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Uppsala University, Uppsala, Sweden, 5 MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh, United Kingdom, 6 Centre for Population Health Sciences, University

of Edinburgh, Edinburgh, United Kingdom, 7 Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia, 8 Gen-info Ltd, Zagreb, Croatia, 9 Institute for

Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany, 10 Department of Epidemiology, Erasmus University Medical Center, Rotterdam,
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Abstract

Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their
metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants
within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease
phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic
disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic b-cell
failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate
phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the
general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide
polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and
glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five
diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant
corrected p-values ranging down to 9.08610266. The strongest associations were observed in or near 7 genes functionally
involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3,
and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes
involved in sphingolipid-metabolizing pathways also demonstrate association (p = 1024 or less). Circulating concentrations of
several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be
tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.
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Introduction

Sphingolipids are essential components of plasma membranes

and endosomes and are believed to play critical roles in cell surface

protection, protein and lipid transport and sorting, and cellular

signalling cascades. They are known to have roles in both health

and disease [1,2]. Several rare monogenic diseases associated with

sphingolipid biosynthesis and turnover have been identified such

as metachromatic leukodystrophy and GM1- and GM2-ganglio-

sidosis, Niemann-Pick, Gaucher, Krabbe, Fabry, Farber, Tay-

Sachs and Sandhoff diseases [3]. Defective biosynthesis due to

mutations in genes involved in sphingolipid metabolism (e.g.serine

palmitoyl transferase (SPTLC1) [4]; ceroid-lipofuscinosis, neuronal

8 (CLN8) [5]; and ceramide synthase (LASS1) [6]) can also lead to

disease. Moreover, natural fungal inhibitors of ceramide synthase

can result in a broad spectrum of effects including equine

leucoencephalomalacia, porcine pulmonary oedema syndrome

and liver cancer in rats [7], demonstrating the wide range of

processes that include cell proliferation, differentiation and

apoptosis underpinned by sphingolipid metabolism. Identifying

common genetic variants that influence the balance between

individual sphingolipid concentrations represents an important

step towards understanding the contribution of sphingolipids to

common human disease. To achieve this goal, we conducted a

genome-wide association study (GWAS) on plasma levels of 33

major sphingolipid species (24 sphingomyelins and 9 ceramides) in

five European populations, both within and across populations.

The traits were analysed by individual species (sphingomyelins

(SM), dihydrosphingomyelins (Dih SM), ceramides (Cer) and

glucosylceramides (GluCer)) or aggregated into groups of species

with similar characteristics (e.g. unsaturated ceramides), and

expressed as absolute concentrations or as molar percentages

within sphingolipid classes (mol%). In addition we examined 43

matched metabolite ratios between the traits as a surrogate for

enzyme activity [8] in separate clusters designed to examine

sphingolipid metabolism (11 ratios), desaturation (16 ratios) and

elongation (16 ratios). All traits displayed substantial heritabilities

in that much of the observed variation in sphingolipid levels could

be attributed to genetic variation among individuals in each

population.

Results

The GWAS for single species and matched metabolite ratios

revealed a total of 32 SNPs in five distinct loci reaching genome-

wide significance (p values ranging down to 9.08610266) (Table 1,

Figure 1 and Figure 2, and Table S1 and Table S3). The direction

and magnitude of the observed effect sizes for the 22 variants

identified in the analysis of single species are summarized in

Table 1 with full details in Table S1. For three of the regions

(chromosomal regions 4p12, 14q23.2 and 19p13.2), p values

reached genome-wide significance in the largest cohort (South

Tyrol), and the effect was replicated in the other populations. For

two additional loci (11q12.3 and 20p12.1), signals bordered on

genome-wide significance in South Tyrol alone, were consistent

between all 5 populations and reached genome-wide significance

in the meta-analysis. In the single species analysis, the strongest

associations for three of the loci (11q12.3, 14q23.2 and 19p13.2)

were found with sphingomyelins and dihydrosphingomyelins. The

4p12 locus showed the strongest association with serum gluco-

sylceramides and the 20p12.1 locus showed the strongest

association with serum ceramide concentrations. Table S2 shows

the p-values for the individual SNPs when included in a multiple

regression model, and the fraction of single sphingolipid variance

explained by sex, age and all SNPs in the model together. Taken

together, the SNPs explain up to 10.1% of the population

variation in each trait. Ratios of matched (substrate/product) pairs

have been shown to reduce variation in the dataset and increase

power of association several orders of magnitude [8]. Analysis of

43 matched metabolite ratios (Table S3) indeed increased power of

association up to 10 orders of magnitude on some of the 22

variants above, and revealed an additional 10 SNPs over the same

7 genes reaching statistical significance (see Table S3). Surprisingly

no signals from new genes reached genome-wide significance,

highlighting the fact that across the 5 cohorts analysed here, the 7

genes identified are the major genes associated with circulating

sphingolipid concentrations. Among the 32 significant individual

SNPs (Table S4) variants in LASS4 explain up to 7.5% of the

variance in some ratios (i.e. in SM16:0/SM18:0), SGPP1 variants

explain up to 12.7% of the variance (i.e in SM14:0/SM16:0),

FADS1–3 variants explain up to 3.5% of the variance (e.g. in

SM16:0/SM16:1), SPTLC3 variants explain up to 4.9% of the

variance (e.g. in SM14:0/SM16:0 and SM24:0/Cer24:0), and

ATP10D variants up to 4.2% of GluCer/Cer variance. Combined

effects of several genes (i.e. SPTLC3 and SGPP1) explains up to

14.2% of the variance in medium chain SM ratios (SM14:0/

SM16:0) and, in combination with LASS4, up to 11.2% of the

variance in long-chain sphingomyelin ratios (SM22:0/SM24:0).

