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Abstract. Nanoparticles exhibit properties different from those of the same bulk materials 
leading to unknown toxicological implications that have evoked concern for (1) occupational, 
(2) consumer and (3) environmental safety. 
The current work utilizes epidemiological and toxicological data for screening level assessment 
of these risks using various suggested health relevant dose metrics (mass, particle number and 
surface area) to (i) quantify the potential risk levels and to (ii) compare the properties of these 
alternative risk assessment methods. 

1.  Materials and methods 
Low toxicity low solubility (LTLS) particles (e.g. carbon black, polystyrene, and titanium dioxide) 
have been shown to exhibit similar toxicity, especially per particle surface areas doses [1, 2] and the 
toxicological data for these particles are used for a baseline risk assessment. The upper limit of 
particle-related health risks is estimated by using the dose-response function of quartz, a known high 
toxicity compound with 60 times higher toxicity than the LTLS particles [1]. 

Besides toxicological studies, epidemiology has shown that especially mass concentrations of 
urban ambient particles are associated with relative mortality risks for long-term exposures (PM2.5; 
RRmass=10% per 10 µg m-3) and daily exposures (PM10; RRmass=0.6% per 10 µg m-3) [3]. Recently 
Stölzel et al. [4] showed that also particle number concentrations of ultrafine (<100 nm in diameter) 
particles are associated with mortality (RRnumber=2.8% per 104 cm-3). For application of the 
epidemiology on ambient particles to other types of LTLS nanoparticles (<100 nm in at least one 
dimension), we assume that the mortality in the general population is caused by the retained alveolar 
dose of the non-soluble fraction of ambient particles. Subsequently, the risk factors per ambient 
particle concentration were converted into risks per accumulated dose of non-soluble particles in the 
alveolar lung region by using an attenuation model [5- 7], respiratory physiological data, an alveolar 
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particle deposition model [8] and an exponential model for particle clearance from the lungs [9]. The 
obtained dose-response relationships are reported in more detail in a parallel paper [10]. 

Occupational concentrations of ultrafine particles (or nanoparticles) at 62 workplaces in various 
industries were measured by Möhlmann [11], using standard aerosol measurement techniques. In 
addition to particle number concentrations (size-resolved between 14 nm and 673 nm) and mass 
concentrations of the respirable fraction, there were mass size distributions from 17 workplaces. The 
particle number concentration levels at the workplaces ranged from 5.9×103 cm-3 to 5.6×106 cm-3 
(mean 3.5×105 cm-3, sd 3.1×105 cm-3). To provide information on particle surface area, either the 
particle number or the mass size distribution was used assuming spherical particle shape (and a density 
of 2 g cm-3 for conversion from mass) Particle intake values were calculated using 8-hour working day 
and inhalation rate of 9.6 m³ per 8 hours (i.e. 1.2 m³ h-1) and converted into uptake values using the 
ICRP model [8] and assuming that no protective equipment was employed. 

Exposure levels to printer generated nanoparticles were estimated using the particle emission rates 
of high emissions printers (27% of the 63 laser printers studied by [12]) and a mass-balance model 
[13, 14] for occupational settings in an office and for consumers in the case of home use of laser 
printers assuming 8 hours (office), 4 hours (home office) and 14 hours (family member) exposure 
times with 10% and 1% (office and home, respectively) printing times. More detailed presentation of 
the methods regarding the printer particles is given in a parallel full-length paper [15]. 

Environmental exposures to carbon black from tires were estimated using emission data from a 
road simulator study (emissions from 300×109 to 3000×109 nanoparticles per vehicle-km [16]) and a 
traffic volume model for Germany (706×109 km a-1 divided into rural, urban and highway fractions, 
[17]). The average particle intake was estimated from weighted intake fractions for rural, urban and 
highway emissions [18- 23]. The intake values were converted into alveolar deposition using the ICRP 
deposition model [8]. 

Risk characterization: Two different methods, toxicological and epidemiological risk assessment, 
are used and the results are compared. Toxicological risk is given as the ratio of the alveolar doses in a 
given exposure scenario to the lowest observed effect level (LOEL) as estimated from the 
toxicological studies using allometric scaling to convert the cell [24] and animal-based toxicological 
data into human equivalent values. Toxicological data is available for particle surface and mass doses, 
but no experimental data was found for particle number doses. Epidemiological data is used to 
estimate daily and annual excess mortality risks expressed as percentages and cases per million for the 
printer and tyre carbon black particles. Environmental epidemiology is not applied to the occupational 
exposures because of the differences in the exposed population characteristics (including age structure 
and health status). Epidemiological data was not found for particle surface concentration exposures. 

