants influencing BMI

and risk of obesity have emphasized the key role of neuronal

(hypothalamic) regulation of overall adiposity [9–17] but provided

few clues to processes that are specifically responsible for individual

variation in central obesity and fat distribution. Definition of the

mechanisms involved in the regulation of fat distribution in general,

and visceral fat mass in particular, is therefore key to understanding

obesity and its accompanying morbidity and mortality. Given the

challenges associated with the pharmacological manipulation of

hypothalamic processes, the identification of pathways influencing

abdominal fat accumulation would also present novel opportunities

for therapeutic development.

With this in mind, we set out to identify genetic loci influencing

anthropometric measures of central obesity and fat distribution,

namely, WC and WHR. Our meta-analysis of 16 genome wide

association studies (GWAS), followed by large-scale replication

testing, generating a combined sample of up to 118,691 individuals

of European origin, has identified three loci associated with these

critical biomedical traits.

Results/Discussion

Our strategy for identifying common variants influencing

central adiposity is summarized in Figure 1. The study was based

on an initial (‘‘stage 1’’) meta-analysis of GWAS data to identify

SNPs strongly-associated with measures of central adiposity (see

Table S2). We then focused our ‘‘stage 2’’ follow-up efforts on the

subset of those signals for which the strength of the evidence of

association for measures of central adiposity (WC and WHR)

appeared to be substantially stronger than that observed for overall

adiposity and/or height. We reasoned that this subset of signals

would be enriched for variants with preferential influences on

central fat accumulation.

GWAS Meta-Analysis for Anthropometric Measures of
Central Obesity

The stage 1 meta-analysis combined data from 16 GWAS scans

(N = 38,580, all of European ancestry) informative for anthropo-

metric phenotypes (Table S3). We selected two complementary

but related measures of central adiposity for analysis: waist

circumference (WC) and waist-hip ratio (WHR) (Table S4). In

total, 2,573,738 directly typed or imputed SNPs were tested for

association using regression analysis under an additive model (see

Table S5 for details). We conducted a weighted Z-score meta-

analysis combining gender- and sample-specific association P-

values gathered from each contributing study. We also performed

an inverse-variance meta-analysis using regression results (b-

estimates and standard errors) after applying uniform analysis

procedures across all contributing samples. The results of the two

meta-analyses were highly-congruent. Here, we report association

P-values based on the former, as it was the first-completed and was

used to select SNPs for follow-up genotyping. Reported effect-size

estimates derive from the latter (see Methods for further details).

The individual studies as well as the results from the overall

meta-analysis were corrected for residual inflation of the test

statistic using genomic control methods [18]. The overall genomic

control lambda (lGC) in the mixed-gender analysis were

lGC_WC = 1.09 (lGC_WC_1000 = 1.003 [standardised to a sample

size of 1000]) and lGC_WHR = 1.07 (lGC_WC_1000 = 1.002) (see

Text S1) [19]. From these data, we identified a set of 76 SNPs (one

per independent region of association, based on an arbitrary

follow-up P-value threshold of 1025 in preliminary pre-GC

corrected analyses) that showed evidence of association to one or

both of the traits (Figure 2). As might have been expected given the

strong correlations between measures of central adiposity and

BMI, the most significant associations for WC and WHR were

observed for SNPs mapping near FTO (rs1421085, WC,

P = 3.7610220) and MC4R (rs17700144, WC, P = 6.2610211).

These two markers are highly correlated (r2.0.8) with markers

that represent two of the strongest signals for overall adiposity

(Table S10) [9–10,12–14,16–17,20].

In Silico and De Novo Follow-Up
From this initial set of 76 WC- and/or WHR- associated

signals, we sought to enrich for variants with specific impacts on

central adiposity, by identifying a subset of 23 SNPs for which

there was greatest evidence for a disproportionate effect on

central adiposity, as opposed to overall adiposity or height.

These 23 variants all had strong (i.e. P#1025) associations with

Author Summary

Here, we describe a meta-analysis of genome-wide
association data from 38,580 individuals, followed by
large-scale replication (in up to 70,689 individuals)
designed to uncover variants influencing anthropometric
measures of central obesity and fat distribution, namely
waist circumference (WC) and waist–hip ratio (WHR). This
work complements parallel efforts that have been
successful in defining variants impacting overall adiposity
and focuses on the visceral fat accumulation which has
particularly strong relationships to metabolic and cardio-
vascular disease. Our analyses have identified two loci
(TFAP2B and MSRA) associated with WC, and a further
locus, near LYPLAL1, which shows gender-specific relation-
ships with WHR (all to levels of genome-wide significance).
These loci vary in the strength of their associations with
overall adiposity, and LYPLAL1 in particular appears to have
a specific effect on patterns of fat distribution. All in all,
these three loci provide novel insights into human
physiology and the development of obesity.
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WC and/or WHR while displaying only weak evidence of an

association with overall adiposity (BMI, P.0.01) or adult height

(P$0.005) in the stage 1 GWAS meta-analysis data (Table S2).

We also included three variants for reasons of biological

candidacy, even though they did not precisely meet all P-value

threshold criteria (see Table S2). Given the stage 1 sample size of

38,580, the follow-up P-value threshold of 1025 provides 80%

power to detect a per-allele beta of 0.045 (equivalent, for

example, to a per-allele effect on WC of approximately 0.5 cm),

given an additive model and MAF of 20%.