All SNPs within the associated chromosomal regions are located

within or are in linkage disequilibrium (LD) with genes that encode

enzymes involved in sphingolipid biosynthesis or intracellular

transport (Figure 2). The ATPase, class IV, type 10D (ATP10D)

gene, located at chromosome 4p12, encodes a putative serine-

phospholipid (phosphatidylserine, ceramide) translocase [9]. Three

SNPs at this locus showed genome-wide significant associations

with glucosylceramides (C16:0, C24:1) (Table 1, Table S1), with

an additional five variants revealed in the ratio analysis (Table S3).

SNP rs10938494 gave the strongest association in the single

species analysis (p-values of 1.6861029 in South Tyrol and

8.03610219 in the joint analysis), and was among the strongest

association in the ratio analysis (p = 3.04610216) along with

rs2351791 (p = 6.58610217).

Three fatty-acid desaturase genes (FADS1, 2 and 3) are located

adjacent to one another in a cluster at the 11q12.3 locus. The

FADS1–3 genes encode enzymes that regulate the desaturation of

fatty acids by the introduction of double bonds between defined

carbons of the fatty acyl chain. Seven SNPs at this locus,

distributed in and around the three genes, reached statistical

significance in the single species analysis for sphingomyelin 16:1

levels in the joint analysis, with p-values ranging from 2.99610211

(rs174449, close to FADS3) to 6.60610213 (rs1000778, in FADS3)

(Table 1). The ratio analysis revealed an additional SNP at this

locus within the FADS3 gene (rs174450, Table S3), and improved

association results for other SNPs several orders of magnitude (e.g.

rs1000778 p = 1.29610215). Fatty acids are built into ceramides by

Genetic Variants Controlling Sphingolipids
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the ceramide synthases (e.g. LASS4). Unsaturated ceramides can be

synthesized exclusively by the introduction of unsaturated fatty

acids into the sphingosine/sphinganine chain. The pivotal role of

FADS1–3 in the synthesis of unsaturated ceramides is confirmed by

the strong associations of SNPs in this cluster to the mono-

unsaturated sphingomyelins 16:1, 18:1 and 20:1, which are the

end-products of the ceramide biosynthesis pathway (Table 1,

Table S1), and the ratios between these and their respective

unsaturated precursors (Table S3). Previous studies of sphingolipid

metabolites and poly-unsaturated fatty acids (PUFA) have

demonstrated associations to SNPs, including rs174537, over the

FADS1 and FADS2 genes in several populations [8,10,11].

The sphingosine-1-phosphate phosphohydrolase 1 gene (SGPP1)

at the 14q23.2 locus belongs to the super-family of lipid

phosphatases that catalyze the generation of sphingosine and,

together with irreversible cleavage by sphingosine-1-phosphate

(S1P)-lyase, strongly influences the pathway of S1P to ceramide

(Figure 3). Six SNPs in and around this gene demonstrate the most

significant associations with circulating sphingomyelin C14–C16/

C22–C24 and dihydrosphingomyelin concentrations (Table 1) in

the single species analysis, with a further two SNPs revealed in the

ratio analysis. SNP rs7157785 showed the strongest association

with sphingomyelin 14:0 relative content (molar percentage:

mol%) with genome-wide significant p-values in all five popula-

tions, particularly in the South Tyrol population (p = 2.53610228)

and joint analysis (p = 9.08610266), and demonstrated the most

significant association in the ratio analysis. Enhanced SGPP1

activity leads to elevated ceramide levels by shifting the

stochiometric balance of SGPP1/S1P-lyase towards sphingosine

and ceramide production.

Five SNPs at the 19p13.2 locus showed some of the strongest

associations with sphingolipids and all lie within LASS4, the gene

encoding LAG1 longevity assurance homologue 4. In the single

species analysis SNP rs7258249 showed the highest genome-wide

significant association with sphingomyelin 18:0 mol% (South

Tyrol p = 1.04610215 and joint analysis p = 2.28610227). Several

LASS4 SNPs showed statistically significant association with the

sphingomyelin species C18 to C20 and with ceramide C20:0

(Table 1 and Table S1). In the ratio analysis, however, associations

strengthened by several orders of magnitude (p value) over those

with these SNPs, with rs1466448 demonstrating the most

statistically significant association (p = 4.05610235). LASS family

members, six of which have been identified in mammals (LASS1–

6), are de novo ceramide synthases (CerS) that synthesize

dihydroceramide from sphinganine and fatty acid (Figure 3).

Moreover, LASS enzymes catalyze the re-synthesis of ceramide

and phytoceramide from sphingosine and phytosphingosine

respectively, which are cleavage products of alkaline ceramidase

activity in endoplasmic reticulum (ER) membranes.

