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ABSTRACT

Quorum sensing, a special kind of cell–cell communication, has originally been described for
well-mixed homogeneous bacterial cultures. However, recent perception supports its eco-
logical relevance for spatially heterogeneous distributed cells, like colonies and biofilms.
New experimental techniques allow for single cell analysis under these conditions, which is
crucial to understanding the effect of chemical gradients and intercell variations. Based on a
reaction-diffusion system, we develop a method that drastically reduces the computational
complexity of the model. In comparison to similar former approaches, handling and scaling
is much easier. Via a suitable scaling, this approach leads to approximative algebraic
equations for the stationary case. This approach can be easily used for numerical situations.
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1. INTRODUCTION

We more and more understand that bacteria are not isolated individuals, but that having interaction

is central for them to perform well in different environments. Communication is one method to

optimize their behavior. Experiments target on the investigation of these communication structures. It is

technically more and more possible to address the behavior of single cells. Classical reaction-diffusion

models rather formulate dynamics on the level of population densities. These models have only a limited use

with respect to high-resolution experiments. However, they have the advantage that many mathematical

techniques are available to analyze these models (Logan, 2008).

On the other extreme, sophisticated stochastic simulation models are used to predict the behavior of

single cells. These models may be realistic, but are nontreatable anymore (Alpkvist et al., 2001; Czárán and

Hoekstra, 2009). We aim at a simple, deterministic, spatially structured approach that allows formulation of

the state of single cells and is still analytically treatable. The considerations here are closely related to

modeling approaches formulated in Müller and Uecker (2012); Müller et al. (2006); and Uecker et al.

(2014). The difference is that in these models, cells are balls that control in- and outflow. That is, the

signaling substance must not passively diffuse through the cell wall. However, this is the case for most

small signaling substances as many acyl homoserine lactones (AHLs) (Kaplan & Greenberg, 1985).

Bacterial cell–cell communication, usually called quorum sensing, has been described as a mechanism to
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ensure coordinated behavior on population level. In short, cells release signaling substances and measure

the environmental concentration of it. In response to this concentration, expression of genes, usually

involved in cooperative behavior, are regulated. As most pathogens regulate their virulence by quorum

sensing systems, this control strategy is of high human interest. A positive feedback loop, which is included

in most known quorum sensing systems, that is, upregulation of the signal production, was suggested to

allow for an all-or-none reaction of the population. Thus, two states can be distinguished: a noninduced

state with low signal production and an induced state with higher production.

In this context, quorum sensing has usually been analyzed on population level, both experimentally and

in modeling. Whereas this may often be adequate for mixed planktonic scenarios, most bacteria rather live

spatially fixed, for example, on surfaces as single cells, microcolonies, or biofilms. Under such spatially

heterogeneous conditions, gradients of, for example, signal concentrations can emerge. Thus, high-resolution

analysis is essential (Carnes et al., 2010; Hense et al., 2007; Meyer et al., 2012).

In the present work, we address exactly this situation of single cells in the stationary case, but omit the

cell walls. Cells are defined as places in space where signaling substance is produced. One advantage is that

the number of parameters is reduced: only the diffusion constant is required, no transport mechanism

through the cell wall needs to be defined. We simplify the model in the same spirit as in Müller and Uecker

(2012), Müller et al. (2006), and Uecker et al. (2014), and can thereby replace the original problem by a

point source problem. However, also in this point the setting we consider here has an advantage: the

approximation theorems are considerably more simple.

We apply the resulting, rather simple, model equations to observations for Pseudomonas putida, for

example, to investigate the influence of the diffusion rate and the spatial arrangement of the bacteria on the

communication. We will exemplarily apply our resulting model to look at several biological questions.

Whereas most experiments are conducted in aqueous culture media, the diffusion properties of the matrix in

natural situations may vary. Bacteria are found in the mucus on gut or lung epithel. Here, the diffusion rates

are lower, especially in, for example, patients with cystic fibrosis (Matsui et al., 2006). The question arises

whether this difference could affect the basics of cell–cell communication. We will thus simulate such a

scenario for different spatial cell arrangements.