Figure 1. Project outline. We started out with a meta-analysis of GWAS data from 16 cohorts comprising 38,580 individuals informative for WC and
37,670 for WHR. We selected 23 SNPs of our top signals based on the following criteria (Table S2): preliminary stage 1 meta-analysis P-value#1025,
BMI P-value.0.01 and height P-value.561023. We supplemented these 23 independent loci (r2,0.2) SNPs with three additional candidate signals.
Further, we excluded recently reported BMI loci (Table S10) [10,14,16–17]. These 26 SNPs were followed up in our stage 2 samples (N = maximum of
70,689 individuals). Further, we sought to confirm WC signals reaching genome wide significance in the combined analysis of stage 1 and 2 data in
GWA data from the CHARGE consortium (for which WHR was not available). The data from the Rotterdam and ERF cohorts (up to 6,702 individuals)
which were included in both CHARGE and stage 2 data, were counted only once in the overall analysis.
doi:10.1371/journal.pgen.1000508.g001

Meta-Analysis Identifies Adiposity Loci
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For these 26 SNPs, we obtained in silico follow-up data from

another 8 studies with GWAS data (Stage 2a: maximum

N = 13,830 individuals, all European-ancestry), and performed de

novo genotyping in subjects from 20 additional studies (Stage 2b:

maximum N = 56,859, all European-ancestry) (Table S3). Follow-

up analyses were restricted to the precise phenotype(s) (WC and/

or WHR) for which the SNP had been selected in stage 1 making a

total of 30 SNP-phenotype combinations (Tables S2 and S6).

After combining gender- and study-specific measures of

association across all studies (maximum possible N = 109,269:

Tables S2 and S3), we identified three signals reaching genome-

wide levels of significance in the joint analysis of stage 1 and stage

2 data (P,561028, Table 1, Figure 3). In all three instances, the

association was observed with WC. The first (rs987237, chromo-

some 6p12: P = 4.561029) maps near TFAP2B, which encodes

transcription factor activating enhancer-binding protein 2 beta.

The second (rs7826222, chromosome 8p23.1: P = 1.261028)

resides near MSRA, encoding methionine sulfoxide reductase A,

whilst the third (rs6429082, chromosome 1q42.3: P = 2.661028) is

located within the TBCE (tubulin folding cofactor E) gene region.

Confirmation in CHARGE Consortium GWAS Data
As a final stage of confirmation, we analysed genotype data for

rs987237, rs7826222 and rs6429082 made available to us by the

CHARGE consortium, whose members had recently completed a

GWAS meta-analysis of WC in 31,375 individuals (of which up to

6,702 individuals were overlapping with samples from our stage 2

and were removed before the joint meta-analysis).

At TFAP2B, CHARGE analyses revealed directionally-consis-

tent association with WC (rs987237, N = 31,372, P = 3.661024)

resulting in a combined P-value of 1.9610211 (N = 118,691). At

MSRA, genotypes for rs7826222 could only be imputed in a subset

(N = 8,097) of CHARGE samples (this reflects SNP nomenclature

issues rather than data quality – see Text S1). Nonetheless, the

effect in CHARGE was directionally consistent (P = 0.28), and in

Figure 2. Genome-wide association results for GIANT (Stage 1). A. Manhattan plots showing significance of association of all SNPs in the
Stage 1 GIANT meta-analysis with central obesity phenotypes. SNPs are plotted on the x-axis according to their position on each chromosome against
association with central obesity measure (WC or WHR) on the y-axis (shown as 2log10 P-value). SNPs that have been previously reported to show
association with BMI is shown in blue [10,14,16] and the two regions showing strong associations in the overall, non-gender-stratified analyses are
shown in green. Other SNPs taken forward into stage 2 follow-up are indicated in red. B. Quantile-quantile (QQ) plots of SNPs; after Stage 1 GIANT
meta-analysis (black) and after removing any SNPs surrounding the recently reported BMI loci [10,14,16–17] (blue). The grey areas in the QQ plots
represent the 95% confidence intervals around the test statistics and after excluding the recently reported BMI loci [10,14,16–17], there is no
indication of excess of signal.
doi:10.1371/journal.pgen.1000508.g002
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the overall results (N = 80,210) for this SNP, the evidence for

association with WC was improved (P = 8.961029) (Table 1).

In contrast, rs6429082 in TBCE showed no evidence of

association with WC in the full CHARGE data set (N = 31,373,

P = 0.12). Since analysis of the combined data set no longer

reached genome-wide significance (P = 2.961027), further studies

will be required to establish the status of this signal. For the

TFAP2B and MRSA loci, there was no evidence of heterogeneity of

effect size across the various sample sets, and no evidence that the

inclusion of diabetes or coronary artery disease case samples had

any impact on the associations (Table S2).