The 20p12.1 locus contains the serine palmitoyltransferase long

chain base subunit 3 gene (SPTLC3) encoding a functional subunit

of the SPT enzyme-complex that catalyzes the first and rate-

limiting step of de novo sphingolipid synthesis. One SNP (rs680379)

demonstrated association for unsaturated ceramide in the South

Tyrol population alone (p = 1.77610207) and was genome-wide

significant in the joint analysis (p = 8.24610215). Significant

association was observed also with C16 to C24 ceramides and

the sphingomyelins 16:1 and 17:0 (Table 1 and Table S1). The

ratio analysis strengthened association at this variant

(p = 3.3610220 for the metabolite ratio SM24:0/Cer24:0) and

revealed two further significant variants at this locus (rs3848751

and rs6078866, Table S3).

As matched metabolite ratios can serve as a proxy for enzyme

activity [8], in a complementary candidate gene approach, we

investigated association signals in our combined single species and

ratio datasets at 624 SNPs within or near 40 genes that encode

enzymes involved in sphingolipid metabolism, in order to identify

the most promising variants within these genes for further analysis.

Of these, a total of 70 variants in or near 23 of the genes

demonstrate association p values of 1024 or less (Table S5).

Sex and age adjusted single sphingolipids species displayed

strong phenotypic correlations with circulating plasma lipoproteins

especially with total cholesterol or LDL-cholesterol (Table S6, e.g.

between the sum of saturated sphingomyelin species and total

cholesterol: 0.788/0.717/0.794/0.733/0.773 in respectively

NPHS/ERF/SOUTH TYROL/CROATIA/ORKNEY; or

SM16:1 and total cholesterol 0.737/0.631/0.671/0.6/0.638). This

is in agreement with recent lipid profiling of lipoprotein fractions,

showing higher proportions of sphingomyelin and ceramides in the

LDL fraction [12]. However, among the GWAS hits uncovered in

this analysis, only the FADS1–3 cluster overlaps with those

reported in large meta-analysis of circulating serum lipoproteins

levels (strongest with total and LDL-cholesterol levels) [13].

Several of the variants reported here display suggestive associa-

tions with classical lipids in the EUROSPAN cohorts (Table S7).

All eight SNPs in the FADS1–3 cluster associate with HDL-

cholesterol levels (age-sex adjusted p values between 0.06 and

0.0041) similar to previous observations [8]. Interestingly, the sex-

specific age-adjusted results show that these associations seem

driven by the association found in males (lowest p = 0.0037 at

rs174546). Association with HDL-cholesterol in males is also seen

with SNPs in ATP10D (rs2351791, p = 0.01) and SPTLC3

(rs3848751, p = 0.0047). SNPs at ATP10D also associate with

LDL-cholesterol, albeit weakly in the total population (rs469463,

p = 0.034). In the males only, variants at LASS4 (rs28133,

p = 0.043) and SPTLC3 (rs3848751, p = 0.022 and rs6078866,

p = 0.02) also associate weakly with LDL-cholesterol levels. Five

variants in FADS1–3 and two in ATP10D associate with

triglyceride levels, with lower p values in males than in the whole

group (p values from 0.017 to 0.009 in FADS1–3 and 0.0071 for

Author Summary

Although several rare monogenic diseases are caused by
defects in enzymes involved in sphingolipid biosynthesis
and metabolism, little is known about the major variants
that control the circulating levels of these important
bioactive molecules. As well as being essential compo-
nents of plasma membranes and endosomes, sphingolip-
ids play critical roles in cell surface protection, protein and
lipid transport and sorting, and cellular signalling cascades.
Experimental evidence supports a role for sphingolipids in
several common complex chronic metabolic, cardiovascu-
lar, or neurological disease processes. Therefore, sphingo-
lipids represent novel and important intermediate pheno-
types for genetic analysis, and discovering the genetic
variants that influence their circulating concentrations is
an important step towards understanding how the genetic
control of sphingolipids might contribute to common
human disease. We have identified 32 variants in 7 genes
that have a strong effect on the circulating plasma levels of
33 distinct sphingolipids, and 43 matched metabolite
ratios. In a series of 3 German MI studies, we see
association with MI for variants in 3 of the genes tested.
Further cardiovascular, metabolic, neurological, and psy-
chiatric disease associations can be tested with the
variants described here, which may identify additional
disease risk and potentially useful therapeutic targets.

Genetic Variants Controlling Sphingolipids
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Table 1. Variants Significantly Associated with Circulating Sphingolipid Concentrations.

Chr Region SNP Effect Allele Position
Lipid Species With Significant
Associations Within the Region South Tyrol (n = 1097) Swedish (n = 656)

P-Value range P-Value range

4p12 (ATP10D) rs10938494 A 47258205 GluCer16:0, GluCer24:1, GluCer 6.761028–3.3610213 7.361022–4.761024

4p12 (ATP10D) rs2351791 A 47277144 GluCer16:0, GluCer24:1, GluCer 2.861026–2.9610212 0.039–1.161024

4p12 (ATP10D) rs4695267 G 47367058 GluCer16:0, GluCer24:1, GluCer 0.009–5.661027 0.013–2.061023

11q12.3 (FADS) rs174537 A 61309256 SM 16:1, 18:1, 20:1 0.019–3.661024 0.028–2.761024

11q12.3 (FADS) rs102275 G 61314379 SM 16:1, 18:1, 20:1 0.013–2.261024 0.028–2.661024

