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Abstract

Disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines, is thought to be
responsible for synaptic dysfunction and loss in early-stage Alzheimer’s disease (AD). Extending our previous demonstration
that derangement of the PSD by soluble amyloid-b (Ab) involves proteasomal degradation of PSD-95, a protein important
for ionotropic glutamate receptor trafficking, we now show that Ab also disrupts two other scaffold proteins, Homer1b and
Shank1, that couple PSD-95 with ionotropic and metabotropic glutamate receptors. Treatment of fronto-cortical neurons
with soluble Ab results in rapid (within 1 h) and significant thinning of the PSD, decreased synaptic levels of Homer1b and
Shank1, and reduced synaptic mGluR1 levels. We show that de novo protein synthesis is required for the declustering effects
of Ab on Homer1b (but not Shank1) and that, in contrast to PSD-95, Ab-induced Homer1b and Shank1 cluster disassembly
does not depend on proteasome activity. The regulation of Homer1b and Shank1 by Ab diverges in two other respects: i)
whereas the activity of both NMDAR and VDCC is required for Ab-induced declustering of Homer1b, Ab-induced
declustering of Shank1 only requires NMDAR activity; and ii) whereas the effects of Ab on Homer1b involve engagement of
the PI-3K pathway and calcineurin phosphatase (PP2B) activity, those on Shank1 involve activation of the ERK pathway. In
summary, soluble Ab recruits discrete signalling pathways to rapidly reduce the synaptic localization of major components
of the PSD and to regulate the availability of mGluR1 in the synapse.
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Introduction

Loss of synaptic structure and function is thought to mark early

stages of Alzheimer’s disease [1]. Soluble amyloid-b (Ab) peptides

dramatically derange synaptic plasticity, dendritic spine number

and motility, and pre- and postsynaptic composition without overt

neuronal loss [2–5]. Notably, cognitive disturbances are signifi-

cantly correlated with levels of soluble Ab oligomers in both AD

patients and transgenic mouse models [3,6–8], and Ab oligomers

produce transient cognitive deficits when injected into the brains

of healthy animals [2].

The morphological and functional integrity of synapses, and in

particular of post-synaptic sites, requires the proper organization

of the post-synaptic density (PSD), a network of scaffold proteins

and enzymes located in dendritic spines [9]. The PSD is composed

of a large number of interacting scaffold proteins, including a

PSD95/NMDAR module and a Homer1b/mGlurI complex, both

of which interact with Shank family members [10]; PSD-95,

Homer1b and Shank are all involved in the regulation of dendritic

spine formation [11–13]. Homer 1b is localized at the periphery of

the PSD [14,15]; its N-terminal EVH1 domain binds and

modulates metabotropic glutamate receptor (mGluR) trafficking

and signalling [16,17]. The EVH1 domain of Homer also interacts

with Shank family proteins [14,18]. Shank1 is located on the

cytoplasmic side of the PSD [15] and forms a core element of the

framework of the PSD [19]. Among others, Shank1 has a PDZ

domain that is essential for its interaction with the GKAP/PSD-

95/NMDAR complex, and a proline-rich domain which serves as

a docking site for Homer1b/mGluR I and for several actin

cytoskeleton-related proteins such as cortactin [10,20]; these

features allow Shank1 to physically bridge the actin cytoskeleton

with ionotropic and metabotropic glutamate receptors.

Evidence supporting the hypothesis that disassembly of the PSD

may be an early event in Ab-induced synaptic dysfunction includes

the observation that Ab oligomers induce the proteasomal

degradation of a major post-synaptic density protein (PSD-95),

followed by endocytosis of NMDA and AMPA receptors [21,22].

However, the full extent of the PSD remodelling by Ab oligomers

has not yet been explored. Given the relative abundance and

important functions of Homer1b and Shank [12,23], this study

analyzed the dynamics and mechanisms of regulation of these

post-synaptic proteins by Ab. The results demonstrate that, in

addition to inducing degradation of PSD-95 [21,22], soluble Ab
causes rapid changes in PSD architecture by depleting the synaptic

pool of Homer1b and Shank1 clusters, culminating in reduced

synaptic levels of mGluR1 in cortical neurons. Further, it is shown
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that distinct signalling pathways mediate the actions of soluble Ab
on Homer1b and Shank levels.

Materials and Methods

Compounds
Ab1–40 (American Peptides, Sunnyvale, CA) was prepared as

previously described [21] to yield predominantly low N-oligomers

(mainly monomeric to tetrameric) [24–26]. While the preparation

may have contained a few protofibrils, it is pertinent to note that

longer incubation times and higher concentrations of the peptide

(.10 mM) are required for fibrillogenesis [27,28]. Nifedipine, (6)-

verapamil, roscovitine, NiCl2, cycloheximide, cyclosporin and

FK506 were purchased from Sigma Chemicals (Deisenhofen,

Germany); NMDA, Bay-K4688, SL0101-1, MK801, UO126,

PD98059, API-2, wortmannin, cantharidine were from Tocris

(Bristol, UK); and sodium orthovanadate, rapamycin, TDZT,

SU6656 and MG132 were from Calbiochem (La Jolla, CA).

Primary cell culture
Trypsin-dissociated primary cell cultures were prepared from

frontal cortical tissue from 4-day-old (P4) Wistar rats (Charles

River, Sulzfeld, Germany), using a previously described method

[22,29]. Cells were plated onto gelatin/PDL-coated glass cover-

slips (450,000 cells/mm2). Experiments were started after 10–13

days in vitro (DIV 10–13). When required, cells were starved by

culturing them in Neurobasal A medium/1 mM glutamine

(Invitrogen, Karlsruhe, Germany) for 2 h before treatments.

Electron microscopy
Neurons were grown on Permanox slides (LabTek, Nalgene,

Naperville, IL) at 600 cells/mm2 and used after DIV 10–13. After

treatment cells were washed in PBS and fixed in 3% PFA/3%

glutaraldehyde/0.1 M cacodylate buffer (Electron Microscopy

Sciences, Hatfield, PA) for 20 min at 25uC, before washing and

post-fixation in 2% osmium tetroxide. After dehydration,

specimens were embedded in Epon resin (Electron Microscopy

Sciences), cut (70 nm) and collected on copper grids, and stained

with 0.5% uranyl acetate and 3% lead citrate. Grids were

examined on a EM10 Zeiss electron microscope (acceleration

voltage: 60 kV). Images were acquired at 50,0006 original

magnification and at resolution of 137661036 pixels. Only

artifact-free synapses, with clearly identifiable presynaptic termi-

nals, synaptic clefts, postsynaptic membranes and PSD were

selected [30]; our analysis focused on glutamatergic synapses,

identified by the presence of PSD located in dendritic spines.

Thickness and length of the PSD were measured using ImageJ

software [31]. Images were acquired from 6 independent

specimens (N = 6); 15–20 synapses were evaluated in each block

(total number of spines: control, n = 112; treated, n = 94).

