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Abstract
Osteosarcoma (OS), a bone tumor, exhibit a complex karyotype. On the genomic level a

highly variable degree of alterations in nearly all chromosomal regions and between individ-

ual tumors is observable. This hampers the identification of common drivers in OS biology.

To identify the common molecular mechanisms involved in the maintenance of OS, we fol-

low the hypothesis that all the copy number-associated differences between the patients

are intercepted on the level of the functional modules. The implementation is based on a

network approach utilizing copy number associated genes in OS, paired expression data

and protein interaction data. The resulting functional modules of tightly connected genes

were interpreted regarding their biological functions in OS and their potential prognostic sig-

nificance. We identified an osteosarcoma network assembling well-known and lesser-

known candidates. The derived network shows a significant connectivity and modularity

suggesting that the genes affected by the heterogeneous genetic alterations share the

same biological context. The network modules participate in several critical aspects of can-

cer biology like DNA damage response, cell growth, and cell motility which is in line with the

hypothesis of specifically deregulated but functional modules in cancer. Further, we could

deduce genes with possible prognostic significance in OS for further investigation (e.g.

EZR, CDKN2A,MAP3K5). Several of those module genes were located on chromosome

6q. The given systems biological approach provides evidence that heterogeneity on the ge-

nomic and expression level is ordered by the biological system on the level of the functional

modules. Different genomic aberrations are pointing to the same cellular network vicinity to

form vital, but already neoplastically altered, functional modules maintaining OS. This ob-

servation, exemplarily now shown for OS, has been under discussion already for a longer

time, but often in a hypothetical manner, and can here be exemplified for OS.

PLOS ONE | DOI:10.1371/journal.pone.0123082 April 7, 2015 1 / 20

OPEN ACCESS

Citation: Poos K, Smida J, Maugg D, Eckstein G,
Baumhoer D, Nathrath M, et al. (2015) Genomic
Heterogeneity of Osteosarcoma - Shift from Single
Candidates to Functional Modules. PLoS ONE 10(4):
e0123082. doi:10.1371/journal.pone.0123082

Academic Editor: Benjamin Haibe-Kains, Princess
Margaret Cancer Centre, CANADA

Received: November 25, 2014

Accepted: February 27, 2015

Published: April 7, 2015

Copyright: © 2015 Poos et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The copy number data
is publicly available in the ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession
number E-MTAB-3034. The RMA normalized and
gene based expression data, the Cytoscape data and
the R source code is available via GitHub https://
github.com/korpleul/PONED1451866R1.

Funding: This work was funded by the Translational
Sarcoma Research Network (FKZ 01GM0870 to JS,
MN, DM and FKZ 01GM0869 to KP, EK), the
European TRANSCAN I consortium - PROspective
VAlidation of Biomarkers in Ewing Sarcoma for
personalized translational medicine both supported

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0123082&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ebi.ac.uk/arrayexpress
https://github.com/korpleul/PONED1451866R1
https://github.com/korpleul/PONED1451866R1


Background
Osteosarcoma (OS) is characterized by neoplastic cells that directly produce immature osteoid
[1, 2]. It exhibits a complex karyotype resulting from high rates of genomic instability, in par-
ticular chromosomal instability [3]. Several inherited cancer susceptibility diseases are related
to OS like the Li-Fraumeni syndrome (TP53 germline mutation) [4], the Retinoblastoma (RB1
germline mutation) [5], or the Werner syndrome (WRN germline mutation) [6]. These familial
syndromes are rare and do not represent a common cause of OS. However, they affect genes
that are responsible to maintain genome integrity and therewith provide a link to chromosomal
instability [3, 7].

To address chromosomal instability underlying OS, many studies showed genomic alter-
ations and suggested potential candidate genes driving OS development [3, 8]. In various re-
gions, one can observe gains and losses of entire chromosomes or chromosomal segments.
Many oncogenes and tumor suppressor genes are located within these sites [3, 7]. Frequently
observed genomic gains contain the chromosome arms 6p, 8q, and 17p that include onco-
genes likeMYC and COPS3 [9–12]. Recurrent regions of losses involve chromosome arms
3q, 9p, 13q, and 17p containing tumor suppressor genes like LSAMP, CDKN2A, RB1, and
TP53 [8, 10, 13, 14]. Various other genomic changes and altered genes have been reported.
Some of them are implicated in mitotic checkpoint control, whose deregulation is assumed to
be the underlying cause of chromosomal instability [3]. However, there is a wide range of re-
ported alterations and a common effect has not yet been identified [3, 7]. Despite the infor-
mation of many genetic changes, OS is only defined by its morphological and clinical
phenotype rather than on the molecular level [15]. This inter-tumor heterogeneity might be
formalized by integrating copy number associated genes on the biological network-level. Cel-
lular functions within biological networks are thought to be carried out in a modular manner.
Individual modules consist of highly connected nodes such as genes or proteins that act to-
gether in the same functional context [16]. Cerami et al. [17] developed a systems biological
approach to uncover altered network modules in glioblastoma. They showed that different
combinations of altered genes can prevent modules to perform their natural biological func-
tion. Further, they stated that glioblastoma development occurs via different genes and di-
verse mechanisms but within the same functional modules. According to these findings, OS
might develop primarily due to heavily accumulated genomic alterations secondarily causing
the inability of genes within distinct modules to perform their normal biological functions.
Hence, we might observe heterogeneity on the gene-level but a distinct set of functional mod-
ules on the network level.