Gender-Specific Association Analyses
Given the clear gender dimorphism of central obesity, and

evidence that some genetic effects on fat distribution may be gender-

specific [7], we reanalysed the stage 1 GWAS data, looking for

Figure 3. Regional plots of loci highlighted in this study. SNPs are plotted by position on chromosome against association (2log10 p-value)
with central obesity phenotype (WC or WHR) using stage 1 (GWAS meta-analysis) data. In the case of panel (b), analyses are restricted to women only.
In each panel, the SNP with the strongest association based on stage 1 data is denoted with a purple diamond: the P-value attached represents the
final P-value attained across all available data (Table 1). Estimated recombination rates (from HapMap-CEU) are plotted in purple to reflect the local
LD structure on a secondary Y-axis. The SNPs surrounding the most significant SNP (purple diamond) are color-coded (see inset) to reflect their LD
with this SNP (using pair-wise r2 values from HapMap CEU). Genes and the position of exons, as well as the direction of transcription, are shown
below the plots (using data from the UCSC genome browser, genome.ucsc.edu). The grey area marks the extent of the region that includes any SNP
with r2$0.3 relative to the SNP with the strongest stage 1 association signal. Hash marks represent SNP positions on each genotyping array used by
any individual study and also show SNP positions after imputation.
doi:10.1371/journal.pgen.1000508.g003
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effects restricted to males or females only. These analyses revealed a

further locus of interest. SNPs, including rs2605100, within a gene

desert on chromosome 1q41 (138 kb from ZC3H11B and 259 kb

from LYPLAL1, encoding lysophospholipase-like protein 1) had

shown modest evidence for association with WHR in our primary

(both genders included) analysis (P = 3.661026) (Table S2).

However, in gender-specific analyses, this association was clearly

restricted to females (P = 1.361028; males: P = 0.50). When stage 1

and stage 2 data were combined, the female-only signal remained

highly-significant (P = 2.661028) (Table 1) with evidence of effect-

size heterogeneity between genders (P = 1.161023). As the

CHARGE GWAS analyses were restricted to WC, we were unable

to follow-up the LYPLAL1 signal in these data.

Disentangling Effects on Overall and Central Adiposity
We had designed this study to be complementary to equivalent

analyses of overall adiposity (as measured by BMI) conducted on

many of the same samples [10,12–14,16,17]. By focusing on

widely-available anthropometric proxies of central adiposity, and

targeting replication to those signals which, in the GWAS data,

had the most compelling evidence for disproportionate effects on

central adiposity, our aim had been to enrich for variants

influencing regional rather than overall obesity, and thereby

overcome the very strong correlations between these measures.

We were interested therefore in establishing the extent to which

the confirmed, genome-wide associations identified at/near

TFAP2B, MSRA and LYPLAL1 were indeed specific for central

fat accumulation as opposed to being driven by other highly-

correlated anthropometric traits (most notably overall adiposity as

measured by BMI). To evaluate this, we used data from the stage 2

replication samples, from which we can expect to obtain less

biased estimates of the relative effects across anthropometric

phenotypes.

In the case of TFAP2B, these stage 2 data indicated that,

notwithstanding the evidence for discordant effects in the stage 1

data (which led to its selection for follow up), rs987237 showed

strong associations with overall adiposity (P = 7.0610212 for BMI

in stage 2 alone). The association with WC remained only

nominally significant in stage 2 (P = 0.02) after adjustment for

BMI. The TFAP2B rs987237 G allele was weakly associated with

overall fat mass (0.15% difference per-allele [P = 0.02] in 29,316

individuals with bioimpedance data; 0.25% difference per-allele

[P = 0.02] in 13,039 additional individuals with dual energy X-ray

absorptiometry (DXA) measures: Table S7). In the 7,346

Table 1. SNPs with genome-wide significant evidence for association with central adiposity and fat distribution.

Locus
(Chromosomal
Region)

SNP (Effect/
Non-Effect)

Effect allele
frequency (EAF)
% Phenotype Gender Stage N* b (SE)

Z-
score P-value**

Stage 1 38,635 0.038 (0.010) 3.87 1.1061024

Stage 2a 12,369 0.019 (0.017) 1.13 2.5761021

TFAP2B (6p12) rs987237 16.4% WC both Stage 2b 43,016 0.037 (0.009) 4.24 2.2261025

(G/A) Stage 1+2 Combined 94,021 0.035 (0.006) 5.86 4.5461029

CHARGE 31,372 - 3.57 3.6461024

Overall 118,691 - 6.72 1.87610211

Stage 1 36,865 0.045 (0.011) 4.36 1.3261025

Stage 2a 3,406{ 0.023 (0.033) 0.73 4.6361021

MSRA (8p23.1) rs7826222 18.3% WC both Stage 2b 31,841 0.036 (0.011) 3.47 5.3161024

(G/C) Stage 1+2 Combined 72,113 0.040 (0.007) 5.7 1.2061028

CHARGE 8,097{ - 1.09 2.7661021

Overall 80,210 - 5.75 8.8961029

Stage 1 21,397 0.062 (0.011) 5.69 1.3061028

Stage 2a 6,021 0.035 (0.019) 1.74 8.1761022

LYPLAL1 (1q41) rs2605100 69.2% WHR women Stage 2b 20,213 0.018 (0.011) 1.69 9.0661022

(G/A) Stage 1+2 Combined 47,633 0.040 (0.007) 5.57 2.5561028

CHARGE - - - -

Overall - - - -

Alleles: the first allele listed in the parenthesis is the effect allele, for which the allele frequency is given.
Stage 1: data from stage 1 GIANT GWAS meta-analysis.
Stage 2a: data from meta-analysis of in silico studies.
Stage 2b: data from meta-analysis of de novo genotyped studies.
Stage 1+2: data from stage 1 GIANT analyzed with in silico studies (Stage 2a) and de novo genotyped studies (Stage 2b).
Overall: data from meta-analysis of Stage1, 2a, 2b and CHARGE.
*Total sample sizes do not always reflect the sum of component studies due to (a) rounding errors in non-integeric sample sizes arising from the weighting procedure;
(b) overlap, for some markers, of data from the Rotterdam and ERF cohorts (up to 6,702 individuals) which were included in both CHARGE and stage 2 data, but which
are counted only once in the overall analysis.