Western blotting
Cells were lysed, electrophoresed (6% or 12% acrylamide gels)

and blotted on nitrocellulose membranes as previously described

[21]. Membranes were incubated with one of the following

primary antibodies: anti-Homer1b/c (1:2,000 Santa Cruz Bio-

technology, Heidelberg, Germany or 1:3000, Synaptic Systems,

Goettingen, Germany), anti-synapsin I (1:2,000; Chemicon,

Chandlers Ford, UK), and either anti-actin (1:10,000; Chemicon)

or anti-b-tubulin (1:2,000; Oncogene Science, Schwalbach,

Germany) before staining with appropriate horseradish peroxi-

dase-IgG conjugates (GE Health, Freiburg, Germany). Immuno-

reactivity was revealed by enhanced chemoluminescence (GE

Health) and optical densities were measured, after checking for

linearity of signal, using TINA 3.0 bioimaging software (Raytest,

Straubenhardt, Germany). All values were normalized and

expressed as percentages of control; in pharmacological experi-

ments, percentages of responses to Ab treatment vs. control

treatment. Each set of numerical data shown was obtained from 3

to 5 independent sets of experiments, with 3 replicates in each run.

Immunostaining and confocal imaging
Cells were fixed and blocked as previously described [21] before

overnight incubation (4uC) with anti-Homer1b/c (1:500; Santa

Cruz), anti-Shank1 (1:200) or anti pan-Shank (1:400) (both kind

gifts of M. Sheng) and subsequent incubation with Alexa-488

conjugated goat anti-rabbit IgG (1:500; Molecular Probes,

Eugene, OR). Double-staining with synaptophysin was performed

using rabbit anti-synaptophysin (1:400; Sigma) and Alexa-543

conjugated goat anti-mouse IgG (1:500; Molecular Probes). For

mGluR1, p-PKB, p-Erk and p-RSK immunostaining, cells were

fixed in 4% p-formaldehyde (pH 7.4; 5 min; RT), before washing,

overnight (4uC) incubation with primary antibody (1:250 anti-

mGluR1, Sigma; 1:200 anti-p-PKB (Thr308), 1:250 anti-p-

ERK1/2 (Thr202/Tyr204), and 1:100 anti p-RSK 1/2/3 (Ser-

380), all from Cell Signalling/NEB, Frankfurt am Main,

Germany) and Alexa-488 conjugated goat anti-rabbit IgG

(1:500). These cells were subsequently stained for synaptophysin

as described above. Surface mGluR1 was detected after fixing cells

in 4% PFA, as above but with omission of the permeabilization

step. Cells were incubated with anti-mGluR1 (1:100, Alomone

laboratories, Jerusalem, Israel) for 1 h at 25uC and with Alexa-488

conjugated goat anti-rabbit IgG (1:500). In all cases, coverslips

were mounted with Vectashield (Vector Labs, Burlinghame, CA).

Optical section images and stacks of images from fluorescence-

labelled cells were obtained using a confocal laser scanning

microscope (LSM 510; Carl Zeiss, Jena, Germany) equipped with

a plan-apochromat 636/1.2 water lens, and where 1 pixel

corresponded to 0.1 mm2. Homer1b, Shank1, synaptophysin and

mGluR1 immunostaining was monitored in 275–375 puncta

within 8–12 randomly chosen dendrites from 6–8 neurons

(triplicate specimens). Dendrites showing less than 25 synapses

were not considered in the analysis. Image analysis was carried out

using ImageJ 1.37c software (NIH, Bethesda, MD). To evaluate

cluster size, single channel images were extracted, collapsed along

the z-axis using the maximum intensity algorithm, and thresholded

at the arbitrary values of 80 (Homer1b, Shank1 and synaptophy-

sin), 230 (surface mGluR1), or 135 (total mGluR1). Homer1b,

Shank1 and mGluR1 clusters that were juxtaposed to synapto-

physin puncta in overlay images were manually selected by an

investigator who was blind to the treatment; surface areas (pixels)

were measured with ImageJ software and logged into an Excel file.

Clusters separated by 1 pixel were considered to represent

individual clusters. To reduce noise effects, only clusters $3 pixels

were included in the analysis. This criterion possibly introduced a

bias toward smaller differences in treated vs. untreated groups in

cases where treatment caused a shrinkage of a substantial

proportion of clusters to ,3 pixels; however, since this set-point

would rather lead to an overestimation of average cluster size in

the treated groups, the statistical significance of detected

differences would not be undermined. The above cluster size

analysis was complemented by independent evaluation of the

images by a second investigator (also blind to treatments) who

ranked images according to cluster size; in all cases, there was a

100% match between these latter qualitative evaluations and the

quantitative analysis. Colocalization was calculated as the number

of puncta displaying positive synaptophysin and Homer1b

immunoreactivity/total number of synaptophysin-positive puncta.

PSD Disruption by Soluble Ab
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Only puncta §3 pixels were considered to be clusters and

included in the analysis. For each condition, 8–12 neurons from

3–4 experiments were considered (N = 8–12), and at least 50

synapses on each neuron were evaluated (total puncta n = 400–

600).

The fluorescence intensity of p-PKB, p-ERK and p-RSK was

calculated using single optical sections 1 mm thick (full-width, half-

maximum); regions of interest were traced in synaptophysin-

positive cell bodies. For each condition, 30 to 50 neurons from

three replicates were evaluated. Average fluorescence intensities

were logged into Excel files, after subtraction of the local

background value for each spot.

Statistical analysis: All data are depicted as means6S.D. from 3–5

independent experiments. Data shown represent the number of

neurons (N) analyzed. Data were tested for statistical significance

using ANOVA and appropriate post-hoc tests, with p,0.05 being

set as the minimum level of significance.

Results

Ab induces ultrastructural changes in the PSD
The PSD, a prominent feature of excitatory post-synaptic sites,

can be visualized by transmission electron microscopy as an

electron-dense thickening of the post-synaptic membrane. Under

control conditions, the PSD of asymmetric synapses of cultured

neurons was found to display morphological features, including

length (302692.1 nm) and thickness (30.2267.8 nm), that are

typical of such synapses in adult brain (Fig. 1A) [cf. 15]. Treatment

of cultures with 1 mM soluble Ab1–40 (hereinafter referred to as

Ab) led to a rapid and significant thinning of the PSD

(22.1264.2 nm, n = 94, p,0.001; Fig. 1A, B and C) and a

leftward shift in the cumulative frequency distribution of PSD

thickness (not shown); a shorter exposure to Ab (30 min) did not

significantly affect PSD thickness (29.867.14 nm).