2. MODEL

We consider N ball-shaped cells located in x1‚ . . . ‚ xN 2 R3 with radius R. Cell i occupies Oi = {jx -
xij < R}. Let u(x, t) denote the concentration of signaling molecules, and

ui(t) =
1

R3x

Z
Oi

u(x‚ t)dx

the concentration averaged over a ball of radius R (the location of the cells). We assume that the regulatory

network of cells sense this average concentration, and produce at rate f (u) signaling substance. For the time

being, we assume that f is differentiable, bounded, strictly monotonously increasing, and f (0) > 0. The

produced signaling substance diffuses at rate D and is degraded at rate c. Taken together, we obtain the

reaction-diffusion equation

ut = DDu - cu +
XN

i = 1

vOi
(x)R - 3f (R1ui): (1)

The heuristics for the scaling introduced in this equation is the following: A cell of radius R will produce

signaling substance at a rate proportional to its size, that is, proportional to R3; the factor R - 3f ($) balances

this effect. In order to understand the scaling of the argument of f ($), we note that a cell is expected to

resemble a point source for small R. The concentration develops a pole of first order, and hence also the

average ui will blow up with 1/R. The scaling Rui of the argument ensures that it is of order O(R0). These

considerations only reflect the rationale for the scaling. The computations below show that this scaling is

sensible indeed. We aim at an approximative L2-solution of the stationary state, denoted by v. As a

technical trick, we artificially tag the molecules of the signaling substance by the cell that produced the

molecule see Fig. 1 for a sketch). Let vi(x, t) denote the concentration of signaling substance produced by

cell i, then v(x, t) =
P

vi(x, t). Furthermore, we introduce
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vi‚ j =
1

R3x

Z
Oj

vi(x‚ t)dx‚

the average of the signaling molecules produced by cell i in the inner of cell j. This is assumed to govern the

reaction term. The reaction-diffusion equation (1) expands into a system of reaction-diffusion equations

(vi)t = DrDvi - cvi + vOi
(x)R - 3f (R1

XN

j = 1

vj‚ i) (2)

A short computation shows that, given vi, the function u =
P

vi indeed solved (1). Vice versa, if we have a

solution u, the linear, inhomogeneous equation

(vi)t = DDvi - cvi + vOi
(x)R - 3f (R1ui) (3)

defined functions vi that in turn satisfy (2).

3. ONE CELL

In case of one cell, (1) and (2) coincide. The stationary solution in this case can be analytically reduced to

a fixed point equation. Without restriction, we assume that the cell is located in x1 = 0 2 R3. Since the

substance production is only possible within the cell, the outer substance concentration is comprised by free

diffusion through the cell wall. In this case, we expect a radially symmetric solution. In polar coordinates,

(2) reads (for N = 1)

0 =
d2

dr2
v(r) +

2

r

d

dr
v(r) - c=Dv(r) + vr<Rm=D (4)

with m = R - 3f (R1v1) and v(r) bounded, v(r) / 0 for r / N . Obviously, we distinguish between the

intracellular and the extracellular space.

Proposition 1 The solution for Equation (4) in terms of m reads for r < R

v(r) =
m

c
1 + R +

ffiffiffiffi
D

c

s !
sinh ( -

ffiffiffiffiffiffiffiffi
c=D

p
r)

r
e -

ffiffiffiffiffiffi
c=D
p

R

" #
(5)

and for r > R

v(r) = m g(R)
e -

ffiffiffiffiffiffi
c=D
p

r

r
(6)

with

g(R) =
1

c
R cosh

ffiffiffiffiffiffiffiffi
c=D

p
R

� �
+

ffiffiffiffiffiffiffiffi
D=c

p
sinh -

ffiffiffiffiffiffiffiffi
c=D

p
R

� �h i
= R3=(3D) +O(R4):

For the proof see Appendix A.

We now compute u1.