**P-values: all P-values we report here are two-sided.
{For the MRSA locus, genotypes for rs7826222 were only available for a subset of the CHARGE samples (N = 8,097). This is likely due to the fact that this SNP has been
renamed to rs545854 in NCBI build 36 and was consequently one of the SNPs omitted from HapMap release 22 and therefore is not present in build 36 imputations
based on that release of HapMap.

- Data not available. Effect size estimates and overall WHR results are not available as CHARGE only analysed WC using the weighted Z-score method (see Methods).
doi:10.1371/journal.pgen.1000508.t001
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individuals for which we had DXA information on fat distribution,

there was no apparent association with percent central fat mass

(P = 0.98), although this analysis is underpowered.

These data suggest that the chromosome 6p12 signal exerts its

predominant effect on fat accumulation at multiple sites, a finding

consistent with the known biology of TFAP2B, which is the most

obvious candidate gene in the locus. TFAP2B encodes a

transcription factor preferentially expressed in adipose tissue,

and over-expression of the transcript in 3T3L1-adipocytes leads to

insulin sensitivity via enhanced glucose transport and increased

lipid accumulation [21,22]. Over-expression of TFAP2B also

down-regulates expression of the insulin-sensitizing hormone

adiponectin by direct transcriptional repression [23]. Genetic

variants within TFAP2B have recently been reported to correlate

positively with TFAP2B transcript levels in adipose tissue [24].

Thus, TFAP2B can be added to the growing list of loci influencing

overall adiposity [10,14,16,17]. However, in contrast to most of

the variants previously implicated in monogenic or multifactorial

forms of obesity, which exert their effects on overall adiposity at

the hypothalamic level [10,12–14,16–17], TFAP2B may be

involved in global adipocyte response to positive energy balance.

In contrast, the signal on chromosome 1q41 (near LYPLAL1)

showed relatively modest associations with overall obesity (stage 2,

women only, P = 1.961024 for BMI) and WC (P = 0.01).

Crucially, the strength of the association with WHR was

substantially greater after adjustment for BMI (stage 2, women

only, P = 4.361026). In the limited subset of women (N = 7,228)

for whom direct measures of hip circumference (HC) could be

retrieved, and in whom there was a proportionate signal for WHR

(P = 5.261024), we found no association with HC (P = 0.7) and a

directionally consistent trend of association to WC (P = 0.06).

Whilst these data would suggest that the LYPLAL1 signal does

indeed have a specific effect on fat distribution, our own DXA data

on regional fat distribution are non-contributory (N = 5,455)

(Table S7), and large-scale clinical imaging studies will be required

to explore this further. The obvious candidate within this locus

(although it lies ,259 kb downstream of the most strongly-

associated variant) is LYPLAL1. This gene encodes a lysopho-

spholipase-like 1 protein thought to act as a triglyceride lipase and

reported to be up-regulated in subcutaneous adipose tissue of

obese subjects [25].

Biological connections between the MSRA locus and adiposity

phenotypes are unclear at this stage. The signal near MSRA

showed only weak association with overall adiposity (P = 2.261023

for BMI in stage 2), but the strong association with WC in stage 2

samples became non-significant after BMI-adjustment (P = 0.11).

The main proposed function of MSRA is to repair oxidative

damage to proteins by enzymatic reduction of methionine

sulfoxide. An alternative candidate in the vicinity is TNKS, which

encodes a TRF1-interacting ankyrin-related ADP-ribose polymer-

ase (tankyrase). Tankyrase is a peripheral membrane protein

known to interact with insulin-responsive aminopeptidase (IRAP)

in GLUT4 vesicles in adipocytes [26,27]. Thus TNKS has a

putative role in insulin-regulated glucose disposal into fat and

other tissues.

Variance Explained by the Associated Loci
We estimated the variance in these traits attributable to the loci

discovered using data from the KORA-S4 sample (the largest

population-based sample within stage 2). The explained variance

of WC was estimated to be 0.05% for rs987237 (TFAP2B) and

0.04% for rs7826222 (MSRA). This corresponds to absolute WC

effect sizes of 0.49 and 0.43 cm respectively (as estimated across all

population based samples in stage 2). The SNP near LYPLAL1

(rs2605100) explains 0.02% of the WHR variance in women

(absolute effect size on WHR of 0.0014).

Associations with Adverse Health Consequences
The accumulation of central adiposity has serious adverse

health consequences including hyperlipidemia and increased risks

of T2D. We examined the relationships between adiposity-related

SNPs and these clinical phenotypes using available GWAS meta-

analysis data (Text S1). We found an association between the

WHR-increasing G-allele of rs2605100 (LYPLAL1) and increased

fasting triglycerides (P = 3.961024; Table S8) in data from a

recent GWAS meta-analysis of 14,343 European samples [28].

This is further supported by a parallel GWAS meta-analysis effort

in 19,840 samples where the G allele is similarly associated with

increased triglycerides (P = 0.02) [29]. Using T2D case-control

data from the DIAGRAM consortium [30], we found direction-

ally-consistent, though only weak, associations with T2D-risk,

most obviously at TFAP2B (P = 0.09; Table S9). An association

between other non-HapMap TFAP2B variants and T2D has

previously been reported in Japanese samples [21]. These T2D-

associated variants show modest linkage disequilibrium to our WC

associated SNP in UK samples (IVS1774_G/T and rs987237,

r2 = 0.42; intron_1+2093_(A/C) and rs987237, r2 = 0.67). Thus,

we see some evidence that the variants identified have anticipated

effects on downstream phenotypes, although, as recently demon-

strated for FTO (which has more marked effects on adiposity than

the signals described here), analyses of this type have only limited

power even in extremely large data sets [31].

