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Abstract

Protein arginine methylation is a novel posttranslational modification regulating a diversity of
cellular processes, including protein-protein interaction, signal transduction, or histone function. It
has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and
metabolic products originating from protein arginine methylation have been suggested to serve as
biomarkers in cardiovascular and pulmonary diseases.

Protein arginine methylation is performed by a class of enzymes called protein arginine
methyltransferases (PRMT), which specifically methylate protein-incorporated arginine residues to
generate protein-incorporated monomethylarginine (MMA), symmetric dimethylarginine (SDMA),
or asymmetric dimethylarginine (ADMA). Upon proteolytic cleavage of arginine-methylated
proteins, free intracellular MMA, SDMA, or ADMA is generated, which, upon secretion into the
extracellular space (including plasma), directly affects the methylarginine concentration in the
plasma. Free methylarginines are cleared from the body by renal excretion or hepatic metabolism.
In addition, MMA and ADMA, but not SDMA, can be degraded via a class of intracellular enzymes
called dimethylarginine dimethylaminohydrolases (DDAH).

ADMA and MMA are endogenous inhibitors of nitric oxide synthases (NOS) and ADMA has been
suggested to serve as a biomarker of endothelial dysfunction in cardiovascular diseases. This view
has now been extended to the idea that, in addition to serum ADMA, the amount of free, as well
as protein-incorporated, intracellular ADMA influences pulmonary cell function and determines the
development of chronic lung diseases, including pulmonary arterial hypertension (PAH) or
pulmonary fibrosis. This review will present and discuss the recent findings of dysregulated arginine
methylation in chronic lung disease. We will highlight novel directions for future investigations
evaluating the functional contribution of arginine methylation in lung homeostasis and disease with
the outlook that modifying PRMT or DDAH activity presents a novel therapeutic option for the
treatment of chronic lung disease.

Page 1 of 7

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19178698
http://www.biomedcentral.com/1471-2466/9/5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Pulmonary Medicine 2009, 9:5

A brief introduction to protein arginine
methylation

During the last 40 years, arginine methylation has been
extensively studied in prokaryotes and eukaryotes, reveal-
ing a pivotal role of this posttranslational modification in
the regulation of a number of cellular processes. Protein
arginine methylation is involved in the modulation of
transcription, RNA metabolism, or protein-protein inter-
action, thereby controlling cellular differentiation, prolif-
eration, survival, or apoptosis [1,2].

The methylation of protein arginine residues is catalyzed
by a family of intracellular enzymes termed protein
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arginine methyltransferases (PRMT) [2] (Figure 1). In
mammalian cells, these enzymes have been classified into
type I (PRMT1, 3, 4, 6, and 8) and type Il PRMT (PRMTS5,
7, and FBXO11), depending on their specific catalytic
activity. In addition, PRMT2 was identified as a methyl-
transferase most probably belonging to type 1 enzymes,
but its methyltransferase activity has yet not been une-
quivocally characterized [2]. Both types of PRMT, how-
ever, catalyze the formation of mono-methylarginine
(MMA) from L-arginine (L-Arg). In a second step, type I
PRMT produce asymmetric dimethylarginine (ADMA),
while type II PRMT form symmetric dimethylarginine
(SDMA) [1,2]. After proteolytic degradation of methyl-
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Methylarginine metabolism. Protein arginine methylation is performed by a class of enzymes termed protein arginine
methyltransferases (PRMT), which specifically methylate protein-incorporated L-arginine (L-Arg) residues to generate protein-
incorporated monomethylarginine (L-MMA), asymmetric dimethylarginine (ADMA), or symmetric dimethylarginine (SDMA).
Upon proteolytic cleavage of arginine-methylated proteins, free intracellular MMA, ADMA, or SDMA are generated. Free L-
Arg can be metabolized by arginases to L-ornithine and urea, or by nitric oxide synthases (NOS) to NO and L-citrulline. Free
methylarginines can also be released to the extracellular space by cationic amino acid transporters (CAT) to induce distinct
biological effects, undergo hepatic metabolism, or renal excretion. MMA and ADMA, but not SDMA can be converted to L-cit-
rulline and mono- or diamines by a class of intracellular enzymes called dimethylarginine dimethylaminohydrolases (DDAH).
Most importantly, MMA and ADMA, but not SDMA, act as potent endogenous inhibitors of NOS enzymes.
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ated intracellular proteins, free MMA, SDMA, or ADMA
can be released from cells (Figure 1). Thus, protein degra-
dation represents the major source of free intracellular
methylarginines, as there is currently no evidence that free
L-Arg can be methylated [3,4]. In addition, intracellular
proteolysis of methylated proteins also significantly con-
tributes to interstitial and plasma ADMA levels, which are
further controlled by degradation and cellular export/
import of methylarginines. Released ADMA can also be
taken up by other cells via the cationic amino acid (y*)
transporters, which are widely expressed in mammalian
cells [5](Figure 1).