11q12.3 (FADS) rs174546 A 61326406 SM 16:1, 18:1, 20:1 0.011–2.961024 0.028–2.761024

11q12.3 (FADS) rs174556 A 61337211 SM 16:1, 18:1, 20:1 7.761023–8.261025 0.01–1.961024

11q12.3 (FADS) rs1535 G 61354548 SM 16:1, 18:1, 20:1 8.761023–6.861024 0.028–2.161023

11q12.3 (FADS) rs174449 G 61396955 SM 16:1, 18:1, 20:1 6.961023–3.961025 0.36–2.261024

11q12.3 (FADS) rs1000778 A 61411881 SM 16:1, 18:1, 20:1 5.361023–6.361027 0.11–0.014

14q23.2 (SGPP1) rs4902242 G 63299842 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.15–1.7610220 0.35–4.9610210

14q23.2 (SGPP1) rs7157785 A 63305309 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.02–2.5610228 0.79–4.3610211

14q23.2 (SGPP1) rs1959033 A 63405339 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.24–1.8610210 0.97–5.661023

14q23.2 (SGPP1) rs4459477 A 63415943 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.18–8.1610216 0.47–7.661026

14q23.2 (SGPP1) rs12889954 G 63457221 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.014–6.1610221 0.54–7.361024

14q23.2 (SGPP1) rs12881815 A 63674348 SM14:0, 15:0, 23:0, 24:0, 22:1, 24:1,
dihSM16:0, 18:0

0.94–7.661023 0.90–3.361027

19p13.2 (LASS4) rs7258249 G 8177721 SM18:0, 18:1, 20:0, 20:1, Cer20:0 0.056–1.0610215 0.27–8.961024

19p13.2 (LASS4) rs11666866 A 8191607 SM18:0, 18:1, 20:0, 20:1, Cer20:0 0.22–7.0610211 0.35–4.061023

19p13.2 (LASS4) rs1466448 C 8195519 SM18:0, 18:1, 20:0, 20:1, Cer20:0 0.79–4.2610212 0.037–1.461025

19p13.2 (LASS4) rs2967625 A 8204411 SM18:0, 18:1, 20:0, 20:1, Cer20:0 0.65–3.161029 0.50–9.161024

19p13.2 (LASS4) rs28133 A 8233502 SM18:0, 18:1, 20:0, 20:1, Cer20:0 0.051–4.761025 0.86–3.861024

20p12.1 (SPTLC3) rs680379 A 12917400 Cer16:0, 22:0, 23:0, 24:0, 24:1, CerSat,
CerUnsat, SM17:0, SM16:1

3.561024–1.861027 0.49–0.035

Orkney (n = 719) Croatia (n = 720) Erf (n = 918) Joint (n = 4110) Effect Direction Effect Direction

P-Value range P-Value range P-Value range P-Value range Positive Beta Negative Beta

0.12–6.361023 0.12–1.461023 3.561024–5.761026 6.3610212–8.0610219 GluCer16:0, GluCer24:1, GluCer

0.22–0.014 0.33–0.01 1.261025–4.461028 1.5610211–4.6610218 GluCer16:0, GluCer24:1, GluCer

0.18–0.04 0.087–0.01 3.361024–8.161026 4.961028–2.4610212 GluCer16:0, GluCer24:1, GluCer

0.051–3.361023 0.24–3.261024 0.065–1.661024 2.461027–9.0610212 SM 16:1, 18:1, 20:1

0.073–2.861023 0.19–8.261024 0.11–4.861024 3.061027–2.2610211 SM 16:1, 18:1, 20:1

0.073–2.861023 0.18–7.361024 0.078–1.661024 2.461027–2.0610211 SM 16:1, 18:1, 20:1

9.261023–4.961024 0.28–3.561024 0.082–5.661025 8.961025–3.7610212 SM 16:1, 18:1, 20:1

0.054–3.961023 0.28–3.561024 0.067–7.561024 4.261027–1.6610211 SM 16:1, 18:1, 20:1

0.21–2.961024 0.41–3.161024 0.12–0.014 3.361027–3.0610211 SM 16:1, 18:1, 20:1

0.04–6.261025 0.05–3.061023 0.015–4.161023 6.661027–6.6610213 SM 16:1, 18:1, 20:1

0.37–1.5610210 0.93–1.9610213 0.34–8.061027 0.053–2.3610234 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0, 18:0

0.66–2.9610215 0.31–5.8610211 0.60–5.261028 4.961023–9.1610266 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0, 18:0

0.75–8.161024 0.17–7.861023 0.76–7.261023 1.461023–6.6610213 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0, 18:0

0.99–4.761025 0.69–1.261027 0.63–6.361025 0.33–8.3610229 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0, 18:0

0.69–4.161026 0.53–6.461029 0.29–2.461027 4.161023–2.9610233 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0, 18:0

0.99–0.026 0.98–1.761027 0.73–7.861023 0.83–7.7610210 SM14:0, 15:0, 22:1 SM23:0, 24:0, 24:1, dihSM16:0,
18:0

0.94–9.661024 0.001–2.261027 0.011–9.761027 1.161029–2.3610227 SM18:0, 18:1, 20:0, 20:1, Cer20:0

0.21–1.661027 0.77–6.361025 0.68–1.161023 7.861026–6.7610221 SM18:0, 18:1, 20:0, 20:1, Cer20:0
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rs17462424 in ATP10D). Association of FADS variants with

triglyceride levels has also been observed in other populations

[8]. As previously highlighted [8], the p values for association with

the sphingolipids species were orders of magnitude stronger than

with these classical lipids.