FIG. 1. Signaling molecule production of each

cell and diffusion in and out of
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Proposition 2

u1 =
1

R3x

Z
r<R

u(r)4pr2 dr = m h(R) (7)

with

h(R) =
1

c
1 + 3

D

c
R +

ffiffiffiffi
D

c

s !
·

( sinh (
ffiffiffiffiffiffiffiffi
c=D

p
R) -

ffiffiffiffiffiffiffiffi
c=D

p
R cosh (

ffiffiffiffiffiffiffiffi
c=D

p
R))

R3
e -

ffiffiffiffiffiffi
c=D
p

R

" #

=
2

5D
R2 -

1

3D

ffiffiffiffi
c
D

r
R3 +O(R4)

(8)

Proof: Use (sinh(x) - x cosh(x))0 = x sinh(x). -

The computation of a stationary point is equivalent to a fixed point equation,

m = R - 3f (R1u1) = R - 3f (h(R) R1 m): (9)

Recall the properties of f ($): f is differentiable, bounded, strictly monotonously increasing, and f (0) > 0.

Thus, we find at least one solution m̂. This solution depends on R.

Theorem 3 For N = 1, Equation (1) possesses at least one positive, radial symmetric, stationary

solution in L2(R3).
We aim to investigate the outer solution u(r), r > R, for small R, in particular in the limit R / 0, again by

using approximative solutions.

Theorem 4 Consider one cell only, N = 1. Let uR(r) be a family of solutions of Equation (1) for R > 0,

which is smooth in R. Then, there is a solution v(r) (and M0) of

0 = DDv - cv +
4pM

3D
d0 (10)

M = f (2M=(5D)) (11)

such that

kuR(r) - v(r)kL2(fjxj>Rg)pCR:

if R is small enough. Furthermore,

jRuR - Mj =O(R):

Proof: The nonlinear problem can be solved if we know m = R - 3f (R1v1). We find a fixed point Equation

(9) for m. If we define M = mR3, this equation becomes M = f (h(R)R - 2M). As h(R)R - 2 / 2/(5D) for R /
0, we obtain a smooth family of solutions M = M(R), where M(R) converges to a solution M0 of (11).

For r > R we find the outer solution given by

uR(r) = M(R)R - 3g(R)
e -

ffiffiffiffiffiffi
c=D
p

r

r
! M0

3D

e -
ffiffiffiffiffiffi
c=D
p

r

r
= v(r) (12)

where the limit is pointwise; v(r) satisfies (10). We find

kuR - vk2
L2(fjxj>Rg) =

Z 1
R

4pr2(uR(r) - v(r))2dr

= M(R)R - 3g(R) -
M0

3D

� �2Z 1
R

4p e -
ffiffiffiffiffiffi
c=D
p

r
� �2

dr

=O(R2):
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This estimate establishes the L2 convergence on {jxj > R}. The estimate jRuR - Mj =O(R) is a direct

consequence of the definition of M and Prop. 2. -

Remark 5 Basically we find that—for R small—we are allowed to replace our original model (1) by a

point source (10) and (11): The outer solution (concentration of signaling substance) can be approximated

as well as the mean concentration uR, which triggers the response of a cell.

4. N CELLS

We now turn to the case of N cells of radius R, located in x1‚ . . . ‚ xN . The aim is to prove also in this case

a theorem similar to Theorem 4. Therefore, we replace in (2) the term R - 3f (R1
PN

j = 1 vj‚ i) by given

constants mi. In this case, the equations decouple, and we are back again in the case for one cell. The

solution is given by (5) and (6). This explicit solution allows to compute vi‚j explicitly in the leading orders

in R. We already know

vi‚ i = mih(R) =
2mi

5D
R2 -

mi

3D

ffiffiffiffi
c
D

r
R3 +O(R4)

and for i s j

vi‚ j = mj g(R)
e -

ffiffiffiffiffiffi
c=D
p

kxi - xjk

kxi - xjk
+O(R)

 !
=

mj

3D

e -
ffiffiffiffiffiffi
c=D
p

kxi - xjk

kxi - xjk
R3 +O(R4):

If we introduce as before Mi = R3mi, the consistency condition reads

Mi = f
2Mi

5D
-

Mi

3D

ffiffiffiffi
c
D

r
R +

X
i 6= j

e -
ffiffiffiffiffiffi
c=D
p

kxi - xjkMj

3Dkxi - xjk
R +O(R2)

 !
: (13)

We obtain an approximation theorem for the solutions vi of (3).