Free methylarginines are cleared from the body by renal
excretion and hepatic metabolism [3,4]. In addition,
MMA and ADMA, but not SDMA, can be degraded to cit-
rulline and mono- or dimethylamines, respectively, by
dimethylarginine dimethylaminohydrolases (DDAH) [3].
To date, two DDAH isoforms have been cloned and char-
acterized, termed DDAH1 and DDAH?2 [3]. Alternatively,
ADMA can also be converted to a-keto valeric acid by
alanine:glyoxylate aminotransferase 2 [6], although the
influence of this pathway on total ADMA metabolism has
not been extensively studied thus far. Of interest, the
demethylation/clearance of methylarginines is restricted
to free methylarginines, as a theoretically possible
demethylation of protein-incorporated, methylated L-Arg
residues in situ has yet not been demonstrated. It should
be noted, however, that the conversion of protein-incor-
porated MMA to citrulline by peptidylarginine deiminase
4 was recently demonstrated, which prevented histone
methylation by PRMT 1 and 4 [7,8]. This may influence
protein methylation directly, as MMA deimination will
decrease the amount of protein-incorporated MMA that is
available for dimethylation by PRMT, but the relevance of
protein deimination of protein-incorporated MMA by
PAD enzymes has also been challenged lately [9,10].
Finally, free SDMA has been described to be catabolized in
vivo when injected intraperitoneally into rats, although
the enzymes involved have thus far not been identified
[11].

ADMA has been detected in urine, plasma, cerebrospinal
and bronchoalveolar lavage (BAL) fluids, and various
types of tissues [3,4,12,13]. Specific methylation of pro-
tein-incorporated L-Arg residues was originally described
in 1968 [14], but the key finding that ADMA is a potent
inhibitor of all three nitric oxide synthase (NOS) isoforms
(nNOS, iNOS, and eNOS), resulting in impaired NO pro-
duction in vitro and in vivo, was only reported in 1992 by
Vallance et al. [15]. NO is a well-known vasodilator that
essentially controls a diverse range of pulmonary func-
tions, such as macrophage activity, pulmonary artery
vasodilation, or bronchoconstriction [16]. ADMA may
therefore control pulmonary cell functions either via

http://www.biomedcentral.com/1471-2466/9/5

direct effects on gene expression and protein function, as
recently shown in an elegant study [17], or via inhibition
of NOS and subsequently altered NO generation. Further-
more, the lung generates a significant amount of ADMA
itself, and as such may directly contribute to interstitial
and plasma ADMA levels [18], further suggesting that dys-
regulated ADMA metabolism in the lung may trigger, ini-
tiate, or perpetuate chronic lung diseases, such as
pulmonary arterial hypertension (PAH), idiopathic pul-
monary fibrosis (IPF), asthma, or chronic obstructive pul-
monary disease (COPD). In the following, we will outline
the current evidence of dysregulated protein arginine
methylation or ADMA levels in specific lung diseases.

Arginine methylation in pulmonary arterial
hypertension

Pulmonary arterial hypertension (PAH) is a fatal syn-
drome characterized by an elevated blood pressure in the
pulmonary circulation, due to increased resistance of pul-
monary arterioles [19]. The pathophysiology of PAH
includes endothelial dysfunction and pulmonary arterial
smooth muscle cell (PASMC) hypertrophy and prolifera-
tion [20]. Elevated ADMA concentrations have been
detected in the plasma of patients with idiopathic (I)PAH
[21-23], chronic thromboembolic pulmonary hyperten-
sion (CTEPH) [24], or PAH related to sickle cell disease
[25] or systemic sclerosis [26], suggesting a strong associ-
ation of circulating methylarginine levels with PAH
pathogenesis. A recent study by Xu et al.,, however,
detected increased arginase activity in the serum of PAH
patients, whereas serum ADMA levels did not differ
between PAH patients and healthy individuals, suggesting
that increased arginase activity was responsible for
endothelial dysfunction observed in PAH [27]. This is of
particular interest, as arginase directly metabolizes free L-
Arg. Increased arginase activity as well as ADMA content
was subsequently confirmed in pulmonary arterial
endothelial cells in the rat model of monocrotaline-
induced pulmonary hypertension [28].