Given the reported associations to classical lipids and cardiovas-

cular disease with variants at the FADS1–3 locus [10,13,14], and the

evidence from functional studies of a role for sphingolipids in

atherosclerotic plaque formation and lipotoxic cardiomyopathy

[15], we looked in silico in a series of three age- and sex-adjusted

GWAS datasets of German myocardial infarction (MI) case-control

studies (Ger MIFS I [16] Ger MIFS II [17] and Ger MIFS III

(KORA), unpublished) for evidence of association with the major

variants associating with sphingolipid concentrations. Variants

within three of the genes (ATP10D, FADS3 and SPTLC3) associate

with MI in one or more of the studies (Table 2). The protective odds

ratios observed for variants in ATP10D and SPTLC3 are on alleles

correlating positively with higher metabolite/lower ceramide ratios

(i.e. GluCer/Cer and SM/Cer), in support of evidence that

increased enzyme/transporter activity that lowers ceramide levels

might alleviate the pro-apoptotic effects seen with higher ceramide

levels in cardiomyocytes [18]. As previously hypothesised, carriers of

FADS variants that are associated with higher desaturase activity

may be prone to a proinflammatory response favoring atheroscle-

rotic vascular damage [14].

Discussion

Direct experimental evidence indicates a role for sphingolipids

in several common complex chronic disease processes including

Orkney (n = 719) Croatia (n = 720) Erf (n = 918) Joint (n = 4110) Effect Direction Effect Direction

P-Value range P-Value range P-Value range P-Value range Positive Beta Negative Beta

0.028–7.561027 0.51–1.361028 0.67–5.861024 1.861025–4.8610225 SM18:0, 18:1, 20:0, 20:1, Cer20:0

0.48–5.661024 0.80–0.022 0.14–5.261023 1.261024–3.4610215 SM18:0, 18:1, 20:0, 20:1, Cer20:0

0.31–3.761025 0.78–1.061023 0.74–0.053 0.031–4.9610211 SM18:0, 18:1, 20:0, 20:1, Cer20:0

0.10–5.261025 0.045–3.661024 0.03–8.361028 2.261028–8.2610215 Cer22:0, 23:0, 24:0, 24:1, CerSat,
CerUnsat, SM17:0

Cer16:0,SM16:1

22 variants in 7 genes located in 5 distinct chromosomal locations demonstrate genome-wide significant association signals with several measured single sphingolipid
species (listed). The p-value ranges for significant signals across the sphingolipid species are shown for each population separately and jointly, and the direction of the
association effects, as derived from the standardized regression coefficient (b), is summarized. Detailed results for each species along with specific b values are shown in
Table S1. Abbreviations sphingomyelin (SM), dihydrosphingomyelin (dihSM), ceramide (Cer) and glucosylceramide (GluCer) unsaturated ceramides (CerUnsat), saturated
ceramides (CerSat). In the nomenclature (e.g. SM18:0), the number before the colon refers to length of the carbon chain and the number after the colon to the number
of double bonds in the chain. Additional variants uncovered in the matched metabolite ratio analysis can be found in Table S3. Alleles correspond to Illumina TOP
notation.
doi:10.1371/journal.pgen.1000672.t001

Table 1. Cont.

Figure 1. Genome-wide association results for sphingolipids. Manhattan plots show the association signals (2log10 of p-value) on the y-axis
versus SNPs according to their position in the genome on the x-axis (build 36). The most interesting candidate genes are highlighted.
doi:10.1371/journal.pgen.1000672.g001
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atherosclerotic plaque formation, myocardial infarction (MI),

cardiomyopathy, pancreatic beta cell failure, insulin resistance

and type 2 diabetes mellitus (T2D) [15]. Until now, the genetic

variants that influence circulating sphingolipid concentrations in

the general population have been characterized in relatively small

cohorts [8]. Here we identified genetic variation with a significant

effect on the biosynthesis, metabolism or intracellular trafficking of

some of the major sphingolipids species in a large diverse group of

European population samples. The SNPs showing association with

circulating sphingolipids explain up to 10.1% of the population

variation in each trait and 14.2% of some matched ratios (Tables

S2 and Table S4). Four of the five loci identified contain genes

encoding proteins that are either responsible for de novo ceramide

synthesis or for ceramide re-synthesis from sphingosine/sphinga-

nine-phosphates or both (SPTLC3, LASS4, FADS1–3 and SGPP1).