In summary, by focusing on anthropometric measures of central

obesity, we have identified three loci strongly implicated in the

regulation of human adiposity and fat distribution. The extent of

phenotypic variation explained by these variants is small.

However, the variant or variants at each locus which are directly

involved in influencing these traits are yet to be identified, and

these may have more substantial effects. Even if this is not the case,

effect size has very little bearing on the biological pertinence of

these findings nor the potential impact of perturbing these

pathways through therapeutic modification. Although determina-

tion of the influence of these signals on the development and

maintenance of specific fat depots will require analyses that relate

genetic variation to detailed imaging data in large numbers of

subjects, the loci identified appear to highlight a variety of novel

mechanisms involved in the regulation of adiposity. At this stage, it

is unclear to what extent these same loci influence fat distribution

in other ethnic groups, such as South Asians, in which patterns of

fat distribution, and the relationships between fat distribution and

metabolic disturbance, differ from those in Europeans. The data

are consistent with a model whereby fat mass and distribution are

determined through the concerted action of processes acting at the

level of both the hypothalamus and peripheral fat depots.

Methods

Study Design Summary
Our study began with a genome-wide screen for discovery of

loci potentially associated with two different anthropometric

measures of central adiposity: waist circumference (WC) and

waist-hip-ratio (WHR) [1]. For each of the traits we combined the

summary statistics of 16 genome-wide association studies (GWAS)

in meta-analyses with 38,580 (WC) and 37,670 (WHR) individ-

uals, respectively (stage 1). These studies included nine population-

based cohorts, four case cohorts (three for T2D and one for

Hypertension), and three control cohorts (two originally paired

Meta-Analysis Identifies Adiposity Loci

PLoS Genetics | www.plosgenetics.org 8 June 2009 | Volume 5 | Issue 6 | e1000508



with T2D and one with Breast Cancer) (Table S3). Following the

discovery GWA meta-analysis, follow-up of our top association

signals involved: (a) addition of data for markers of interest from

studies with pre-existing ‘‘in-silico’’ GWA results (stage 2a; eight

cohorts, maximum 13,830 individuals) and (b) ‘‘de novo’’ genotyp-

ing (stage 2b; 20 cohorts, maximum 56,859 individuals) giving a

total of 70,689 (WC) or 61,612 (WHR) follow-up samples

(collectively referred to as stage 2). In addition, genome wide

signals for WC identified after stage 2 were confirmed using data

with The Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) consortium, whose meta-analysis

included eight studies totaling 31,375 individuals. All samples

included in these analyses were of European ancestry. We also

undertook gender specific analysis of the stage 1 GWAS. An

overview of the study design and results is given in Figure 1.

Genome-Wide Association Meta-Analysis (Stage 1)
Studies and phenotypes. All samples in the discovery

cohorts were of European ancestry and detailed information on

each of these studies is provided in Tables S3 and S4. Although we

do not have specific age cut-offs for the individual cohorts the

study participants are all adult (mean age between all

cohorts = 55.7 years, range 31–70.3 years). All individuals

provided informed consent and all studies were approved by

local ethics committees.

Choice of phenotypes. The most appropriate adiposity

measurements for assessing various fat compartments and the

risk of adverse health outcomes is debated. Despite the close

correlation between WC and BMI (Table S1), WC has been

reported to have a BMI-independent impact on risk of death [1].

WHR is less strongly correlated to BMI than WC (Table S1) and is

used as a more specific surrogate for fat distribution [1]. In our

largest population based samples we see (as expected) that

measures of central and overall adiposity are highly-correlated

(BMI has r2,0.9 with WC and ,0.6 WHR, Table S1). When

compared to the gold standard of MRI measures of central

adiposity, WC and WHR are equally well-correlated to central

adiposity (r2,0.6, and 0.5, respectively) as are measures involving

DXA (r2,0.6) [4].

WC and WHR were measured in the individual cohorts using

standard protocols. Recently a multi-centre comparison of WC

measurements at different sites showed that the measurement at

different centres have no substantial influence on the association to

various adverse health outcomes [32]. In line with this we detect

little, if any, heterogeneity at our significant associations, which

indicates that it is unlikely that any differences in measurement

protocols are having a substantial effect on these (Table S2).

Genotypes and imputation. Operational details of each of

the 16 GWAS (including genotyping platforms, quality control

filters for individuals and SNPs, and imputation and data analysis

methods) can be found in Table S5. In summary, stage 1

genotypes were derived using different genotyping platforms;

Affymetrix 500 k, Illumina HumanHap 550, Illumina

HumanCNV-370DUO, Illumina HumanHap300 Duo Infinium,

or Illumina HumanHap 300. To obtain a marker set that was

common to all studies, and to increase overall coverage of the

whole genome, we imputed all SNPs reported in the CEU sample

in HapMap Phase II using imputation algorithms, yielding a

maximum of 2,573,738 million SNPs available for analysis in one

or more studies. Imputations were performed after excluding

samples and SNPs that did not meet the study-specific quality

control criteria. Genotypes were imputed for SNPs not present in

the genome-wide arrays or for those where genotyping had failed

to meet the QC criteria. We used either of two different software

packages for the imputation: MACH [33] (http://www.sph.

umich.edu/csg/abecasis/MACH/index.html) and IMPUTE [34]

(http://www.stats.ox.ac.uk/,marchini/software).