Reduced Homer1b and Shank clustering in synapses
after Ab treatment

Since Homer1b and Shank1 are major structural constituents of

the PSD, the influence of Ab on the synaptic pools of these

proteins was studied by monitoring the size and distribution of

Homer1b and Shank1 clusters at synaptic sites. In untreated

fronto-cortical neurons, punctate Homer1b staining was clearly

evident along the dendrites whereas only faint staining was

detectable in dendritic shafts; the majority of Homer1b clusters

(83.366.5%) were juxtaposed to synaptophysin-positive puncta,

indicating synaptic localization of Homer1b in mature neurons.

Punctate Shank1 staining was observed in close apposition to

84.463.9% of synaptophysin-immunoreactive puncta. Homer and

Shank cluster sizes were dose-dependently influenced by Ab at

doses ranging between 10 nM and 1 mM (Fig. S1A and B); more

detailed analyses were performed with Ab at a dose of 1 mM.

Exposure of neurons to Ab (1 mM, 1 h) resulted in a significant

decrease in Homer1b cluster size (64.965.9% vs. 10067% in

controls, p,0.05; Fig. 2A and 2B) and a marked leftward shift in

cluster size distribution (Fig. 2C). Longer exposures to Ab (6 and

24 h) did not produce further changes in Homer1b cluster size

(Fig. 2A and B). Nevertheless, the number of synapses showing

undetectable levels of Homer1b increased with time of exposure to

Ab; thus, the abundance of apposed Homer1b/synaptophysin-

immunoreactive puncta decreased to 85.666.8% (1 h),

82.367.8% (6 h) and 61.9610.4% (24 h) of baseline (100%)

value after exposure to Ab (Fig. 2D).

Exposure of cells to Ab for 1 h resulted in a significant reduction

of Shank1 cluster size (77.669.4% of controls, p,0.05; Fig. 3A

and B) and a leftward shift in the Shank1 cluster size distribution

curve (Fig. 3C). Extended exposure to Ab resulted in further

reductions in Shank1 cluster size (74.563.6% after 6 h;

64.465.8% after 24 h; Fig. 2E and F). Interestingly, the rate at

which the ratio of Shank1/synaptophysin apposition shifted after

Ab treatment was slower than that observed for Homer1b/

synaptophysin, with the first significant change occurring after 6 h

(94.264.5% of control, p,0.05) and a further reduction after 24 h

(84.963.2% of control, p,0.05) of Ab application (Fig. 3D).

Ab-induced decreases in synaptic Homer1b and Shank1
levels occur in a proteasome-independent manner

Synaptic protein abundance and turnover are determined by de

novo protein synthesis and proteasome activity [32]; the latter was

Figure 1. Ultrastructural effects of Ab on the post-synaptic density (PSD). Rat fronto-cortical neurons in culture were treated with vehicle or
Ab (1 mM, 1 h) before being fixed, embedded and sectioned at 70 nm for transmission electron microscopy (TEM). (A, B) Ab decreases the thickness
of the post-synaptic density. Representative TEM images show a significant decrease in PSD thickness after Ab treatment. Scale bars represent
500 nm. (C) After Ab treatment, PSD thickness was reduced to 22.1264.2 nm vs. 30.2267.8 nm in vehicle-treated neurons (p,0.001). Images were
acquired from 6 independent specimens (N = 6), and 15–20 synapses in each block were evaluated (total number of spines: control, n = 112; treated,
n = 94). Data shown are mean6SD.
doi:10.1371/journal.pone.0006011.g001
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previously demonstrated to be essential for Ab-induced degrada-

tion of PSD-95 [21]. Here, we found that pre-treatment of neurons

with the proteasome inhibitor MG132 (0.1 mM) did not prevent

Ab-induced reductions in synaptic Homer1b (Fig. 4A) and Shank1

(Fig. 4C) cluster sizes. Furthermore, whole-cell lysate levels of both

proteins remained constant after application of 1 mM (Fig. 4B and

D) or 10 mM (not shown) of Ab. Confirming the findings for

Homer1b, antibodies directed against either the N- or C-terminal

epitopes of Homer1b failed to detect truncated forms of the

protein (data not shown).

In examining the importance of protein synthesis for the

manifestation of the Ab effects on synaptic levels of Homer1b and

Shank1, we observed differential dependence of the regulation of

these two proteins by Ab. Specifically, co-application of the

protein synthesis inhibitor cycloheximide (CHX, 15 mM) prevent-

ed Ab-induced shrinkage of Homer1b clusters at synaptic sites

(Fig. 4A), but did not interfere with the ability of Ab to reduce the

size of Shank1 clusters (Fig. 3C).

Discrete Ca2+ sources contribute to Ab actions on
Homer1b and Shank1

Previous studies demonstrated the important role of NMDAR

activity in the regulation of post-synaptic density scaffold proteins,

including PSD95 [33] and Homer1b [34]. In the present study,

pre-treatment of neurons with the NMDAR antagonist MK801

(10 mM) abolished the Ab-induced decrease in synaptic levels

(cluster size) of both Homer1b (Fig. 5A) and Shank1 (Fig. 5B),

indicating the requirement of NMDAR for the effects of Ab on the

synaptic localization of these proteins. In contrast, the Ab-induced

changes in Homer1b and Shank1 clustering were not influenced

by antagonism of AMPAR and class I/II mGluRs with NBQX

and E4CPG, respectively (Supplementary Fig. S2A and S2B).

Earlier work reported the requirement of voltage-dependent

calcium channel (VDCC) activity for the modulation of Homer1b

clustering by glutamate [34]. Here we show that the effects of Ab
on synaptic Homer1b levels are abolished after pre-treatment with

the L-type VDCC blockers, verapamil (50 mM; Fig. 5A) and

nifedipine (40 mM, Fig. S3), but not with NiCl2, a T-type calcium

channel blocker (Supplementary Fig. S3). The actions of Ab on

Shank1 levels were found to be verapamil-insensitive (Fig. 5B).

Specific NMDAR and VDCC agonists were next employed to

investigate the individual and combined roles of these signalling

pathways in the mediation of the Ab effects. Treatment with

NMDA alone resulted in the disassembly of Homer and Shank

clusters (p,0.05; Fig. 4C and 4D), an effect that was accentuated

in the presence of Ab (p,0.05; Fig. 5A and B). VDCC activation

with Bay-K8644 (10 mM) did not affect Homer or Shank cluster

sizes under any condition (Fig. 5A and B).