Increases in all of these enzymatic activities are predicted to

elevate the ‘‘ceramide-pool’’. The associations are observed not

only with ceramides, but also with sphingomyelins, indicating that

a considerable proportion of ceramide is converted into the large

and more stable ‘‘sphingomyelin-pool’’. None of the genes

involved in ceramide degradation or ceramide-related signaling

is genome-wide significantly associated with the traits analyzed,

indicating the primary role of genes related to ceramide

production in the genetic control of ceramide levels. Of these

four loci, the FADS1–3 gene cluster has been the most frequently

to be reported linked with disease in recent literature. Variants

within in this region have been associated with cardiovascular

disease and classic lipid risk factors such as cholesterol levels

[10,13,14]. Reported variants demonstrating association in these

reports (rs174547, rs174570, rs174537 and rs174546) are within

the FADS1 and FADS2 genes, but expression studies indicate

complex regulation in this region, with the FADS1 SNP rs174547

showing correlation with expression of both FADS1 and FADS3

genes [19], while the FADS1 SNP rs174546 correlates with FADS1

but not FADS2 expression [10]. Our strongest associations with

both sphingolipid levels and MI are in or nearest the FADS3 gene,

with variants showing less marked association with cholesterol

levels than that observed with variants over FADS1 and FADS2

genes (Table S7). It is known that sphingomyelin and ceramides

can modulate the atherogenic potential of LDL [20]. Further

functional studies will be necessary to determine whether the

active mechanism is through FADS3 alone, or in concert with

FADS1, FADS2 or both.

Neurological phenotypes associated with FADS2 include

attention-deficit/hyperactivity disorder [21] and the moderation

of breastfeeding effects on IQ [22]. Little is published regarding

disease association with variants at the other four major loci

described here. However, a reported association between

Figure 2. Detailed views of the 5 genomic regions demonstrating significant signals. (A–E) show the 5 regions individually with a
representation of all genes near the significant signals and the underlying linkage disequilibrium block structure in the HapMap CEU data (from the
UCSC genome browser). Thresholds for significance are indicated by a line.
doi:10.1371/journal.pgen.1000672.g002
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expression levels of SGPP1 with Schizophrenia [23] along with

changes in SPTLC2 (with variants identified in our candidate SNP

search –Table S4) and ASAH1, highlights the importance of testing

variants in these genes with multiple neurological and psychiatric

diseases. Additional neurological associations with candidate genes

listed in Table S4 include SGPL1 in Alzheimer’s disease [24] and

GBA with Parkinson’s disease and dementia with Lewy bodies

[25,26]. The wider possible involvement of genes within pathways

of ceramide metabolism in Lewy body disease has also been

recently reviewed [27].

The fifth locus contains ATP10D, a cation transport ATPase (P-

type) type IV subfamily member. The type IV subfamily is thought

to be an important regulator of intracellular serine-phospholipid

trafficking however the exact function or transport specificity of

ATP10D has not yet been described [9]. A novel functional finding

of this study is the specificity of the association of ATP10D SNPs to

glucosylceramides (among the species tested so far), which provides

the first evidence for the functional involvement of ATP10D in

intracellular transport of specific species of ceramide (Figure 3).

Impaired function of ATP10D may therefore lead to enhanced

exposure of ceramide to glucosyltransferases, forming higher

concentrations of glycosylceramides that are released into the

plasma compartment or may elevate serum glucosylceramide

concentrations by impaired transport of glycosylceramide to the

trans Golgi network. Mutations of ATP10D (C57BL/6J(B6)) in

mice result in low HDL concentrations and these mice develop

severe obesity, hyperglycaemia and hyperinsulinaemia when fed

on a high-fat diet [28]. Based on the mouse model, increased

circulating glucosylceramides in connection with ATP10D function

would be one plausible mechanism of contributing to weight gain

and early insulin resistance. From the novel association of SNPs in

ATP10D to MI (Table 2) seen in German studies, further

investigation of the specific role of glucosylceramides in MI and

other cardiovascular diseases is warranted.

Thus, sphingolipids play a role in pathological processes leading

to common complex diseases, and identification of genetic variants

that influence the balance between individual sphingolipid species

is an important first step into dissecting out the genetic

components in such processes. Associations between the SNPs

identified in this study, some of which have a strong effect on the

circulating plasma levels, and complex metabolic, cardiovascular,

inflammatory and neurological diseases in which a role for a

sphingolipid-dependent mechanism is implicated can now be

investigated. Modulation of sphingolipids in vivo has demonstrated

that this may be a successful preventative strategy for diseases in

which sphingolipids play a role, lending hope that, once such

disease contributions are identified, successful therapeutic regimes

may subsequently be identified.

Materials and Methods

Ethics statement
All studies were approved by the appropriate Research Ethics

Committees. The Northern Swedish Population Health Study

(NSPHS) was approved by the local ethics committee at the

University of Uppsala (Regionala Etikprövningsnämnden, Up-

psala). The ORCADES study was approved by the NHS Orkney

Research Ethics Committee and the North of Scotland REC. The

Vis study was approved by the ethics committee of the medical

faculty in Zagreb and the Multi-Centre Research Ethics

Committee for Scotland. The ERF study was approved by the

Erasmus institutional medical-ethics committee in Rotterdam, The

Netherlands. The MICROS study was approved by the ethical

committee of the Autonomous Province of Bolzano. For the

German MI studies (GerMIFS-I,-II and –III(KORA), local ethics

committees approved the studies and written informed conset

obtained as published previously.

Study populations
The ERF study is a family-based study which includes over

3000 participants descending from 22 couples living in the

Rucphen region in the 19th century. All descendants were invited

to visit the clinical research center in the region where they were

examined in person and where blood was drawn (fasting). Height

Figure 3. Major sphingolipid synthesis and trafficking pathways. Biosynthetic pathways are shown along with the position in these
pathways of enzymes encoded by the genes giving statistically significant associations for circulating sphingolipid concentrations.
doi:10.1371/journal.pgen.1000672.g003
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and weight were measured for each participant. All participants

filled out questionnaire on risk factors, including smoking. The 800

participants included in the lipidomics studies consisted of the first

series of participants.