Quality control (QC) criteria for SNPs to be included in the

meta-analysis were minor allele frequency (MAF)$1% and for

imputed SNPs good imputation quality, which was defined as

proper_info$0.4 (for studies analysed with IMPUTE) or rsq-

hat$0.3 (for studies analysed using MACH). The rsq_hat measure

allows us to assess imputation accuracy for markers with many

different allele frequencies. In comparison to filters based on the

accuracy of individual genotype calls, it generally translates into a

more stringent standard for rare SNPs and a more lenient

standard for common SNPs. For intuition on how the measure

performs consider the simple example of region where a particular

SNP always occurs in a specific haplotype background. Further,

assume that the SNP has a frequency of 10% and that the

haplotype has a frequency of 20%. In this example, whenever we

observed this particular haplotype we expect the SNP will be

present ,50% of the time so that .50% imputation accuracy

cannot be achieved for this SNP. On the other hand, knowledge of

the haplotype does provide useful information about the SNP, and

the rsq_hat statistic takes a value of about 0.44 in this setting.

There are examples of association between imputed SNPs with

similar rsq_hat statistics and complex traits that have been

confirmed in follow-up genotyping (e.g. the association between

CETP and HDL cholesterol) [16].

The studies analysed with IMPUTE typically used an

additional filter to exclude imputed genotypes with a posterior

probability ,0.9 for IMPUTE. The proper_info measurement is

interpretable as a value of x (between 0 and 1) means

(approximately) that the amount of statistical information (about

the parameter of interest in the model) at the imputed SNP is

equivalent to perfect genotype data in a sample 1006% as big

as the used sample size.

Empirical assessments show that genotype imputation using

either MACH or IMPUTE provides an effective and accurate

means of evaluating evidence for association at untyped markers

[Li et al, Ann Rev Genom Hum Genet, in press; [35–37].

Furthermore, imputation is typically accurate even for strongly

associated markers (see the Text S1 [16,38]).

Study-specific stage 1 GWAS analysis. The GWAS

analysis was performed by each study applying a standardized

phenotype transformation to WC or WHR, respectively. Subjects

were stratified by gender and the gender-specific rank of either the

raw phenotype data or the residuals of a linear regression of the

raw phenotype on age and age2 were inverse-normal transformed

to yield normally distributed phenotypes. In case-control studies,

cases and controls were analyzed separately. The additive genetic

effect for each genotyped or imputed SNP was estimated using a

linear regression model. For studies where the inverse-normal

transformation was performed on raw phenotypes rather than

residuals of the phenotype, age and age2 covariates were included

in these tests. Some studies used association testing which takes

genotype and imputation uncertainty into account using a missing

data likelihood test implemented using SNPTEST [34] (http://

www.stats.ox.ac.uk/,marchini/software) or by using allele

dosages as the independent variable in the linear regression

model in MACH2QTL [33] (http://www.sph.umich.edu/csg/

abecasis/MACH/download/). To account for the clear gender

dimorphism in these traits, analyses were performed in men and

women separately, apart from the SardiNIA and deCODE studies

for which, due to family relatedness between men and women, a

combined analysis of men and women together was also

performed, which accounted both for relatedness and gender in
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a single test [12]. For these GWAS analyses the software packages

MACH2QTL [33], Merlin [39] and SNPTEST [34] were used.

Meta-analysis of GWAS results. Results from the genome-

wide analyses were meta-analysed by combining the separate

results for men and women (or the combined gender results in the

case of SardiNIA and deCODE) from each study together into one

meta-analysis of overall effect for each phenotype (mixed-gender

analysis).

Two methods were used in parallel for stage 1 meta-analyses.

The first analysis approach we used was the weighted Z-method,

which allows P-values and direction of effect to be combined

independently of b-estimates, allowing for incompatibility between

phenotype units as in the Fisher method [40], but with improved

power and precision over Fisher’s test [41]. In this approach,

study-specific P-values and direction of effect are converted into a

signed Z-statistic. These Z-statistics are then summed with weights

proportional to the square root of the sample size for each study.

The other approach we used for our GWAS meta-analysis

combines study-specific b-estimates using the fixed effect model

[42], using the inverse of the variance of the study-specific b-

estimates to weight the contribution of each study. Both meta-

analysis methods are implemented in METAL (www.sph.umich.

edu/csg/abecasis/metal). Results from the two approaches were

highly congruent in terms of P-values. The P-values we report here

are those derived from the former meta-analysis method, as it was

the first we performed and results using this method were used for

the selection of the SNPs taken forward to follow-up. However,

measures of effect size (as b and standard error (SE)) can only be

obtained from the latter.

Before performing either of these methods for a phenotype,

within-study genomic control (GC) correction was applied to Z-

statistics and to the variance of b-estimates using lambda factors

specific to each study calculated separately for each gender (within-

study GC correction) [18]. The GC-correction approach is based on

the lambda factor, which is computed as the median of all

genome-wide observed test statistics (chi-square statistic) divided

by the expected median of the test statistic under the null

hypothesis of no association (making the assumption that the

number of true associations is very small compared to the millions

of tests performed). For each study-gender combination, the

observed test statistic at each SNP was divided by the lambda

factor to obtain GC corrected results.