In this study, we investigated the enrichment of copy number associated genes within cel-
lular modules in OS and also give some preliminary insight on their impact on patients’ sur-
vival. On that account, we analyzed paired copy number and expression data derived from a
series of 44 pre-therapeutic OS biopsies. First, allele-specific copy number profiles were de-
termined by considering tumor ploidy and the non-aberrant cell fraction within the tumor
tissue. Therefrom, we defined significant gained and lost regions. The copy number profiles
of these regions were correlated with expression data to obtain copy number associated
genes in OS. Next, we mapped the copy number associated genes on protein interaction data
and constructed an OS network. This network was analyzed regarding its module structure
and functional implications in OS development and prognosis (Fig 1). The results point
towards the value of systems biological approaches and to the need to extend the classical
driver gene hypothesis to a more appropriate 'functional module' hypothesis to understand
OS biology.
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Methods
Some of our terms, and how we use them throughout the text, are explained in Table 1. The
RMA normalized and gene based expression data, the R source code and the module visualiza-
tion in Cytoscape can be obtained from GitHub https://github.com/korpleul/PONED1451866R1.

Tissue samples and patient characteristics
A series of 44 fresh-frozen, pre-treatment OS tissue samples was selected for this study. The
samples were collected between 1992 and 2007 (Cooperative German-Austria-Swiss Osteosar-
coma Study Group). We conducted this study according to the principles expressed in the Dec-
laration of Helsinki. The patient cohort samples used in this study were obtained according to
the guidelines and approval of the Faculty of Medicine of the Technical University of Munich
Research Ethics Board (Technische Universität München TUM, Reference 1867/07) and local
ethical committee of Basel, Switzerland (Ethikkommission beider Basel EKBB, www.ekbb.ch,
Reference 274/12). Informed written consent to participate in this study was obtained from the
patients, or in the case of young children, their next of kin, caretakers, or guardians on their be-
half. Out of 12 patients, who developed metastasis, 7 showed metastasis at the time of diagno-
sis. Pre- and postoperative chemotherapy was applied according to the protocols of the

Fig 1. Analysis workflow. The figure gives an outline of the analysis performed in the current study.

doi:10.1371/journal.pone.0123082.g001
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Cooperative Osteosarcoma study (COSS) group. Response to chemotherapy was classified ac-
cording to the Salzer-Kuntschik (SK) histological grading system [18]. Good responders (SK
grades 1 to 3) exhibited� 10% viable tumor cells and bad responders (SK grades 4 to 6)
showed>10% viable tumor cells following neoadjuvant chemotherapy. SK grades were avail-
able for 35 patients. Follow-up data were available for all 39 patients (15 females and 24 males
with an age span from 4 to 60 years and median of 15 years) with mean follow-up time of 69
months ranging from 5 to 185 months. These 39 were used for the survival analysis. Further
patient characteristics are given in Table 2.

Copy number data analysis
Affymetrix’s Genome-Wide SNP arrays 6.0 were used for copy number data analysis (Affyme-
trix Inc.). The data is publicly available in the ArrayExpress database (www.ebi.ac.uk/
arrayexpress) under accession number E-MTAB-3034 and by Dr. Jan Smida on behalf of the
Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research
Center for Environmental Health, Neuherberg, Germany (smida@helmholtz-muenchen.de).
DNA samples were processed due to the manufacturer’s recommendations. To transform raw
data to LogR ratios and B-allele frequencies for further copy number detection, we run
PennCNV-Affy (http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.
html) [19]. Processed genotype data were further analyzed for allele specific copy numbers
using the ASPCF segmentation algorithm (ASCAT version 2.1) [20]. ASCAT estimates and
corrects segmented genotype data derived from tumor samples, for tumor ploidy and non-
aberrant cell fraction, to obtain allele-specific copy number profiles. In this study, ASCAT
failed to process 3 out of 44 samples so 41 go into the network analysis. We additionally filtered
for copy number segments overlapping (>50%) with telomeric or centromeric regions and seg-
mental duplications. Human genome information was downloaded from the UCSC genome
table browser (assembly hg19) [21]. The frequency of gains and losses was determined relative

Table 1. Definition of used terms.

driver genes Genes within the network that are copy number altered according to GISTIC. These
genes are thought to play a specific role in OS. Those genes are further filtered by
thresholds and the correlation with expression values.

linker genes Genes that connect the copy number altered driver Genes to a network. Copy
number altered driver genes which do not belong to the network due to a missing
direct connection in that network might be connected by an additional gene ('first
neighbor nodes'). This process integrates isolated copy number altered driver genes
to a functional module. The biological meaning has to be checked by a priory
knowledge.

hub genes Genes that are highly connected (see connectivity) within the global network or
within network modules. Those genes might coordinate different biological
pathways.

functional module Subnetwork from the global network, that contains genes more connected to each
other that to genes of the global network. Module genes are likely to perform the
same biological functions.

highly connected A gene that interact with many other genes in the network.

edge betweenness Algorithm to define highly connected gene modules.

connectivity Number of interactions one gene has within the network (similar to node degree).

cellular network
vicinity

Genes that directly interact to each other build a neighborhood (in a functional
sense).