2.  Results 
(1) The occupational exposure risk was expressed as the ratio of the 8-hour working day uptake to 

the human toxicological LOEL measured as particle mass or as particle surface area. The resulting 8-
hour alveolar uptakes were on the average 71.2 times higher than the mass-based observed effect level 
for LTLS particles (Table 1), indicating a significant risk. Corresponding mean surface area risk 
measure was 1.8. Potential high toxicity of specific ultrafine particles was estimated using the high 
known particle toxicity of quartz; the uptake levels were 4.3×103 and 1.1×102 times higher than the 
lowest observed effect levels for quartz mass and surface metrics, respectively (Table 1).  

(2) Consumer and office exposures of laser printer users and risks were calculated using three 
methods; epidemiological (i) particle number concentration (PNC) and (ii) particle mass, and (iii) 
toxicological LOEL. The highest risks were modelled for the occupational office and home office. 
Epidemiological relative mortality risks were 0.43% and 0.08% using the PNC and mass metrics, 
respectively, corresponding to 34 and 6 annual deaths per million users. Toxicological risk levels were 
2.9×10-3 and 1×10-3 for mass and surface area metrics, respectively (Table 2). 

(3) Environmental exposures to carbon black nanoparticles from tyres were estimated for Germany. 
Additional relative mortality from particle number exposures was estimated to be 0.03% (annual 
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mortality in Germany 218 deaths) and from daily mass exposures 0.0004% (3 deaths in Germany). 
Annual mass exposures were estimated to be associated with 7 deaths. Toxicological risk levels were 
2×105 and 1×105 for mass and surface area metrics, respectively. 

 
Table 1. Toxicological assessment of occupational potential risk levels and comparison of mass versus surface based 

measures on human 8-hour working day uptake (62 industrial working places). Assuming no protective equipment used. 

Toxicological Relative Statistics on the ratio dose/LOEL R<1b

measure toxicity Mean sd min max n

Mass LTLSc 71.2 213 1.6 1010 0

Suface area LTLSc 1.8 4.8 0.001 25.0 50
Mass High toxd 4273 12765 94.3 60577 0
Suface area High toxd 107.1 286 0.08 1499 6

a Lowest observed effect level as expected on humans based on allometric scaling
b R=dose/LOEL; n=number of workplaces (out of 62) where dose <LOEL (i.e. ratio R< 1.0)
c Low toxicity, low solubility nanoparticles d High toxicity as estimated using quartz as positive control  

Table 2. Population risks associated with laser printers and carbon black particles from tyres. 

Exposure to laser printer particles in Exposure to
Risk assessment type Offices Homes or home offices particles from

Singe room Full residence tyres

1 Daily NCa epidemiology
Daily uptake (number) 109 d-1 3.13 3.13 1.09 0.24
Epidemiological RR (number) % 0.43 % 0.43 % 0.15 % 0.03 %
Annual mortality per millionb

cases 34 34 12 3
In Germany cases c c c 218

2 Daily MCa epidemiology
Daily uptake (mass) µg d-1

0.21 0.21 0.07 0.001
Epidemiological RR (mass) % 0.08 % 0.08 % 0.03 % 0.0004 %
Annual mortality per million

b
cases 6 6 2 0.03

In Germanyd cases - - - 3

3 Long-term MCb epidemiology
Annual uptake (mass) µg a

-1 e e e 0.419
Epidemiological RR (mass) % e e e 0.0011 %
Annual mortality per millionc

cases
e e e

0.09
In Germany

d
cases 7

4 Toxicological risk as mass dose
Daily uptake (mass) µg d-1 0.21 0.21 0.07 0.001
Ratio to toxicological LOELf

1 0.29 % 0.29 % 0.10 % 0.002 %

5 Toxicological risk as surface dose
Daily uptake (surface) cm2 d-1 0.16 0.16 0.06 0.002
Ratio to toxicological LOELf

1 0.10 % 0.10 % 0.04 % 0.001 %

a NC=number concentration;  MC=mass concentration d Fraction of population exposed to printers not estimated.
b Assuming annual background mortality rate of 0.8%. e Daily printer use pattern for annual exposures not estimated.
c Number of printer users in Germany not estimated. f  [Uptake]/[Allometrically scaled observed effect level], %  

3.  Conclusions 
Toxicological risks found for occupational settings (R > 1.6 (mass) and 1×10-3 (surface area)) were 
significantly higher than for consumer (printer) and environmental (tyre) scenarios (R < 2.9×10-3 
(mass) or 1×10-3 (surface area)). For consumers and environmental settings the risks are smaller, but 
based on the epidemiological risk estimates still significant, warranting technological and policy 
development for exposure reduction especially for the printer particles. 

The general linear no-threshold epidemiological risk model projects population level effects below 
the toxicological thresholds. In the current study the allometric scaling from laboratory experiments to 
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humans was selected specifically for producing highest risks. Nevertheless, all observed toxicological 
LOEL values correspond to mortality risks, which are substantially higher than 1:106, and therefore 
either risk coefficients from epidemiological studies or toxicological safety factors have to be 
considered in a risk assessment. 
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