After performing each meta-analysis, we again calculated a

lambda factor based on the distribution of overall test statistics, i.e.

from b-estimates and SE based on the fixed effect method or on

the Z-score from the weighted Z-score method. The overall

lambda factors in the mixed-gender analysis were lGC_WC = 1.09

and lGC_WHR = 1.07 for the waist phenotypes. GC correction

based on these overall lambda factors was then also applied (overall

GC correction). We also found it informative to calculate lGC_1000,

which is an adjusted inflation factor for an equivalent study of

1,000 cases and 1,000 controls which can be calculated by

rescaling lGC as previously described [19]. The results for the

mixed-gender analysis for these adjusted inflation factors were

lGC_WC_1000 = 1.003 and lGC_WHR_1000 = 1.002 for the two waist

phenotypes.

Finally, we computed (based on b-estimates and SE) I2 statistics

and Q-statistic P-values as measures of observed heterogeneity

(Table S2).

SNP selection for replication. We aimed to select SNPs for

replication that were enriched for signals of association with

measures of central adiposity relative to overall adiposity or body

size. To this end, we based our selection of markers for replication

on evidence of association with WC or WHR (measures of central

adiposity and fat distribution), while attempting to avoid

associations that were primarily driven by associations with BMI

(as an index of overall adiposity).

First, we identified SNPs with a P-value#1025 in the

preliminary analyses with at least one of the phenotypes. This

set of SNPs was then separated into independent loci by taking

the most significantly associated SNP and eliminating all SNPs

that have a HapMap CEU pair-wise correlation coefficient

(r2).0.2 with that SNP, then proceeding to the next strongly

associated SNP remaining. Seventy-six independent loci each

represented by one main SNP met these criteria in our

preliminary analysis.

Previous experience with genome-wide association studies of

anthropometric traits such as BMI [10,14,16–17,20] and height

[43–46] suggested that large numbers of additional samples would

be required to establish association at levels of genome-wide

significance. We focused our attention on 23 SNPs that showed

strong association with at least one of the waist phenotypes, but

with less significant evidence of association with BMI (p.0.01) and

height (p.0.005), from previous analyses performed of stage 1

GWAS data within the GIANT consortia. These 23 SNPs thus

had significantly stronger evidence of association with the waist

phenotypes in our initial genome wide meta-analysis data than

with BMI or height in previous meta-analyses involving compa-

rable numbers of subjects.

We also added three SNPs that, despite not meeting all the P-

value selection criteria, were near the borderline (Table S2) and

for which biological credentials warranted selection:

(1) rs7970350, which maps very near the HMGA2 (12q15) gene.

In addition to being a strong biological candidate for height,

HMGA2 is a strong biological candidate for obesity; rare

mutations in this gene have previously been shown to alter

body size in mice and humans. Hmga22/2 mice have a

deficiency in fat tissue and resist diet-induced obesity [47].

Furthermore, the expression of a truncated HMGA2 gene

induces gigantism associated with lipomatosis [48]. This

marker is in perfect linkage disequilibrium (LD) (r2 = 1) with a

previously described locus for height (rs1042725) [43,45,46].

Given the low correlation between waist-circumference and

height, as well as the obvious candidacy for both height and

obesity, we hypothesized that this loci might affect body shape

(i.e. with independent effects on height and obesity).

(2) rs11970116, which maps ,90 kb upstream of the hypocretin

(orexin) receptor 2 gene, HCRTR2 (6p11-q11). Orexins and

their receptors are good candidate genes for adiposity as the

orexin pathway has been implicated in the control of energy

homeostasis as well as in narcolepsy and sleep patterns (ref

21). It has also been reported that hypothalamic orexin

promotes appetite and that HCRTR2 signaling confers

resistance to diet-induced features of the metabolic syndrome

through negative energy homeostasis and improved leptin

sensitivity [49–51].

(3) rs987237, which maps to intron 3 of the TFAP2B (6p12) gene

to add a second SNP in the vicinity of this locus in addition to

rs4715215 that was already selected as one of our 23 SNPs for

follow-up (pair wise r2 = 0.236; D9 = 1). While rs4715215 is

located ,145 kb downstream of TFAP2B, rs987237 is located

within the gene transcript (Figure 2).

Thus, including both the 23 SNPs meeting our filtering criteria

and the three additional variants, we targeted a total of 26

independent SNPs for replication in additional samples. As there

were some SNPs for which the stage 1 association met the selection
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criteria for more than one of the waist phenotypes, there were 30

analyses to be performed (see Tables S2 and S6).

Follow-Up in Independent GIANT Consortium Samples
(GIANT Stage 2)

Studies and phenotypes. For our own Stage 2 analysis, we

sought follow-up samples from two independent routes: we

included studies with pre-existing GWAS in-silico data (stage 2a)

as well as de novo genotyping (stage 2b) comprising 27 cohorts for

WC and 21 cohorts for WHR. Among these stage 2 studies, 18

studies were also able to provide data on BMI, weight, and height.

All individuals included in stage 2 studies were of European

ancestry and provided informed consent. All studies were

approved by the local ethics committees. Study-specific

information on study design and participants, phenotype means,

and experimental detail for all stage 2 studies are included in

Tables S3, S4, S5.