The MICROS study is part of the genomic health care program

‘GenNova’ and was carried out in three villages of the Val Venosta

on the populations of Stelvio, Vallelunga and Martello. This study

was an extensive survey carried out in South Tyrol (Italy) in the

period 2001–2003. An extensive description of the study is

available elsewhere [29]. Briefly, study participants were volun-

teers from three isolated villages located in the Italian Alps, in a

German-speaking region bordering with Austria and Switzerland.

Due to geographical, historical and political reasons, the entire

region experienced a prolonged period of isolation from

surrounding populations. Information on the health status of

participants was collected through a standardized questionnaire.

Laboratory data were obtained from standard blood analyses.

Genotyping was performed on just under 1400 participants with

1334 available for analysis after data cleaning. All participants

were included in the lipidomics studies.

The Swedish samples are part of the Northern Swedish

Population Health Study (NSPHS) representing a family-based

population study including a comprehensive health investigation

and collection of data on family structure, lifestyle, diet, medical

history and samples for laboratory analyses. Samples were

collected from the northern part of the Swedish mountain region

(County of Norrbotten, Parish of Karesuando). Historic popula-

tion accounts show that there has been little immigration or other

dramatic population changes in this area during the last 200 years.

The Orkney Complex Disease Study (ORCADES) is an

ongoing family-based, cross-sectional study in the isolated Scottish

archipelago of Orkney. Genetic diversity in this population is

decreased compared to Mainland Scotland, consistent with the

high levels of endogamy historically. Data for participants aged 18

to 100 years, from a subgroup of ten islands, were used for this

analysis. Fasting blood samples were collected and over 200

health-related phenotypes and environmental exposures were

measured in each individual. All participants gave informed

consent and the study was approved by Research Ethics

Committees in Orkney and Aberdeen.

The Vis study includes a 986 unselected Croatians, aged 18–93

years, who were recruited into the study during 2003 and 2004

from the villages of Vis and Komiza on the Dalmatian island of

Vis [30,31]. The settlements on Vis island have unique population

histories and have preserved their isolation from other villages and

from the outside world for centuries. Participants were phenotyped

for 450 disease-related quantitative traits. Biochemical and

physiological measurements were performed, detailed genealogies

reconstructed, questionnaire of lifestyle and environmental

exposures collected, and blood samples and lymphocytes extracted

and stored for further analyses. Samples in all studies were taken in

the fasting state.

Lipidomics
Lipids were quantified by electrospray ionization tandem mass

spectrometry (ESI-MS/MS) in positive ion mode as described

previously [32,33]. EDTA plasma (serum for South Tyrol)

samples were quantified upon lipid extraction by direct flow

injection analysis using the analytical setup described by Liebisch

et al. [33]. A precursor ion scan of m/z 184 specific for

phosphocholine containing lipids was used for phosphatidylcho-

line (PC) and sphingomyelin (SM) [33]. Ceramide and hex-

osylceramide were analyzed using a fragment ion of m/z 264

[32]. For each lipid class two non-naturally occurring internal

standards were added and quantification was achieved by

calibration lines generated by addition of naturally occurring

lipid species to plasma. Deisotoping and data analysis for all lipid

classes was performed by self programmed Excel Macros

according to the principles described previously [33]. Nomen-

clature of sphingomyelin species is based on the assumption that

d18:1 (dihydroxy 18:1 sphingosine) is the main base of plasma

sphingomyelin species, where the first number refers to the

number of carbon atoms in the chain and the second number to

the number of double bonds in the chain.

Genotyping
DNA samples were genotyped according to the manufacturer’s

instructions on Illumina Infinium HumanHap300v2 (except for

samples from Vis for which version 1 was used) or Hu-

manCNV370v1 SNP bead microarrays. Four populations have

318,237 SNP markers in common that are distributed across the

human genome, with Vis samples having 311,398 SNPs in

common with the other populations. Samples with a call rate

below 97% were excluded from the analysis. Sphingolipid

measurements were available for analysis following quality control

assessment for 4110 study participants.

Statistical analysis
Genome-wide association analysis was performed using the

GenABEL package in R [34]. A score test was used to test for

association between the age- and sex-adjusted residuals of

sphingolipid traits (both as absolute concentrations and as relative

content of the total sphingolipid pool: mol%) and SNP genotypes

using an additive model. The Genomic Control procedure [35]

was used to account for under-estimation of the standard errors of

effects, which occurs because of pedigree structure present in the

data [36]. For the most interesting results and the species ratios, we

re-analysed the data using ‘‘mmscore’’ function, a score test for

family-based association [37], as implemented in GenABEL. The

relationship matrix used in analysis was estimated using genomic

data with ‘‘ibs’’ (option weight = ‘‘freq’’) function of GenABEL.

This analysis, accounting for pedigree structure in an exact

manner, allowed for unbiased estimation of the effects of the

genetic variants (adjusted for age and sex). The results from all

cohorts were combined into a fixed-effects meta-analysis with

reciprocal weighting on standard errors of the effect-size estimates,

using MetABEL (http://mga.bionet.nsc.ru/,yurii/ABEL/).