Further readings e.g.: Barabasi AL, Oltvai ZN. Nat Rev Genet. 2004 Feb;5(2):101–13. Network biology:

understanding the cell's functional organization.

doi:10.1371/journal.pone.0123082.t001
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Table 2. Clinicopathological patient characteristics .

Characteristics # patients (n = 39)

Age at diagnosis (years)

mean 19

median 15

range 4 to 60

Gender

male 24

female 15

Tumor localisation

femur 21

tibia 7

fibula 2

sacrum 2

inguinal 1

knee 1

lower leg 1

pelvis 1

scapula 1

second metatarsal 1

ulna 1

Histological subtype

osteoblastic 22

osteoblastic+chondroblastic 5

cellular 3

chondroblastic 3

none 2

fibroblastic 1

giant cell rich 1

small cell 1

unknown 1

Metastasis 12

metastasis at diagnosis 7

Response to chemotherapya 35

good 18

SK I 0

SK II 10

SK III 8

poor 17

SK IV 10

SK V 5

SK VI 2

Clinical outcomeb

CR1 27

DOD 9

AWD-LOFU 1

CR1-LOFU 2

(Continued)
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to tumor ploidy. If the copy number was more or less than 0.9 above or below tumor ploidy,
we called the SNP gained or lost, respectively. A minimum number of 10 consecutively aber-
rant SNP markers were required to call regions of gains and losses. Only regions consistently
altered in at least 20% of all samples were considered as recurrent regions of copy number al-
teration. Significantly gained or lost regions in the genome, among the OS samples, were deter-
mined using GISTIC 2.0 [22]. It was run by entering the ASPCF segmented LogR ratios.
Segments with a LogR ratio of +/- 0.12 were called gained or lost. We chose here a less stringent
value to conserve the genomic phenotype of OS. The value is also justified by matrix CGH ex-
perience [23] and by considerations in Mermel et al. [22]. Additionally the concept of segmen-
tation itself is limited in its resolution, and we own here a highly variable genome. Therefore
the established algorithms might not be seen as a real sensitive solution to this situation which
also justifies the less stringent value. 10 consecutively aberrant SNP markers were required to
call significantly gained or lost regions.

Gene expression data analysis
Gene expression data of the same OS samples were obtained using the Human Gene 1.0 ST
array from Affymetrix (Affymetrix Inc.). The data is available by Dr. Jan Smida on behalf of the
Clinical Cooperation Group Osteosarcoma, Helmholtz ZentrumMünchen, German Research
Center for Environmental Health, Neuherberg, Germany (smida@helmholtz-muenchen.de).
Prior to data pre-processing, RNA was isolated and further processed as described in [24]. Data
pre-processing was done using the Bioconductor package affy [25]. The raw probe intensities
were background corrected, normalized, and summarized to the gene-level by applying the ro-
bust multi-array average algorithm (rma) [26].

Detection of copy number associated genes
To evaluate whether expression of genes located within statistically significant genomic alter-
ations was copy number associated, we superimposed (paired) gene expression and copy num-
ber data, and calculated the Pearson correlation coefficient. To assess the significance of the
correlation coefficients, a null distribution was generated based on random permutation across
the samples. We performed 1,000 random permutations and defined the sampling p-value as:
sum (correlation coef. random> correlation coef.) / number permutations. The resulting p-values were
corrected for multiple testing (False Discovery Rate, FDR<0.1) [27]. So the resulting genes were
associated with copy number variable regions and a conforming expression characteristic.

Table 2. (Continued)

Characteristics # patients (n = 39)

Follow-up months

mean 69

median 71

range 5 to 185

a The Salzer-Kuntschik (SK) grading system provides six grades: SK I—no residual viable tumor, SK II—

solitary viable tumor cells; SK III—< 10% viable tumor cells; SK IV—10 to 50% viable tumor cells, SK V—

50 to 80% viable tumor cells; and SK VI—> 80% viable tumor cells.
b CR—complete remission; DOD—dead of disease; AWD—alive with disease; LOFU—lost to follow up.

doi:10.1371/journal.pone.0123082.t002
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Network approach to identify osteosarcoma drivers
We adapted the network analysis from Cerami et al. [17] to identify enriched modules in OS
with the statistical computing environment R [23, 28] using the Bioconductor packages graph
[29] and igraph [30]. To determine the network of copy number altered genes in OS, protein
interaction data derived from the Human Protein Reference Database (HPRD) version 9 [31]
was used. Following, when referring to edges of a network, we implicitly mean gene- and pro-
tein interactions. These words are used synonymously throughout this study.