Having established a crucial role for NMDAR in Ab-induced

remodeling of the PSD, as well as the additional requirement of

VDCC in the manifestation of Ab effects on synaptic Homer1b

levels, we next examined the involvement of NMDAR in greater

detail. Focusing on the NR2B subunit of this receptor, we

determined the importance of tyrosine phosphorylation of the

Figure 2. Ab induces the dispersal of Homer1b synaptic clusters. Fronto-cortical neurons in culture were treated with vehicle or Ab (1 mM) for
1, 6 or 24 h before immunostaining. (A, B) Homer1b cluster size is significantly decreased after 1 h treatment with Ab (64.965.9% vs. 10067% in
control; p,0.05); a similar decrease is observed after 6 and 24 h of exposure to Ab (59.766.7% and 5564.9% of control, respectively; p,0.05). (C) Ab
alters Homer1b cluster size distribution. Homer1b cluster size distribution was analyzed after 1 h of treatment with Ab or vehicle. The cumulative
frequency plot shows a homogeneous leftward shift in the frequency curve after Ab treatment. (D) Ab decreases the number of synaptophysin-
labelled synapses that co-localize Homer1b. The ratio of Homer1b to synaptophysin immunopositive puncta was decreased after 1 h treatment with
Ab (85.666.8% vs. control; p,0.05), and further decreases were observed after treatment for 6 and 24 h (82.367.8% and 61.9610.4% of control,
respectively; p,0.05 in both cases). For each condition 8–12 neurons from 3–4 replicate experiments were considered (N = 8–12), and at least 50
synapses on each neuron were evaluated (on average, n = 500 puncta/condition). Scale bars represent 5 mm.
doi:10.1371/journal.pone.0006011.g002
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C-terminal tail of this subunit. The NR2B subunit is the major

tyrosine-phosphorylated protein in the PSD and its phosphoryla-

tion by src family kinases at multiple sites results in a docking site

for various signalling molecules and enzymes [35]. In this study,

pre-treatment of neurons with the src family tyrosine kinase

inhibitor SU6656 (10 mM) significantly blocked the ability of Ab to

induce declustering of Homer1b (p,0.05, Fig. 5A), but not of

Shank1 (Fig. 5B). Consistently, the tyrosine-phosphatase inhibitor,

sodium orthovanadate (Na3VO4, 100 mM) mimicked the effects of

Ab on Homer clusters (p,0.05, Fig. 5A), while not influencing

Shank clusters (Fig. 5B); pretreatment with Na3VO4 occluded the

effects of Ab.

Homer1b and Shank1 are regulated by Ab through
divergent signalling pathways

Several signalling pathways downstream of NMDAR and

VDCC may be potentially involved in Ab-triggered remodelling

of the PSD. Given the observation that new protein synthesis is

required for Ab-induced Homer declustering, we evaluated the

importance of the PI-3K/mTOR pathway, a major regulator of

protein synthesis. Inhibition of PI-3K signalling with wortmannin

(2 mM) abolished the ability of Ab to reduce synaptic levels of

Homer1b (p,0.05; Fig. 6A), but not of Shank 1 (Fig. 6B);

however, wortmannin alone caused significant shrinkage of

Shank1 clusters (p,0.05; Fig. 6B) without affecting basal

Homer1b cluster size (Fig. 6A). Blockade of the PI-3K downstream

kinases, PKB and mTOR with API-2 (30 mM) and rapamycin

(5 mM), respectively, also prevented the Ab-induced reduction in

synaptic Homer1b levels (p.0.05; Fig. 6A). However blockade of

GSK-3b, another PI-3K target, failed to abrogate Ab-induced

shrinkage of Homer1b and Shank 1 clusters (data not shown).

To examine whether activation of the PI-3K/PKB pathway

resulted from activation of NMDAR [36], VDCC [37] or both, we

monitored the intensity of phospho-PKB immunostaining in

neurons pre-treated with MK801, (10 mM), verapamil, (50 mM),

or vehicle before treatment with soluble Ab. Ab triggered a

significant increase in the phospho-PKB signal (143.2617.1% vs.

100614.2 in control, p,0.05; Supplementary Fig. S4). Whereas

pre-treatment with MK801 significantly decreased phospho-PKB

staining after Ab application (77.1%610.8, p,0.05; Supplemen-

tary Fig. S4A and B), verapamil did not significantly attenuate the

Ab-induced increase in PKB phosphorylation (139.1611.1% of

baseline, p,0.05; Ab vs. Ab+ verapamil, p.0.05). Together, these

data indicate that PI-3K activation by Ab is NMDAR-mediated.

Since the ERK pathway is known to regulate the interaction of

Shank1 with the actin cytoskeleton [38] and ERK signalling ranks

prominently among the signalling mechanisms activated by

NMDAR, involvement of this pathway in the regulation of

Shank1 and Homer1 by Ab was examined. Two structurally

unrelated MEK-ERK1/2 inhibitors, U0126 (10 mM) and

PD98059 (25 mM), abrogated the effects of Ab on the synaptic

levels of Shank1 (p,0.05, Fig. 6B), but not of Homer1b (Fig. 6A)

(data obtained with PD98059 are not shown). Confirming

NMDAR as the origin of Ab-triggered ERK activation, the

Figure 3. Ab induces the dispersal of Shank1 synaptic clusters. Fronto-cortical neurons in culture were treated with vehicle or Ab (1 mM) for 1,
6 or 24 h before immunostaining. (A, B) Quantification of Shank1 clusters revealed a significant decrease in average size within 1 h of treatment with
Ab (77.669.4% vs. control; p,0.05); a similar decrease was seen after 6 and 24 h (74.563.6% and 64.465.8% of control, respectively; p,0.05). (C)
Analysis of Shank1 cluster size distribution after 1 h of treatment with Ab (plotted according to cumulative frequency) revealed that Ab leads to a
homogeneous leftward shift in the frequency curve. (D) Ab decreases the number of Shank1-immunopositive synapses; synaptic sites were marked
with anti-synaptophysin. The ratio of Shank1 to synaptophysin immunopositive puncta was not decreased (compared to control) after 1 h Ab
treatment (103.767.4; p = 0.075), but was significantly reduced after exposure to Ab for 6 and 24 h (94.264.5% and 84.963.2%, respectively; p,0.05).
For each condition 8–12 neurons from 3–4 replicate experiments were considered (N = 8–12), and at least 50 synapses on each neuron were
evaluated (on average, n = 500 puncta/condition). Scale bars represent 5 mm.
doi:10.1371/journal.pone.0006011.g003

PSD Disruption by Soluble Ab
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significant increase in p-ERK levels following treatment with Ab
alone (184.6647% of control, p,0.05) was abolished by MK801

pre-treatment (77614.4 of control, Supplementary Fig. S5).

Further, we found that RSK2/3, a kinase that acts downstream

of ERK and is known to interact and directly phosphorylate Shank

family proteins [38], was activated within 15 min of application of

Ab; the increase in phospho-RSK staining (180.2624.5% from

barely detectable levels under baseline conditions) was sensitive to

NMDAR blockade with MK801 (114.0611.8%) and UO126

(122.3614.3%) (Supplementary Fig. S6). Finally, confirming the

role of RSK in Ab-induced Shank cluster dispersal, pretreatment

of the cultures with the RSK inhibitor SL0101-1 (2 mM) prevented

the dispersal of Shank clusters by Ab (100.469.8%, p.0.05;

Fig. 6B).