The investigation of animal models of PAH, using e.g.
chronic hypoxia or the pyrrolizidine alkaloid monocrota-
line to induce PAH in piglets, mice, or rats, have largely
detected increased plasma ADMA during the develop-
ment of experimental PAH, but have thus far suggested
different mechanisms responsible for this increase. While
some groups have reported decreased DDAH1 expression
along with increased ADMA levels [28,29], others have
detected decreased DDAH2 in this condition [22,30].
Most importantly, the analysis of lung tissues obtained
from IPAH or control patients have demonstrated an
impaired expression of DDAH2, but not DDAH1, in IPAH
[22]. Furthermore, PRMT expression was found to be
upregulated in mice exposed to chronic hypoxia, resulting
in increased ADMA tissue levels and a decreased L-Arg/
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ADMA ratio, thereby supporting an important role of
PRMT-mediated ADMA generation in hypoxia-induced
PAH [31].

In sum, disrupted methylarginine metabolism most likely
impairs vascular homeostasis in PAH, but it remains
unclear, which DDAH or PRMT isoforms control ADMA
tissue and plasma levels under pathological conditions.
Further, the relative contributions of serum, interstitial, or
pulmonary ADMA levels to PAH pathogenesis remain
unclear, as comparative investigations are still lacking.
Data obtained in transgenic mice with manipulation of
DDAH expression have thus far supported a major role for
DDAHI1 in serum and tissue ADMA homeostasis. Forced
overexpression of DDAH-1 in transgenic mice resulted a
2-fold reduction in plasma ADMA levels and decreased
blood pressure [32], while the loss of DDAH-1 activity by
homologous recombination in mice led to accumulation
of circulating ADMA and increased blood pressure [33]. In
contrast, forced overexpression of DDAH?2 led only to a
20% reduction in circulating ADMA, but no reduction in
systemic blood pressure [34].

Arginine methylation in pulmonary fibrosis
Compared with the aforementioned available data on
ADMA and vascular remodeling in PAH, much less is
known about the role of methylated arginines in intersti-
tial remodeling of the lung, e. g. in idiopathic pulmonary
fibrosis (IPF). A growing body of evidence, however, sug-
gests that arginine methylation and ADMA metabolism
may be involved in the progression of IPF, a lethal disor-
der of major concern due to its unresolved pathogenesis
and limited responsiveness to currently available thera-
pies [35]. The hallmark lesions of IPF are fibroblast fodi,
which are sites featuring o-smooth muscle actin (aSMA)-
positive, activated (myo)fibroblasts that synthesize and
deposit a collagen-rich extracellular matrix [36]. Fibrob-
last foci occur in subepithelial layers adjacent to areas of
alveolar epithelial cell injury, suggesting that altered epi-
thelial-mesenchymal crosstalk contributes to the pathobi-
ology of IPF. Indeed, it is well accepted that repetitive
alveolar epithelial cell injury and subsequent repair, in the
presence or absence of local inflammation, represents a
key pathogenic mechanism in IPF [35,36]. This leads to
aberrant growth factor activation and perpetuation of
fibrotic transformation. In addition to the well-described
cytokines and growth factors interleukin-4, -13, -21, wing-
less, or transforming growth factor-f, components of the
renin-angiotensin-aldosterone system including angi-
otensin II (ANGII) have recently been identified as impor-
tant regulators of fibrosis [37,38].

Interestingly, ANGII infusions increased plasma ADMA
levels and caused perivascular and interstitial renal fibro-
sis [34,39]. Overexpression of DDAH1/2 protected from
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ANG II-induced ADMA increases and interstitial fibrosis
[34,39]. These data suggest an delicate causal relationship
between ANGII-ADMA and the development of perivas-
cular and interstitial fibrosis, which has to be further
explored in human IPF in future studies. Most impor-
tantly, direct infusion of ADMA resulted in elevated colla-
gen deposition in mouse lungs and enhanced arginase
activity [40], a feature of experimental lung fibrosis [41].
In this context, it is important to note that preterm infants
requiring mechanical ventilation exhibited higher ADMA
plasma levels than preterm infants who did not require
mechanical ventilation [42]. As such, lung damage as evi-
dent in preterm infants under mechanical ventilation may
lead to increased ADMA release via enhanced proteolysis
and cell death. It is therefore reasonable to state that ele-
vated serum/alveolar/pulmonary ADMA levels lead to
vascular and/or interstitial remodeling in the lung, in the
presence or absence of inflammation (Figure 2), but the
causal relationship between lung injury, ADMA metabo-
lism, and remodelling remains to be dissected in detail in
future studies.