Identification of an osteosarcoma network. The OS network, including the significant
linker genes, was identified by superimposing the previously selected significant genes on to the
HPRD and by selecting their first neighbor nodes. The neighboring nodes, connecting at least
two significant genes, were kept in further analysis and called linkers. We tested, if the linker
nodes connected more copy number altered genes in OS than expected by chance. Therefore,
their number of neighbors in the HPRD was compared to the number of interaction partners
within the OS network using the hypergeometric test. The resulting linker nodes were filtered
by FDR<0.05. Further, the connectedness of the derived OS network was tested against ran-
domly selected networks. 449 copy number associated genes were present in the HPRD. Hence,
we selected the same number of genes for a random network generation. We sampled 1,000
times and selected at every time all genes respective linker nodes present in the HPRD. Further,
we compared the number of nodes and edges of the random networks with the observed one
and computed empirical p-values for the OS network’s connectedness. The sampling p-values
were determined by sum (connectedness random > connectedness) / number permutations.

Determination of osteosarcoma network modules. To determine closely connected
modules within the derived OS network, we run the edge betweenness algorithm and
assessed its modularity score [32]. Statistical significance of the network’s modularity was eval-
uated by the edge swapping algorithm [33]. We generated 1,000 random networks of fixed size
and node degrees as the observed OS network. For each swapped network, the modularity was
computed and compared to the observed network using the scaled modularity score [34].

Network visualization, module annotation, and survival analysis
The biological network respectively the modules were visualized using Cytoscape [35]. Nodes in
the network represent genes implicated in OS development. They are color coded according to
the type of genomic alteration: green for copy number losses, red for copy number gains, and
gray for linker genes. The size of nodes corresponds to the number of tumor samples with a dis-
tinct gene alteration. Altered genes are represented as circles and linker genes as diamonds. To
analyze the network topology, we computed the node degree distribution. The node degree is de-
fined as the number of direct neighbors of a node in a network. Nodes having a high number of
direct neighbors are thought to be important regulatory hubs inside the network [16]. Individual
network modules were functionally annotated using the Gene Ontology (GO) enrichment analy-
sis from Bioconductor’s GOStats package [36]. Enrichment was tested against all genes of the
HPRD network (background set). Multiple test correction was performed using the FDR ap-
proach [27]. The survival curves were generated using the Kaplan-Meier method, and a log-rank
test was applied to determine the prognostic significance by using the R package survival [37].

Results and Discussion

Representativeness of tumor samples and reliability of ASCAT approach
Copy number data of 44 fresh-frozen, pre-treatment tissue samples from OS patients were
achieved using Affymetrix SNP 6.0 arrays. As tumor samples comprise different cell
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populations of tumor and non-tumor cells, and often deviate from the diploid state, it is neces-
sary to correct copy number profiles for tumor ploidy and aberrant cell fraction [20]. This has
been shown to be true for OS [38], too. Running ASCAT resulted in allele-specific copy num-
ber profiles corrected for intra-tumor heterogeneity. Out of 44 samples, ASCAT failed to pre-
dict copy number profiles of 3 tumor biopsies that were excluded from further analyses.
According to ASCAT, the tumor biopsies were infiltrated with 31% non-aberrant cells on aver-
age with a mean ploidy of 2.8n. No correlation between aberrant cell fraction and tumor ploidy,
and occurrence of metastases, or response to chemotherapy was found. However, OS patients
whose tumors exhibited a ploidy pattern greater than 3 showed a poorer survival (Chi-square
p = 0.053, S1 Fig). This result is in accordance with studies from Kusuzaki et al. who revealed
that DNA ploidy patterns are of prognostic significance in OS [39, 40].

After correcting the copy number profiles for aberrant cell fraction and tumor ploidy, we
determined genomic gains and losses within our OS series. The number of numerical aberra-
tions between individual patient samples is highly variable. Copy number gains are ranging
from 7 to 190 and losses from 7 to 170 per sample, indicating the heterogeneity of OS between
different patients. Recurrent copy number variable regions are shown in S2 Fig Prominent
gains are located on chromosome arms 6p, 8q/9p and 17p and the losses on chromosome arms
3q, 6q, 8p/9p, 11p, 15q, and 17p among others. Several of these regions have frequently been
reported to be gained or lost in different studies of OS [3, 10, 13, 41–45]. The most common
gained and lost regions occurred in approximately 34% (8q) and 39% (1p) of OS samples, re-
spectively. Frequently both changes appear jointly. But this relatively low frequency illustrates
the diversity of the individual tumors and hampers the identification of common driver genes.

These results are in accordance with already published data demonstrating the quality and
representativeness of tumor samples used in the current study. Summing up, (1) we also
observed a prognostic tendency between tumor ploidy and disease outcome, (2) we noticed
high variability of chromosomal instability and affected genomic regions between different
patients, and (3) we determined recurrent regions of genomic alterations also found in
other studies.

Selecting driver genes of osteosarcoma
To detect genes located within significant regions of genomic alterations within the OS sam-
ples, we run GISTIC 2.0 [22]. GISTIC assesses the significance of numerical aberrations com-
pared to random background and has been shown to detect likely drivers in malignant tumors.
The analysis obtained 16 significant copy number gains and 35 significant losses containing
2,392 genes in total (q-value<0.25, Fig 2). The given characteristics is comparable to Both
et al. [46] even so they use a different workflow. S1 Table lists the GISTIC results in detail. To
explore copy number associated genes within the GISTIC regions, we assessed the quantitative
relationship between gene expression derived from Affymetrix Human Gene 1.0 ST arrays and
copy number profiles of the same OS samples. We could map the expression values of 1,360
genes located within significant regions of aberrations to their corresponding copy number val-
ues. To test weather this result can be also generated by chance, we compared this correlation
distribution against the background distribution and also to a distribution based on the recur-
rent regions. The correlation of the GISTIC genes is significantly higher compared to the back-
ground distribution of all genes and to genes located within recurrent genomic alterations (S3
Fig). This result additionally justifies the set of copy number associated genes within GISTIC
regions. Genes within the GISTIC regions are affected more directly by genomic alterations
than genes located within recurrent regions defined solely by a copy number approach (see pre-
vious chapter).