Thresholds for genome wide significance were set at a p value of

less than 1.5761027 (0.05/318,237 SNPs) for the individual

populations. For the overall meta-analysis we chose to use the

conservative threshold of 7.261028 [38]. Since many of the traits

tested and especially the ratios demonstrate high degrees of

correlation, introducing a suitable statistical correction the

multiple testing of the 76 correlated traits would be complex.

Since Bonferroni correction (unsuitable in this instance) would

lower thresholds to values between p = 1029 to 10210, and since all

five genomic regions have variants with p values ,10210, we

report the age-sex corrected p values alone. The threshold for

replication of significant results from one population in other

cohorts was set at a p-value less than 0.05 divided by the number of

SNPs tested. All significant variants reported are in Hardy-

Weinberg Equilibrium, and effect directions are consistent across

all five populations.

Supporting Information

Table S1 Variants significantly associated with circulating

sphingolipid concentrations. 22 variants in 5 distinct chromosomal
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locations demonstrate genome-wide significant association signals

with several measured sphingolipid species (listed). The p-values

for significant signals across the sphingolipid species are shown for

each population separately and jointly, and the direction of the

association effects, as derived from the standardized regression

coefficient (b), is provided. Abbreviations, sphingomyelin (SM),

dihydrosphingomyelin (dihSM), ceramide (Cer) and glucosylcer-

amide (GluCer) unsaturated ceramides (CerUnsat), saturated

ceramides (CerSat). In the nomenclature (e.g. GluCer18:0), the

number before the colon refers to length of the carbon chain and

the number after the colon to the number of double bonds in the

chain. Where mol% is used, the measure refers to the relative

content of the measured species in the total sphingolipid pool, and

is independent of other associated lipid species. Sex-specific age

adjusted analyses provided little additional information, unlike the

case of the ratio analyses (see Table S3), and is not shown.

Found at: doi:10.1371/journal.pgen.1000672.s001 (0.28 MB

XLS)

Table S2 Variance in circulating sphingolipid concentrations.

The upper part of the table shows p-values (NS - not significant p-

value .0.05) estimated using a multiple regression model. The

bottom part of the table, shows the fraction of variance of the traits

explained by sex, age and all the significant SNPs from the

regression model.

Found at: doi:10.1371/journal.pgen.1000672.s002 (0.06 MB

XLS)

Table S3 Variants significantly associated with matched metab-

olite sphingolipid ratios. 32 variants in 5 distinct chromosomal

locations demonstrate genome-wide significant association signals

with matched metabolite ratios designed to probe metabolism (11

ratios), desaturation (16 ratios) and elongation (16 ratios) - details

of the ratios are provided in the table. The p-values for significant

signals across the sphingolipid species are shown for each

population separately and jointly, and the direction of the

association effects, as derived from the standardized regression

coefficient (b), is provided. Sex-specific age adjusted results are also

displayed, as these provided additional information with the ratio

analysis that was more significant than the sex-specific effects seen

in the analysis of the single species (not shown).

Found at: doi:10.1371/journal.pgen.1000672.s003 (0.09 MB

XLS)

Table S4 Proportion of variance in matched shpingolipid

metabolite ratios. Proportion of the variance in age and sex

adjusted sphingolipid ratio explained by SNP variants that were

significant in the GWA metanalysis of the 5 EUROSPAN

populations. General linear mixed models were fitted using the

polygenic function of the R statistical package ‘‘GenABEL’’ and

variances explained drawn from comparing residual variances

between models fitting in the SNP tested as fixed effects and

models not fitting them in. Single SNP analysis were carried out

for all candidate SNP, and multiple SNP for traits influenced by

multiple candidate regions (in this case the top SNP for each

region was selected). Shaded cells indicate SNP with GWA

significant association in the meta-analysis for the trait analysed.

Found at: doi:10.1371/journal.pgen.1000672.s004 (0.03 MB

XLS)

Table S5 Signals over SNPs within candidate sphingolipid

genes. Using a dataset of 624 SNPs within or near 40 genes

encoding enzymes and transporters involved in pathways of

sphingolipid metabolism, association results were extracted from

both the single sphingolipid GWAS runs, or those with the

matched metabolite ratios. In total 70 variants within and around

23 of these genes demonstrate p values of 1024 or less, making

them interesting targets for further study.

Found at: doi:10.1371/journal.pgen.1000672.s005 (0.09 MB

XLS)

Table S6 Table of phenotypic correlations between traits.

Pearson correlations of age and sex adjusted measures were

calculated and only significant values (2 tailed p-values , = 0.05)

represented. Traits included all sphingolipids species, some

anthropometric measures: weight, bmi and height, blood pressure

(sbp = systolic blood pressure, dbp = diastolic blood pressure),and

classical circulating lipoproteins species tc = total cholesterol,

ldl = LDL cholesterol, hdl = HDL-cholesterol, tri = Triglycerides.

Found at: doi:10.1371/journal.pgen.1000672.s006 (0.40 MB

XLS)

Table S7 Association signals for sphingolipid SNPs with classical

lipids. Signals were extracted from age-sex adjusted or age

adjusted sex specific GWAS scans across the EUROSPAN

populations for the traits: HDL- and LDL-cholesterol, Triglycer-

ides (tri) and Total Cholesterol (tc).

Found at: doi:10.1371/journal.pgen.1000672.s007 (0.26 MB

XLS)
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