Protein phosphatase 2B (PP2B, calcineurin) signalling was

recently identified as a mediator of Ab-induced AMPAR

endocytosis [39] and dendritic spine loss [4]. Consistent with a

role of PP2B in Ab-induced synaptic dysfunction, the PP2B

inhibitors FK506 (10 mM) and cyclosporin (100 mM) abolished the

Ab-induced decrease in synaptic Homer1b (p,0.05; Fig. 6C), but

not Shank (Fig. 6D), levels. The effects of Ab on Homer1b could

not be significantly abrogated by either okadaic acid (a general

PP1/2A inhibitor, used at 2 mM) or cantharidine (a specific PP2A

inhibitor, used at 0.2 mM) (not shown).

Lastly, the involvement of cdk5 (previously shown to mediate

Ab-induced degradation of PSD-95 [21,40]) and of CaMKII and

PKC a/c (two Ca2+-dependent kinases implicated in synaptic

physiology) in Ab-induced Homer1b and Shank1 declustering

were ruled out on the basis of results obtained with the cdk5

inhibitor roscovitine (10 mM) (Fig. 6A and 6B), KN-93 (5 mM) and

Gö6893 (5 mM), respectively (Supplementary Fig. S7A and S7B).

Ab treatment reduces synaptic mGluR1
Since mGluR1 trafficking to the surface relies on interactions

with Homer1b [17,41], it was of interest to examine the

consequences of Ab-induced decreases in synaptic levels of

Homer1b on mGluR1 localization. Immunostaining revealed a

major decrease in surface mGluR1 cluster size after Ab treatment

(surface cluster size 66.062.8%, n = 10, p,0.05, Fig. 7A and 7B),

an effect that was prevented by treatment with either MK801

Figure 4. Ab-induced dispersal of Homer1b and Shank1 clusters does not depend upon protein degradation. Protein synthesis is
required for Ab-induced Homer1b clusters dispersal. Neurons were pretreated with the proteasome inhibitor MG132 (0.1 mM) or with the protein
synthesis inhibitor cycloheximide (CHX, 15 mM) before adding Ab (1 mM), before immunostaining for synaptophysin and either Homer1b or Shank1.
(A) Proteasome inhibition did not block the Ab effects (69.164.2%, cf. Ab+MG132 and MG alone, p,0.05), while blockade of protein synthesis
effectively prevented the dispersal of Homer1b clusters (103.9610%, cf. CHX+Ab and CHX alone). For each condition, 8–12 neurons from 3–4
replicate experiments were considered (N = 8–12), and at least 50 synapses on each neuron were evaluated (average, n = 500 puncta/condition). (B)
Ab did not reduce whole cell levels of Homer1b levels after 30, 60, 120 or 180 min. (C) Neither proteasomal activity nor de novo protein synthesis
were found to be necessary for Ab-induced dispersal of Shank1 clusters. (D) Exposure to Ab for up to 120 min. did not lead to down-regulation of
Shank1 levels in whole cell protein extracts; however, a significant decrease in Shank1 was observed after 180 min of exposure to Ab (80.769.7% of
baseline; p,0.05). Since Shank1 displays multiple isoforms, the quantification shown refers to the most abundant (170 kDa) band.
doi:10.1371/journal.pone.0006011.g004
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(10 mM) or verapamil (50 mM). mGluR1 is regulated by

constitutive endocytosis, a process that is subject to retardation

upon binding of Homer proteins to mGluR1 [41–43]. Here, the

size of mGluR1 synaptic clusters was evaluated to examine

whether the Ab-induced loss of surface mGluR1 resulted from

endocytosis alone or whether it also involved decreases in overall

synaptic mGluR1 content. Under baseline conditions, mGluR1

immunoreactivity was predominantly found in the perikaryon and

dendrites of neurons [17] in approximately 60% of synaptophysin-

positive puncta (Fig. 7C and 7D). The number of mGluR1-

positive synapses was markedly decreased within 1 h of Ab
application (47.365.7% of control, n = 10; p,0.05; Fig. 7C and

7D). Likewise, the size of synaptic mGluR1 clusters was decreased

after exposure to Ab (6566.5% of control; p,0.05; Fig. 7C and

7E). The effects of Ab on synaptic mGluR1 localization (Fig. 7C

and 7D) and cluster size (Fig. 7E) proved to be sensitive to MK801

(10 mM) and verapamil (50 mM), indicating their mediation by

NMDAR and VDCC, respectively (Fig. 7C and 7D).

Discussion

Oligomeric Ab has been implicated in the pathogenesis of

Alzheimer’s disease [2,8] but a physiological role for Ab in the

regulation of synaptic homeostasis has also been hypothesized

[44]. Several lines of evidence suggest that soluble Ab may

contribute to the early stages of AD by impairing synaptic

Figure 5. Differential requirements of NMDAR and VDCC for Ab-induced declustering of Homer1b and Shank1. (A) Ab-induced
declustering of Homer depends on NMDAR VDCC activity and on src activity. Cells were pre-treated with either the NMDAR antagonist
MK801 (10 mM) or the VDCC blocker verapamil (50 mM) before exposure to Ab (1 mM, 1 h). Both MK801 and VDCC effectively prevented Ab-induced
Homer1b cluster dispersal (100.7615.5%, cf. MK+Ab and MK alone; p.0.05; 105.767%, cf. verapamil+Ab and verapamil alone; p.0.05). To evaluate
the sufficiency of each of these receptors for Ab-induced Homer cluster dispersal cells were pre-treated with either the NMDAR agonist NMDA
(10 mM) or the VDCC activator Bay-K8644 (10 mM) before exposure to Ab (1 mM, 1 h). NMDA alone significantly reduced Homer (75.168.8%, p,0.05)
and a further decrease was observed after NMDA+Ab cotreatment (50.265.2% of untreated control). To assess the role of NMDAR tyrosine
phosphorylation in the signalling leading to Homer cluster dispersal, cells were pre-treated with the src-family inhibitor SU6656 (10 mM), which
blocked the ability of Ab to reduce Homer1b (100.8611.1%, cf. Ab+SU6656 and SU6656 alone; p.0.05), or with the tyrosine-phosphatase inhibitor
sodium orthovanadate (Na3VO4, 100 mM) alone, which led to decreases in Homer1b (57.767.2% of control; p,0.05) cluster sizes and occluded Ab
effect when Na3VO4 was applied before Ab: (9667.1%, cf. Na3VO4+Ab and Na3VO4 alone; p.0 05). (B) Ab-induced declustering of Shank
depends only on NMDAR activity. In contrast to Homer1b declustering, MK801, but not verapamil, blocked the effects of Ab on Shank1
clustering (116.6610.4%, cf. MK801+Ab and MK801 alone; p.0.05; 63.365.7%, cf. verapamil+Ab and verapamil alone; p,0.05). Pretreatment with the
NMDAR agonist NMDA (10 mM) or the VDCC activator Bay-K8644 (10 mM) before exposure to Ab (1 mM, 1 h) reduced Shank cluster size (53.964.1%
and 77.769.9% respectively; p,0.05) and a further decrease was observed after NMDA+Ab and BayK8644+Ab cotreatment (43.466.7% and
43.865.6% respectively, p,0.05). Pre-treatment with the src-family inhibitor SU6656 (10 mM) did not block the ability of Ab to reduce Shank1
(90.5612.2%, cf. SU6656+Ab and SU6656 alone; p.0.05) clusters. Exposure to the tyrosine-phosphatase inhibitor sodium orthovanadate (Na3VO4,
100 mM) alone led to decreases in Shank1 (77.8610.3% of control; cf. Na3VO4+Ab and Na3VO4 alone p,0.05) cluster sizes but further decrease
was observed after co-treatment with Ab (47. 69.8%, p,0.05). For each condition, 8–12 neurons from 3–4 replicate experiments were examined
(N = 8–12); at least 50 synapses on each neuron were evaluated (on average, n = 500 puncta/condition).
doi:10.1371/journal.pone.0006011.g005
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physiology: (i) soluble Ab levels correlate strongly with loss of