Genomic Heterogeneity Is Formalized by Network Modules
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For the further downstream analysis, only genes within GISTIC regions showing significant
correlation coefficients, compared to random correlations based on sample label permutations
(FDR<0.1), were considered to be copy number associated. In total, 826 genes showed signifi-
cant correlation values between expression and copy number profiles.

Copy number associated genes contained several prominent players of OS development, e.g.
RB1, CDKN2A, and CCNE3 [43–45]. However, many candidates frequently mentioned in the
context of OS like TP53, CDKN1A, or CDK4 were missing [45, 46, 47]. This does not mean
that these candidates are not altered or not involved, but point to a heterogeneous situation be-
tween the investigated samples concerning their genomic variations and corresponding expres-
sion levels (see also S2 Table). Again, this underlines the lack of a strict and common
genetic root.

Enhancing the gene set by a network approach
Up to this point, we have primarily characterized and integrated two data levels. The signifi-
cance was demonstrated by GISTIC and a second sampling approach. The existing driver gene
set might be closer to a OS consensus by adding network or interaction information thus

Fig 2. Significant regions of copy number variation in osteosarcoma. The plots show the q-values (x-axes) determined by GISTIC 2.0 with respect to
significant lost (blue) and gained (red) genomic regions among the human chromosomes 1 to 22 (hg19). The green lines indicate the significance threshold of
q-value<0.25. The cytobands of significant aberrant regions are denoted on the y-axes.

doi:10.1371/journal.pone.0123082.g002

Genomic Heterogeneity Is Formalized by Network Modules

PLOS ONE | DOI:10.1371/journal.pone.0123082 April 7, 2015 9 / 20



excluding side-effects from the gene list. We did that by adopting a network approach accord-
ing to Cerami et al. [17]. The OS network was generated by mapping the copy number-associ-
ated genes on the HPRD protein interaction data. We connected as much as possible of these
genes with each other via direct interactions and via linker genes. I.e., for each copy number as-
sociated gene pair, every interaction path of length 1 or 2 was identified. An interaction path of
length 1 denotes a direct interaction between two copy number associated genes. A path of
length 2 marks two copy number associated genes connected via a linker gene. A gene pair can
be connected by multiple linker genes. The linker genes should provide a broader biological
context for later module identification and interpretation than purely copy number associated
genes [17]. Only linker genes, whose first network neighborhood was significantly (FDR
<0.05) enriched for copy number associated genes, were considered for OS network genera-
tion. In total, we joined 254 copy number associated genes with each other and 247 linker
genes to one connected component. Further, the global connectivity of the copy number-de-
rived OS network was assessed by comparing the observed number of nodes and edges to net-
works obtained from randomly selected genes from the HPRD (S4 Fig). The OS network is
highly connected indicating a similar biological context for the copy number associated genes.

According to the node degree distribution of the OS network (S5 Fig), we defined global
hub genes as the top 5% of genes showing the highest number of interactions. Hub genes are
highly connected genes within a gene network that are thought to perform crucial functions in
the cellular system [16]. Table 3 lists all hub genes of the OS network. In total 28 hub genes are
listed. Some of them represent linker genes like AR, CDKN1A, and TP53. According to our os-
teosarcoma knowledge database (http://osteosarcoma-db.uni-muenster.de/, [47]), almost all of
these linker hubs have been implicated in OS development. On the contrary, a few copy num-
ber associated hub genes are lesser-known players in OS. However, they were reported in other
cancer entities. For instance, FYN is implicated in the metastasis of pancreatic cancer [48] and
EEF1A1 plays a role in metastatic progression of prostate cancer [49].

The results indicate that independent of the individual OS’s genomic complexity genomic
alterations occur within the same cellular network vicinity.

The network modules depict the cancer biology of OS
The OS network was further analyzed considering its structure and functional implications re-
garding cancer biology. On that account, we determined the modularity structure of the net-
work. A module is a more densely connected set of genes within the entire network. The
members of a module are thought to work in the same functional relationships [16]. We identi-
fied 26 modules within the OS network (Table 4). Furthermore, the modularity score of the
clustered OS network was compared to the modularity scores of 1,000 rewired networks of
fixed size and node degree distribution (S6 Fig). The test revealed that the observed OS network
is significantly more modular than expected by chance denoting distinct functional implica-
tions in OS development. Next, we computed enriched functional categories for each network
module. The most high ranking and informative GO terms were used for module annotation
(Table 4).