Arginine methylation in COPD

It has recently been suggested that NO metabolites, reac-
tive oxygen species, and nitrosothiols represent novel tar-
gets for the prevention and treatment of chronic
inflammatory airway diseases including asthma and
chronic obstructive pulmonary disease (COPD) [43,44].
In contrast, little is known about methylarginine metabo-
lism in the pathogenesis of these disorders. Since cigarette
smoke represents the main risk factor for COPD, several
studies have investigated the relationship between ciga-
rette smoke and ADMA levels, with conflicting results.
While some studies have found decreased ADMA levels in
smokers compared with non-smokers [45,46], others
have detected increased ADMA levels in smokers, in the
absence or presence of triple vessel coronary artery disease
[47,48].

A similar divergence is evident in in vitro studies using cig-
arette smoke extract (CSE)-treated cell cultures. The expo-
sure of human endothelial cells to 10% CSE decreased
intracellular ADMA concentration via increased DDAH2
expression [46], while others have reported increased
ADMA levels under such conditions [48]. In the absence
of direct ADMA measurements in COPD or asthma
patients, the available data therefore suggests that ciga-
rette smoke is an important regulator of ADMA synthesis,
but more conclusive in vivo and in vitro evidence is needed
to assess whether COPD or asthma, or pathogenetic
aspects thereof, are associated with altered ADMA levels.

The relevance of plasma ADMA levels
A significant debate about the contribution of plasma
ADMA to the regulation of NOS-dependent NO produc-
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Abnormal protein arginine methylation triggers pathological changes in the lung. In the normal lung, methyl-
arginines are generated via intracellular proteolysis and released to the intraalveolar, interstitial, and intravascular compart-
ments of the lung. Pathological tissue injury, in particular alveolar epithelial cell injuries, leads to an increase of reactive oxygen
species (ROS), growth factor production. This perpetuates epithelial cell damage and leads to increases of alveolar ADMA via
increased proteolysis. Secondary pathological events of lung tissue injury include, but are not restricted to, fibroproliferation
and deposition of extracellular matrix, as well as vasoconstriction and pulmonary artery smooth muscle cell (PASMC) prolifer-

ation. ATI; type | alveolar epithelial cell, ATII; type Il alveolar epithelial cell type Il, EC; endothelial cell.

tion has recently been initiated. In pathological condi-
tions including PH, plasma ADMA levels have been
shown to increase to 0.53 + 0.15 uM (from 0.36 + 0.05 pM
in controls) and 1.06 + 0.06 uM (from 0.48 + 0.04 uM) in
studies by Kielstein et al. and Pullamsetti et al. [22,23],
respectively. Taking into consideration the physiological
plasma levels of L-Arg of 100 uM, the normal plasma
ADMA concentrations of 0.42 + 0.06 puM [18] must
approach approximately 10 uM to elicit a significant effect
on NO production and physiological functions thereof in
the plasma [49]. It is therefore highly unlikely that plasma
ADMA levels significantly contribute to decreased serum
NO bioavailability observed in PAH or other cardiovascu-
lar disorders. In contrast, intracellular ADMA levels may
significantly influence NOS activity under pathological
conditions, as these have been shown to increase from 5.8
+1.2uM t0 21.6 + 4.7 uM, for example, in carotid arteries
subjected to balloon-induced vascular injury [49].
Increased intracellular ADMA levels may be particularly
relevant to lung diseases, as the lung exhibits one of the
highest baseline concentrations of intracellular ADMA
[18]. Of note, small changes in plasma ADMA may serve
as indicators of greater changes in intracellular ADMA.
Therefore, further studies should closely investigate alter-
ations of the intracellular methylarginine content in

chronic lung disease, a factor that is clearly more likely to
modify NO generation. In contrast, altered plasma ADMA
levels may rather be a marker of disrupted methylarginine
metabolism in selected intracellular compartments rather
than a direct cause of structural or functional abnormali-
ties in the cardiovascular system.

Outlook

In conclusion, dysregulated arginine methylation has
now been shown to contribute to the pathogenesis of sev-
eral pulmonary disorders, in experimental animal models
as well as human disease. Causal relationships between
dysregulated arginine methylation and the initiation, pro-
gression, or therapy of lung disease, however, remain to
be dissected. Future investigations of arginine methyla-
tion dynamics in these diseases will therefore have to
address, among others, the following questions:

1) Which tissues are the source of increased plasma
ADMA levels in chronic lung disease?

2) Which specific cell types are the major contributors
within a given tissue to altered plasma ADMA levels under
pathophysiological conditions?
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3) Can dysregulated arginine methylation itself lead to
altered lung structure and function?

Future studies will undoubtedly shed light on the relative
importance of protein arginine methylation and highlight
cellular events that are controlled by posttranslational
modification of L-Arg residues under physiological and
pathophysiological scenarios. The regulation of methyl-
arginine metabolism by modulating cellular PRMT or
DDAH activity will therefore likely present a novel thera-
peutic option for the treatment of chronic lung diseases
such as PAH, IPF, asthma, or COPD.
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