synapses as well as with severity of cognitive impairment in AD

patients [6] and in transgenic mouse models [7,45], (ii) Ab
oligomers acutely impair synaptic plasticity and cognitive functions

[3,7,8], and (iii) Ab oligomers influence the overall levels,

localization and trafficking of several receptors (including

NMDAR and AMPAR) and signalling molecules [39,46,47].

In the present investigations, Ab was used at a dose (1 mM) and

over a period of time (1 h), conditions that do not favor its

aggregation into fibrils [24–26]. Our data identify the remodelling

of the PSD and the dispersal of scaffold proteins clustered in the

post-synaptic site as early events triggered by Ab oligomers. We

show that Ab rapidly disrupts the ultrastructural integrity and

thickness of the PSD, inducing morphological changes that are

reminiscent of the phenotype found in mice in which selected PSD

constituents, including Shank [30], are knocked out. Extending

previous findings that Ab treatment leads to a loss of PSD-95

[21,22], we here found this treatment to lead to a significant

decrease in the size of synaptic clusters (loss) of two other PSD

proteins, Homer1b and Shank1.

Interestingly, our investigations show that distinct mechanisms

underlie Ab-triggered loss of synaptic Homer1b and Shank1. In

contrast to previous demonstrations that the loss of synaptic PSD-

95 requires proteasomal activity [21,33], Shank1 loss was found to

occur independently of proteasomal activity over the timeframe

monitored in the present study, although the possibility of

degradation of the protein over longer periods cannot be ruled

out [cf.33]. Remarkably, a different mechanism, namely de novo

Figure 6. Divergent signalling pathways mediate the effects of Ab on Homer1b and Shank1 cluster dispersal. Cultured cortical neurons
were pre-treated for 45 min with the indicated pharmacological inhibitors before being treated for 1 h with Ab (1 mM). Inhibitors were present in the
medium during Ab treatment. (A) PI-3K/mTOR pathway is required for Homer1b declustering. Pre-treatment with wortmannin (Wort, 2 mM)
abolished the ability of Ab to disperse Homer1b clusters (101.1615.3%, cf. Ab+Wort and Wort alone). Likewise, inhibition of the PI-3K downstream
kinases PKB (with API-2, 30 mM) or mTor (with rapamycin, Rapa, 5 mM) prevented Ab-induced declustering of Homer1b (90.668.4%, cf. Ab+AP2 and
API-2 alone; 9568.2%, cf. Ab+Rapa and rapamycin alone). Either the blockade of MEK/ERK pathway by pre-treatment with UO126 (10 mM; 70.964.8%
UO126+Ab vs UO126 alone) or cdk-5 inhibition by roscovitine (10 mM;63.765.8%, cf. Ab+Rosco and Rosco alone) pre-treatment did affect Ab-induced
Homer declustering. (B) MEK/ERK pathway, but not PI-3K pathway, is required for Ab-induced dispersal of Shank1. Pre-treatment with
the PI-3K inhibitor wortmannin before Ab treatment did not affect Ab-induced Shank cluster dispersal (64.7610.3%, cf. Wort+Ab and Wort alone;
p,0.05). Notably, wortmannin itself decreased Shank1 (but not Homer1b) cluster size (74.3610.3%, cf. Wort and vehicle; p,0.05). Two structurally
unrelated MEK inhibitors, UO126 (10 mM) and PD98059 (25 mM) prevented Ab-induced declustering of Shank1 (96.8612.1%, cf. PD98059+Ab and
PD98059 alone; 92.2615.4%, cf. UO126+Ab and UO126 alone). Likewise, the blockade of the Erk targeted kinase RSK by pre-treatment with SL0101-1
blocked Ab effects (100.469.8%, p.0.05). Pre-treatment of neurons with the specific cdk-5 inhibitor roscovitine (Rosco, 10 mM) did not interfere with
the ability of Ab to reduce the size of Shank1 (72.6610.8%, cf. Rosco+Ab and Ab alone) clusters. (C,D) PP2B is required for the dispersal of Homer1b,
but not Shank1, clusters by Ab. Pre-treatment with structurally unrelated PP2B inhibitors FK506 (10 mM) or cyclosporin (Cyclo, 100 mM) significantly
blocked (p,0.05) Ab-induced Homer1b declustering (98.8610.4%, comparing FK506+Ab vs. Ab alone; 83.465.8%, comparing Ab+Cyclo and Cyclo
alone; and 6167.9% in vehicle+Ab-treated cells; see panel C); however, all PP2B inhibitors were ineffective in preventing Shank1 declustering after Ab
exposure (61.364.5%, cf. FK506+Ab and FK506 alone; 90.8612.4%, cf. Cyclo+Ab and Cyclo alone, see panel D). For each condition, 8–12 neurons from
3–4 replicate experiments were considered (N = 8–12), and at least 50 synapses on each neuron were evaluated (on average, n = 500 puncta/
condition).
doi:10.1371/journal.pone.0006011.g006
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protein synthesis, was found to underlie the loss of synaptic

Homer1b after application of Ab. Since the reduction in synaptic

Homer1b clusters was not accompanied by a change in whole-cell

levels of the protein (or its truncated forms), it would appear that

Ab treatment leads to cluster dissociation and relocation to

another cellular compartment [cf.34]. The presented data on

Shank1 and Homer1b, together with previous findings for PSD-95

[21], show that Ab can selectively employ either protein synthesis

or degradation to disrupt the PSD; our results complement other

work on a different model of synaptic plasticity [48].