One prominent module is represented by module 3 containing amongst others the RB1
gene (Fig 3A, S3 Table). It is implicated in transcription and proliferation. The transcriptional
program is usually deregulated in cancer, which results in repression of differentiation related
genes or activation of oncogenes [50]. Module 3 contains well known transcription factors de-
regulated in OS. For example, the transcription factor encoded by the gene RUNX2 (gained) is
associated with osteoblast differentiation and OS [51]. The sex steroid receptors ESR1 (lost)
and AR (linker) have been reported to be related to OS proliferation [52], which is not
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wondering as OS frequently affects children and adolescents in times of hormonal changes [7].
Moreover, the members of NFKB signaling, NFKBIE (gained) and RELA (linker), have been re-
ported to be frequently gained in OS [53] and implicated in OS cell proliferation [54]. To sum-
marize, the mentioned transcription factors pointing to the regulation of cell proliferation,
which is one major function of the RB1 gene product (lost) [55] and its cell cycle members (e.g.
CCNE1 (gained), CCAR1 (lost),MDM2 (linker), TAF1 (linker),MNAT1 (linker), SMARCA4
(linker)). Independently from our approach we also annotated module 3 by means of the String
database [56]. The String database can be seen as a superset to HPRD, but is used here primari-
ly to illustrate the different known interaction resources for proliferation module 3 (S7 Fig).

Moreover, module 1 and 7 contain members of MAPK and NOTCH signaling as denoted
by the hub genesMAPK8 (lost) and DLL1 (lost) a NOTCH ligand (Fig 3B and 3C, S3 Table).
Both pathways are deregulated in OS development [57, 58]. Further modules are related to
DNA damage, stress response, epigenetic processes, mitosis, and cell motility functions essen-
tial for tumorigenesis [59]. These modules include OS-associated genes like CDKN2A (lost),

Table 3. Global hub genes within the osteosarcoma network.

Entrez geneid Symbol Degree Copy number alteration Osteosarcoma database

2099 ESR1 47 yes yes

5925 RB1 41 yes yes

6908 TBP 33 yes no

4093 SMAD9 27 yes yes

5599 MAPK8 22 yes yes

4188 MDFI 21 yes no

7157 TP53 20 no yes

7532 YWHAG 20 no no

5601 MAPK9 19 yes yes

2534 FYN 18 yes no

1915 EEF1A1 15 yes no

1029 CDKN2A 15 yes yes

367 AR 13 no yes

4089 SMAD4 13 no yes

2963 GTF2F2 13 yes no

3146 HMGB1 13 yes yes

6722 SRF 13 yes yes

3066 HDAC2 12 yes yes

5970 RELA 11 no yes

4217 MAP3K5 11 yes yes

3480 IGF1R 11 yes yes

55090 MED9 10 yes no

5592 PRKG1 10 yes no

6256 RXRA 9 no yes

1026 CDKN1A 9 no yes

6885 MAP3K7 9 yes no

7337 UBE3A 9 yes no

8773 SNAP23 9 yes no

The table lists the top 5% of genes with the highest number of interactions in the OS network. For each hub gene the Entrez geneid, the official gene

symbol and its node degree is given. The next column shows if the hub gene is copy number-associated while the last column denote if the gene is part of

the Osteosarcoma Database (http://osteosarcoma-db.uni-muenster.de/).

doi:10.1371/journal.pone.0123082.t003
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TP53 (linker), EZR (lost), FAS (linker),WRN (linker), HDAC2 (lost) that are involved in the
mentioned processes [60–65].

The Cytoscape session of the computed OS network modules is available for further explo-
ration (https://github.com/korpleul/PONED1451866R1). The presented modules illustrate
how the molecular factors within the OS network perform distinct functions that commonly
define tumor biology.

Make use of the osteosarcoma network modules
By analyzing individual modules for clinical relevance, we identified gene alterations that
might be of prognostic significance. The selection of interesting genes in all modules was pri-
marily focused on the gene members’ topology and different combinations of highly connected
genes and their effect on patients survival. Because of the limited amount of patients in our
study those first results are of preliminary nature but nevertheless might inspire and stimulate
discussion (Table 5). We detected a trend for poor outcome (Chi-square p-value<0.05) for the
deleted genesMAPK9 andMAP3K5 (module 1), EZR (module 2), EEF1A1 (module 4), UBE3A
(module 5), DLL1 and ADAM10 (module 7), TCP1 (module 15), CDKN2A (module 17),

Table 4. Osteosarcoma networkmodules.