Additional phenotypes. In addition to data on the waist

phenotypes (WC and WHR) and other relevant anthropometric

traits (BMI, weight, and height), we also had some cohorts from

both stage 1 and stage 2 which were able to provide bioimpedance

data (BIA) and/or Dual energy X-ray absorptiometry (DXA). In

stage 1, three studies were informative for BIA (maximum

N = 9,852), and two (maximum N = 2,308) had data on DXA.

In stage 2, a total of seven cohorts had BIA (maximum N = 20,934)

and six had DXA data (maximum N = 12,954). Thus, the total

sample size for BIA and DXA was 30,786 or 15,262, respectively.

Genotypes. Genotypes were obtained from stage 2a studies,

in which each SNP was either directly genotyped or imputed from

genome-wide data using the CEU HapMap reference panel, and

from stage 2b using de novo genotyping undertaken using a variety

of platforms including Biotrove, Centaurus, KASPar, Sequenom,

Sequenom iPLEX, and TaqMan-based assays.

Genotyping platforms, calling algorithms, quality control before

imputation, imputation methods, and analysis software used were

all study-specific (see Table S5 for detailed information on each

study). The explicit number of follow-up SNPs genotyped in each

study and whether a proxy SNP was used is summarized in Table

S6.

Study-specific stage 2 association analyses. To analyze

the two waist phenotypes in the stage 2 studies, we used the same

analysis model as in stage 1 (inverse-normal transformed WC or

WHR adjusted for age and age2 analyzed in a linear regression, all

performed separately in men and women).

Additional analyses were performed - all separately in men and

women and all using an additive genetic effect model - to obtain:

N waist phenotype association independent from overall obesity

(using inverse-normal transformed WC or WHR adjusted for

age, age2 and BMI)

N raw estimates of effect sizes for WC and WHR (using

untransformed WC or WHR, adjusted for age and age2)

N raw estimates of BMI effect sizes (using untransformed BMI

adjusted for age and age2)

N association estimates in studies with % fat phenotypes (using

untransformed % total fat BIA, % total fat DXA, % central

fat DXA adjusted for age and age2).

GIANT Stage 2 meta-analyses. We performed a meta-

analysis for the phenotypes of primary interest (WC and WHR) of

all stage 2 studies using the same methods as in stage 1 (pooled P-

values using the weighted Z-score method; pooled b- and SE

estimates using the fixed effect method; as well as heterogeneity

statistics).

Meta-analysis of all GIANT data (stage 1+stage 2). We

combined GIANT stage 1 and stage 2 samples to derive a

combined meta-analysis of all studies, performed in the same

manner as in stage 1 and stage 2 analyses. Results from stage 1 and

stage 2 studies were combined into one N-way meta-analysis.

Five of the 26 loci that were selected for follow up show nominal

evidence of association with both WC and WHR (TFAP2B

(rs987237) was one of these). However, for none of these loci did

the association with WHR reach genome-wide significance in the

overall, combined analysis (Table S2).

GIANT Gender-specific meta-analysis (stage 1, stage 2,

and stage 1+2). The waist phenotypes exhibit strong gender-

differences and evidence for some genetic effects on fat distribution

[7], so we performed additional meta-analyses of our stage 1

GWAS in which men and women were analyzed separately. We

also tested whether the effect estimate resulting from the gender-

specific fixed effect meta-analysis differed significantly between

men and women by applying a t-test comparing b-effect and SE

estimates in men with the b-effect and SE estimates in women.

The gender-specific meta-analyses were performed on stage 1,

stage 2, and combined stage 1+2 data.

Additional Replication through Further Follow-Up Using
In Silico Results from the CHARGE Consortium

Further, our genome wide signals for WC identified after stage 2

were confirmed using data from the ‘‘Cohorts for Heart and Aging

Research in Genomic Epidemiology’’ (CHARGE) consortium,

which members had performed a GWAS meta-analysis of 31,375

samples for WC (Table 1).

Studies, phenotypes, and genotypes. The CHARGE

consortium consisted of 31,375 individuals from 8 studies

informative for WC, though two studies overlapped with our

stage 2a studies (the Erasmus Rucphen Family Study (ERF) and

the Rotterdam Study (ERGO), (up to 6,702 individuals) which

were included in both CHARGE and stage 2 data, but which are

counted only once in the overall meta-analysis.

Meta-analysis of stage 1+2 results with CHARGE

data. We combined the association results for WC from the

GIANT and CHARGE samples to derive a combined meta-

analysis of all studies (Figure 1). This analysis was performed using

the METAL software for pooling of the P-values based on the

weighted Z-score method, using the P-values calculated in our

stage 1+2 meta-analysis (excluding ERF and ERGO) along with

the P-values from CHARGE. For a more detailed description of

the CHARGE consortium studies and their analysis methods,

([Fox et al. submitted to PLOS Genetics (2008)] and [http://web.

chargeconsortium.com/]).

For the MSRA locus, genotypes for rs7826222 were only

available for a subset of the CHARGE samples (N = 8,097). This is

due to the fact that this SNP has been renamed to rs545854 in

NCBI build 36 and was consequently one of the SNPs omitted

from HapMap release 22 and therefore is not present in build 36

imputations based on that release of HapMap. Nonetheless, the

effect of rs7826222 in CHARGE was directionally-consistent

(P = 0.28), and CHARGE data available in larger sample size

(N = 31,372) for two moderately-good proxies (rs1876511 and

rs613080, both r2 = 0.76 with rs7826222/rs545854) and both

show some support (both had directionally-consistent effect-sizes

and P = 0.078) with the other findings.
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