Declustering of Homer and Shank, like that of PSD-95 [21],

was found to require NMDAR activity (and agonist-induced

Figure 7. Dispersal of synaptic mGluR1 clusters by Ab requires NMDAR and VDCC activity. Rat cortical neurons were treated with Ab
(1 mM) for 1 h (with or without co-treatment with the NMDAR antagonist MK801, or the VDCC blocker verapamil) and then immunostained for
surface mGluR1 before fixation. (A, B) Ab downregulates surface mGluR1 (surface cluster size 66.062.8%, N = 10, n = 300, p,0.05); pre-treatment
with either MK801 (10 mM) or verapamil (50 mM) blocked this effect (102.9610.5%, for MK801+Ab vs. MK alone; 109.864.1%, for verapamil+Ab vs.
verapamil alone). (C, D) Ab treatment results in decreased synaptic localization of total mGluR1 (ratio of mGluR1/synaptophysin immunopositive
puncta, 47.365.7% of baseline, n = 600, p,0.05); pre-treatment with either MK801 or verapamil prevented this effect (102.067.2%, for MK801+Ab vs.
MK alone; 106.7610.8% for verapamil+Ab vs. verapamil alone). (C, E) Ab treatment results in reduced size of total synaptic mGluR1 clusters
(68.168.0%, N = 10, n = 600, p,0.05); pre-treatment with either MK801 or verapamil abolished Ab-induced cluster shrinkage (93611.1%, for
MK801+Ab vs. MK alone; 112.4610.7%, for verapamil+Ab vs. verapamil alone). Scale bar represents 5 mm.
doi:10.1371/journal.pone.0006011.g007
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activation of NMDAR alone was sufficient to mimic the Ab effect).

Therefore, the NMDAR is a major hub for the regulation of PSD

structure and composition and its activation appears to be essential

for triggering disassembly of the PSD; however, our study

demonstrates that divergent downstream signalling pathways

regulate the demise of each PSD component. Specifically, we

found that Ab-induced Homer declustering requires activated

VDCC as an additional source of Ca++ and other signalling

molecules; importantly, VDCC activation alone however did not

mimic the actions of Ab. These observations are consistent with

those of Okabe et al. [34] who reported that NMDAR- and

VDCC-regulated Ca2+ spikes promote Homer1b clustering

whereas Ca2+ levels that rise and reach a plateau result in the

shrinkage of Homer1b clusters.

The PI-3K/mTor signalling pathway, acting downstream of

NMDAR, was identified as an important mediator of Ab-induced

Homer1b cluster dispersal (see Supplementary Fig. S8). Since PI-

3K/mTOR is a master regulator of protein synthesis [49] it is

plausible that this pathway links NMDAR activation to the

synthesis of protein(s) ultimately involved in Homer cluster

disassembly. Consistent with a previous demonstration that

NMDAR-dependent activation of PI-3K requires the binding to

a phospho-tyrosine residue on the cytoplasmic tail of the NR2

subunit of the NMDAR [50], inhibition of the src tyrosine kinase

in the present study interfered with Homer1b declustering. A role

for protein phosphatase 2B (PPB2), acting downstream of

NMDAR [51], in the control of Homer1b cluster disassembly

was also demonstrated in the present work. The recent implication

of PPB2 and its downstream target cofillin in Ab-induced loss of

dendritic spines [4] suggests that this molecule may serve as a

mechanistic link between Homer1b cluster dispersal and dendritic

spine loss [4,12].

Signalling pathways that are distinct from those involved in the

regulation of Homer1b declustering were found to mediate

NMDAR-triggered dispersal of Shank1 clusters. While roles for

the PI-3K and PP2B pathways were dismissed, we demonstrated

serial activation of ERK and RSK upon NMDAR activation.

Previous work demonstrated that ERK/RSK activation leads to

the phosphorylation of Shank protein and a reduction in its affinity

for the actin-binding protein, cortactin [38]. Since Shank

clustering depends upon actin dynamics [52], the probability of

Shank declustering after interference with the Shank-cortactin

interaction through the ERK-RSK pathway is high.

Homer1b is known to critically affect the clustering and

trafficking of mGluR1 as well as its delivery to the cell surface

from where mGluR1 is removed by constitutive and regulated

internalisation and degradation [17,41–43]. The present finding

that Ab causes a significant decrease in the surface expression of

mGluR1 implies endocytosis of the receptor. Further, our studies

show that the loss of surface mGluR1 can be prevented by

blockade of either NMDAR or VDCC, paralleling our observa-

tions with respect to Homer1b declustering; it may therefore be

inferred that loss of synaptic Homer1b is a key event in the

downregulation of surface levels of mGluR1. Interestingly, Ab
induces a decrease in the total synaptic content of mGluR1; this

finding suggests receptor endocytosis and degradation rather than

receptor recycling. In brief, while the loss of Homer1b and

mGluR1 is likely to contribute to Ab-triggered demise of the PSD,

our results are compatible with the view that mGluR1 surface

clustering is tightly coupled to mGluR1 interactions with

Homer1b [41]. Thus, Homer1b declustering is directly involved

in the internalisation of mGluR1. Accordingly, we suggest that loss

of synaptic Homer1b and mGluR1 mediates a major part of the

impact of Ab on synaptic physiology [cf. 53–55].

In summary, our results suggest that soluble Ab affects the

composition and overall structure of the PSD by triggering its

disassembly and, ultimately, synaptic loss. The results presented

here and previously [21] highlight the remarkable diversity of

signaling mechanisms through which Ab regulates the synaptic

levels of three strongly interacting scaffold proteins in the mature

PSD. Despite its structural complexity, the PSD may be viewed as

a ‘‘flexible matrix’’ undergoing continuous turnover and structural

plasticity [52,56]. In this context, the relative abundance and

binding affinity of each component could be regulated indepen-

dently [cf. 57,58], ultimately leading to either changes in PSD

composition or its complete disassembly.

Supporting Information

Figure S1 Ab effect on Homer1b and Shank1 clusters are dose-

dependent. (A,B) Cultured rat fronto-cortical neurons were treated

with Ab at doses ranging from 100 pM to 1 mM for 1 h; thereafter

they were immunostained for Homer1b or Shank (significant

differences are indicated by asterisks, p,0.05).

Found at: doi:10.1371/journal.pone.0006011.s001 (4.38 MB TIF)

Figure S2 Homer1b and Shank1 cluster dispersal by Ab does

not depend upon AMPAR or mGluR activity. (A, B) Cultured

fronto-cortical neurons were pre-treated with the AMPAR blocker

NQBX (50 mM, 45 min) or the mGluR I/II blocker E4CPG

(10 mM) before exposure to Ab (1 mM, 1 h), after which they were

fixed and immunostained for synaptophysin and either Homer1b

(panel A) or Shank1 (panel B). Neither NBQX nor E4CPG

interfered with the ability of Ab to reduce Homer1b (6664.3%, cf.