Module Entrez geneid Symbol Hub degree # nodes # edges Biological context

1 5599 MAPK8 17 41 64 MAPK cascade

2 2534 FYN 13 39 44 cell adhesion

3 2099 ESR1 29 92 181 transcription regulation / proliferation

4 4093 SMAD9 16 40 44 chromatin silencing

5 7337/4734 UBE3A/NEDD4 5 11 13 proteolysis

6 7157 TP53 7 12 11 DNA repair

7 28514 DLL1 4 16 15 Notch signaling pathway

8 5592 PRKG1 7 28 33 cell communication

9 8773 SNAP23 8 30 37 membrane fusion

10 26258 BLOC1S6 4 13 13 mitosis

11 9444/57135 QKI/DAZ4 2 4 3 cell differentiation

12 23654/5923 PLXNB2/RASGRF1 3 12 11 GTP metabolic process

13 4089 SMAD4 7 22 24 cell-cell junction organization

14 29127 RACGAP1 2 3 2 cytokinesis

15 701 BUB1B 3 6 5 mitotic spindle checkpoint

16 55090 MED9 8 11 14 transcription

17 1029 CDKN2A 12 27 35 DNA replication

18 5045 FURIN 3 9 8 hormone metabolic process

19 4188 MDFI 12 14 16 macroautophagy

20 6500 SKP1 4 16 17 response to stimulus

21 5689 PSMB1 3 4 4 DNA damage response

22 79873 NUDT18 3 8 7 —

23 7532 YWHAG 12 26 25 G2/M transition of mitotic cell cycle

24 51678 MPP6 4 7 7 rRNA metabolic process

25 84466 MEGF10 4 7 6 chromatin assembly

26 9421 HAND1 2 3 2 —

For each module the Entrez geneid, the official gene symbol, and the hub gene degree for its hub gene is given. Moreover, the number of nodes and

edges and the biological context of its members are mentioned.

doi:10.1371/journal.pone.0123082.t004
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Fig 3. Selected osteosarcoma networkmodules. In this figures the OS network modules are illustrated for (A) the proliferation module 3, (B) the MAPK
signaling module 1, and (C) the NOTCH signaling module 7. They are shown as graphs with nodes and edges. Nodes correspond to genes and edges to
their protein interactions derived from the HPRD. Copy number-associated genes are presented as circles and linker genes as diamonds. The size of the
nodes corresponds to the percent of OS samples holding a specific copy number loss (green) or gain (red). The linker genes are not altered in OS, therefore
they have one size. Cytoband information can be found in Supporting Information S3 Table.

doi:10.1371/journal.pone.0123082.g003
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IGF2R (module 18), ANXA11 (module 20), and SHPRH (module 23). The deletion of those
genes seems to be correlated with poor survival (see S8 Fig for overall survival). In fact,
MAPK9,MAP3K5, EZR, CDKN2A, and IGF2R are known to be involved in OS progression.
MAP3K5 also known as apoptosis signal-regulating kinase is a member of the MAPK pathway
and activatesMAPK9 in response to various stress signals [66]. These genes have been reported
to show context sensitive functions. On one hand, they are able to induce angiogenesis [67],
and, on the other hand, they can induce apoptosis [68]. The cyclin dependent kinase inhibitor
gene CDKN2A is involved in cell cycle regulation due to cyclin phosphorylation. Loss of func-
tion mutations or deletions of this gene can lead to continuous cell cycle progression. CDKN2A
is frequently altered in various cancers [64] and also in OS [69]. Further, EZR is implicated in
OS metastasis [51] and IGF2R is increased on the cell surface of OS cell lines [70].

Contrary to that, the proliferation modules 3 and DNA damage module 6 are negative in
our search for prognostic relevance and are not mentioned in publications to be of prognostic
significance up to now. But this is now explainable by their module members. These modules
contain the prominent OS-associated genes RB1 and TP53. Patients with inherited diseases like
Retinoblastoma or Li-Fraumeni syndrome possess mutations or alterations within the RB1 and
TP53 genes, respectively, and are susceptible for OS development [4, 5]. Additionally, these
genes are frequently affected in sporadic OS. Hence, it does not seem surprising that their bio-
logical network vicinity lacks prognostic significance, as the processes regulated by them or
their interaction partners are constitutional for the tumorigenesis and tumor maintenance of
OS. Thus the established scheme of functional modules for OS is well backed by prior knowl-
edge and a stringent composition of the modules.

Looking on the genomic location of these genes in Table 5, it shows up that more than half
of the factors with prognostic potential are located on chromosome 6q. Chromosome 6q shows
frequent loss of heterozygosity in malignant tumors like breast cancer and ovarian cancer [71,
72]. Even in OS, a high allelic loss of several regions on chromosome 6q has been described [3,
73, 74] and could also be observed in this study. Nevertheless, the special role of chromosome
6q remains to be elucidated yet.

Table 5. Genomic locations of potential prognostic genes in osteosarcoma.

Module Entrez geneid Symbol Cytoband

1 4217 MAP3K 5q35

1 5601 MAPK9 6q22.33

2 7430 EZR 6q25.3

4 1915 EEF1A1 6q14.1

5 7337 UBE3A 15q11.2

7 28514 DLL1 6q27

7 102 ADAM10 15q22

15 6950 TCP1 6q25.3-q26

17 1029 CDKN2A 9p21

18 3482 IGF2R 6q26

20 311 ANXA11 10q23

23 257218 SHPRH 6q24.3

The table describes copy number associated genes with prognostic significance. For each gene, the

module, the Entrez geneid, its official gene symbol, and its cytoband in the human genome (hg19)

are given.

doi:10.1371/journal.pone.0123082.t005
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Alternatives
Beyond the already cited screening studies, there are some more array based studies published
[75] but none is following our comprehensive approach. Some studies are focusing solely on
expression data and pathways or regulation aspects [76–78]. The latter studies are looking on
downstream effects in the expressom itself. The very recent work from Both et al. [46], already
mentioned in the GISTIC chapter, is centered on individual driver genes in OS. This approach
is based on differential genes (human fetal osteoblast cell culture versus OS) and copy number
data and therefore closer to our approach. Important differences exist by the source of the sig-
nals and the applied theoretical procedures. Nevertheless in all cases a direct comparison re-
mains complicated because every approach possess his own work hypothesis and the results
are heavily influenced by the choice of the methods.

Compared with Both et al. the integration of HPRD data and a dedicated network approach
in our experimental design, in turn enables us to show how the genomic heterogeneity forms
an intrinsic order on the level of the network modules.

Conclusion
OS often present complex karyotypes including various copy number gains and losses, due to
their high chromosomal instability. This complexity hampers the identification of a conceptual
framework of OS biology. So if the order can not be established on the level of primary observa-
tions, it might be consequent to look at a higher level of abstraction, the biological network, es-
pecially the network modules. To address this issue, we adapted a network-based approach to
formalize the complex pattern of factors, affected by individual genetic changes, using their
functional associations within the cellular network.

The network approach showed several distinct modules with a specific functional context.
The modules are further supported by well-described candidates of the pathogenesis of OS.
These candidates are showing up in a consistent way in all modules according to their known
functionality. Actually, candidates that were missing in our set of copy number associated
genes appeared within the OS network as significant linker genes. These linker genes might be
used further to deduce functional mechanisms for unknown candidate genes [79], for instance
the putative prognostic genes detected on chromosome 6q.

To conclude, individual OS patients acquire different genomic alterations via diverse mech-
anisms that ultimately terminate in the typical clinical and morphological picture of OS [80].
Consequently, we observed a large genomic heterogeneity and complexity between individual
patients. However, we illustrated that the different genomic aberrations all affect the same cel-
lular network vicinity to maintain individual tumors.

Supporting Information
S1 Fig. Prognostic significance of ploidy patterns in osteosarcoma. The survival curve dis-
plays the survival frequency (y-axis) over time in months (x-axis). The OS samples were divid-
ed in non-diploid (ploidy> 3n, red) and diploid (blue) tumor samples. The prognostic
significance was determined using the log-rank test.
(TIF)

S2 Fig. Recurrent copy number variable regions. The genome-wide plot illustrates the fre-
quency of copy number alterations, namely losses (green) and gains (red), across 41 OS biop-
sies. Frequencies are presented among the human chromosomes 1 to 22 (hg19). The dotted
vertical line (gray) marks the 20% threshold of recurrent copy number alterations.
(TIF)

Genomic Heterogeneity Is Formalized by Network Modules

PLOS ONE | DOI:10.1371/journal.pone.0123082 April 7, 2015 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123082.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123082.s002


S3 Fig. Copy number associated gene correlation. The density curves display the frequency
(y-axis) of the Pearson correlation coefficients (x-axis) for the total number of genes on the
Human Gene 1ST array (Affymetrix Inc., gray), the genes located within regions of recurrent
copy number alterations defined by a frequency of 20% (blue), and genes located within re-
gions of significant copy number alterations defined by GISTIC 2.0 (red). The correlation dis-
tributions were compared to each other using the Kolmogorov-Smirnov test.
(TIF)

S4 Fig. Connectivity of the osteosarcoma network. The figures demonstrate frequency (y-
axis) of (A) the number of interactions (x-axis) and (B) genes (x-axis) of random networks de-
rived from the HPRD. The horizontal lines (red) indicate the observed value of the osteosarco-
ma network and the respective p-values.
(TIF)

S5 Fig. Node degree distribution of the osteosarcoma network. The plot shows the fraction
of genes (y-axis) among all node degrees (x-axis) of all genes within the osteosarcoma net-
works (gray). The horizontal lines indicate the average node degree of all genes (blue) and
the degree threshold for hub genes (red). Hubs are defined as the top 5% of genes with highest
degree.
(TIF)

S6 Fig. Modularity of the osteosarcoma network. The plot displays the frequency (y-axis)
among 1,000 modularity scores of random networks. The horizontal line (red) marks the ob-
served modularity score of the OS network and lists its respective p-value.
(TIF)

S7 Fig. Functional associations of members in the proliferation module 3. The network is
derived from the STRING 9.0 database [65]. It illustrates experimental and literature-mined
functional associations between genes within the proliferation module 3 of the
osteosarcoma network.
(TIF)

S8 Fig. Prognostic significance of copy number associated genes. The survival curves show
the overall survival frequencies (y-axis) over time in months (x-axis). The OS samples were di-
vided in copy number lost (green) and neutral (gray) tumor samples. The specific gene(s) ana-
lyzed regarding their prognostic significance are marked above the respective survival curves.
The prognostic significance was determined using the log-rank test.
(TIF)

S1 Table. Significant genomic alterations defined by GISTIC 2.0. The table reports all de-
tected significant GISTIC regions. It lists the cytobands, peak coordinates, number of genes lo-
cated within the respective regions, and the defined q-values.
(XLS)

S2 Table. Key values to TP53, CDKN1A, or CDK4. The table reports (A) expression values,
(B) copy number results by ASCAT and GISTIC of the three molecular factors.
(XLS)

S3 Table. Cytoband information to Fig 3. The cytoband information of all genes in module 1,
3, 7 is given.
(XLS)
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