NQBX+Ab and NQBX alone, p,0.05) or Shank1 (6264.9%,

cf. NQBX+Ab and NQBX alone, p,0.05; 69.364.4%, cf.

E4CPG+Ab and E4CPG alone, p,0.05; 59.262.7%, cf.

E4CPG+Ab vs. E4CPG alone, p,0.05) cluster sizes.

Found at: doi:10.1371/journal.pone.0006011.s002 (4.27 MB TIF)

Figure S3 L-type, but not T-type, calcium channels are required

for Ab-induced dispersal of Homer1b clusters. Neurons were pre-

treated with the L-type VDCC blocker nifedipine (40 mM, 45 min)

or with the T-type blocker NiCl2 (400 mM, 45 min) before being

treated with Ab (1 mM, 1 h). Consistent with the results obtained

with the structurally unrelated VDCC blocker verapamil (see

Fig. 4), nifedipine effectively prevented Homer1b cluster dispersal

by Ab (95.868.4%, cf. nifedipine+Ab and nifedipine alone,

p.0.05), whereas NiCl2 proved ineffective in blocking the actions

of Ab (64.765.2%, cf. Ab+NiCl2 and NiCl2 alone, p,0.05).

Found at: doi:10.1371/journal.pone.0006011.s003 (1.97 MB TIF)

Figure S4 Ab activates the PKB pathway through NMDAR.

Rat cortical neurons were starved (see Methods) for 2 h before

pre-treatment (45 min) with the NMDAR antagonist MK801

(10 mM), the VDCC blocker verapamil (50 mM) or vehicle before

exposure to Ab (1 mM, 10 min). Cells were fixed and immuno-

stained for p-PKB (Thr308) and synaptophysin. (A) Representative

images of p-PKB-immunostained cells (column 1: intensity-coded

image, column 2: actual palette), synaptophysin-stained cells

(column 3), and the resulting overlay (column 4) are shown. Cells

included in the evaluation expressed cytoplasmic synaptophysin as

well as punctate synaptophysin immunoreactivity along their

processes. (B) shows p-PKB immunofluorescence intensity (after

background subtraction). Ab treatment triggered an increase in p-

PKB fluorescence intensity (143.2617.1% of baseline, n = 50,

p,0.05). Pre-treatment with MK801 abrogated Ab-induced

increases in p-PKB immunoreactivity (77.1%610.8% of baseline,

n = 30), whereas pre-treatment with verapamil had only a minor
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effect on p-PKB immunofluorescence (139.1611.1% of baseline,

p,0.05). Scale bar represents 10 mM.

Found at: doi:10.1371/journal.pone.0006011.s004 (8.06 MB TIF)

Figure S5 Ab activates ERK phosphorylation through

NMDAR. Fronto-cortical neurons were starved (see Methods)

for 2 h before pre-treatment (45 min) with the NMDAR

antagonist MK801 (10 mM) or vehicle before exposure to Ab
(1 mM, 10 min). Cells were fixed and immunostained for p-ERK

(Thr202/Tyr204) and synaptophysin. (A) shows representative

images of p-ERK immunostaining (column 1: intensity-coded

image; column 2: actual palette), synaptophysin immunostaining

(column 3) and the resulting overlay (column 4). Cells included in

the evaluation expressed cytoplasmic synaptophysin as well as

punctate synaptophysin immunoreactivity along their processes.

(B) demonstrates p-ERK immuno-fluorescence intensity (after

background subtraction). Ab treatment led to an increase in p-

ERK fluorescence intensity (184.6647% of baseline, n = 50,

p,0.05). Pre-treatment with MK801 abrogated Ab-induced p-

ERK immunoreactivity (77614.4% of baseline, n = 30). Scale bar

represents 10 mM.

Found at: doi:10.1371/journal.pone.0006011.s005 (9.46 MB TIF)

Figure S6 Ab activates RSK phosphorylation through NMDAR

and Erk pathway. Fronto-cortical neurons were starved (see

Methods) for 2 h before pre-treatment (45 min) with the NMDAR

antagonist MK801 (10 mM), the MEK inhibitor UO126 (10 mM)

or vehicle before exposure to Ab (1 mM, 15 min). Cells were fixed

and immunostained for p-RSK and synaptophysin. (A) shows

representative images of p-RSK immunostaining (column 1:

intensity-coded image; column 2: actual palette), synaptophysin

immunostaining (column 3) and the resulting overlay (column 4).

Cells included in the evaluation expressed cytoplasmic synapto-

physin as well as punctate synaptophysin immunoreactivity along

their processes. (B) demonstrates p-ERK immuno-fluorescence

intensity (after background subtraction). Ab treatment led to an

increase in p-ERK fluorescence intensity (180.2624.5 of baseline,

n = 50, p,0.05). Pre-treatment with MK801 and UO126 largely

abrogated Ab-induced p-RSK immunoreactivity (114.3611.8%

and 122.3614.3% of baseline respectively, n = 30). Scale bar

represents 10 mM.

Found at: doi:10.1371/journal.pone.0006011.s006 (8.14 MB TIF)

Figure S7 Differential kinase requirements in the dispersal of

Homer1b and Shank1 clusters by Ab. Cortical neurons were pre-

treated with KN93 (5 mM) or Gö6893 (5 mM) for 45 min before

addition of Ab (1 mM, 1 h). (A, B) demonstrate that CaMKII and

PKCa/c are not required for manifestation of the ability of Ab to

induce dispersal of Homer1b and Shank1 clusters. Neither KN93

nor Gö6893 were effective at blocking the effects of Ab on

Homer1b (63.969.4% for KN93+Ab vs. KN93 alone, p,0.05;

and 68.464.4% for Gö6893+Ab vs. Gö6893 alone, p,0.05).

Similarly, neither inhibitor influenced the actions of Ab on Shank1

clusters (64.466.8% for KN93+Ab vs. KN93 alone, p,0.05; and

73.668% for Gö6893+Ab vs. Gö6893 alone, p,0.05). Notably,

Gö6893 itself (but not KN93) led to a marked decrease in Shank1

cluster size (66.5610.9%, cf. Gö6893 and control, p,0.05).

Found at: doi:10.1371/journal.pone.0006011.s007 (4.43 MB TIF)

Figure S8 Divergent signalling pathways mediate Ab effects on

Homer1b, Shank1 and PSD-95 and regulate Ab-induced PSD

remodelling. Ab-triggered signalling pathways leading to PSD

disruption are shown. Homer cluster disassembly relies on PI-3K/

mTot pathway and PP2B pathway activity, whereas Shank cluster

disassembly only requires ERK/RSK pathway activity (present

work). In contrast, PSD-95 loss involves the activity of cdk-5. For

each pathway, the inhibitors used in the paper are shown.

Found at: doi:10.1371/journal.pone.0006011.s008 (7.38 MB TIF)
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