Theorem 6 Assume that there is a hyperbolic solution of

~Mi = f
2 ~Mi(R)

5D
-

~Mi R

3D

ffiffiffiffi
c
D

r
+
X
i6 = j

e -
ffiffiffiffiffiffi
c=D
p

kxi - xjk ~MjR

3Dkxi - xjk

 !
: (14)

Let furthermore ~vi 2 L2 the functions that satisfy

0 = DD~vi‚ R - c~vi‚ R +
4p ~Mi

3D
dxi
:

Then, there is a solution vi,R(r) of (3) that is in L2(fjx - xij > R)gO(R)-close to vi,R, such that

kvi‚ R(r) - ~vi‚ R(r)kL2(fjx - xij>Rg)pCR: (15)

if R is small enough. Furthermore,

jRvR‚ i‚ i - ~Mij =O(R2): (16)

Proof: As the solution of (14) is hyperbolic, we may perturb this system weakly, and still find a

solution close by. To be more precise, if R is sufficiently small, we find solutions Mi of (13) s.t.

jMi - ~Mij =O(R2):

This observation establishes (16). The inequality (15) follows in a similar way as in the one-cell-case (see

proof of Theorem 4). -
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5. APPLICATION

Next, we used the approximative system as introduced above to simulate some typical situations. All

simulations are shown for bacteria distributed randomly on a square-shaped area of side lengths 300 lm.

For the chosen parameter values, see Table 1. As concrete production term for the signaling substance (i.e.,

production and degradation), we choose

f (u) = a + b
u

Athresh + u

This corresponds to a simplified version of the positive feedback loop for P. putida, with Hill coefficient

n = 1 (see Fekete et al., 2010).

We start with the situation of two cells of P. putida with the distance of approximately 100 lm from each

other, under different diffusibility conditions, (see Fig. 2). The left picture shows bacteria in an aqueous

environment; the central picture in an environment of reduced diffusibility (0.1 of the value in water), as for

example in a kind of biofilm; the right picture in an environment of even more reduced diffusibility (0.01 of

the value in water). Obviously, there is no difference in the qualitative behavior, but the peak concentration

differs: as expected, in a situation with less diffusion, the signaling substance can accumulate better,

leading to higher concentrations in the peaks (see the scale). Please note that a logarithmic scale has been

used for the signaling substance concentration in the plots, due to better visibility and comparability.

Of course, our method also allows for computing the signaling substance distribution in real world

problems. Exemplarily, we show a situation for the pathogenic bacteria species Pseudomonas aeruginosa

in (spatially unlimited) lung mucus in Figure 3. These bacteria may be very harmful, especially for patients

with cystic fibrosis (CF), who have a more viscous mucus compared to healthy people. The signaling

substance parameters are assumed to be similar to those of P. putida, but with pH 7.3, which influences the

degradation of the signaling substance (Englmann et al., 2007). Furthermore, we can compare different

viscosity situations, concerning the diffusibility, to the situation in water. Obviously, in mucus stronger

accumulation takes place, leading to an easier induction of the system. The activation threshold is 70 nmol/l

Table 1. Chosen Standard Parameter Values for the Simulations

for P. putida with the Signaling Substance AHL

Parameter Description Value Reference

a AHL production rate 2:3 · 103 [ nmol
l�h ] a

b induced AHL production rate 2:3 · 104 [ mol
l�h ] a

D diffusion rate in water 3232542 [ lm2

h
] b

D diffusion rate in 2.5% mucus 1728000 [ lm2

h
] c

D diffusion rate in 8% mucus 176400 [ lm2

h
] c

Athresh induction threshold of AHL 70 [ nmol
l

] a

c degradation rate of AHL 0.005545/h d

aAccording to Fekete et al. (2010).
bDiffusion rate in water according to Hobbie (1988).
cDiffusion rates in mucus according to Matsui et al. (2006).
dAccording to Englmann et al. (2007).
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FIG. 2. Situation of two cells, with different diffusion rates: water (left), 0.1 times that of water (center), and 0.01

times that of water (right)
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(Table 1), which corresponds to approximately 1.8 in the logarithmic scale in Figure 3, where 20 randomly

distributed cells are shown. There, one fines several bacteria, which are not activated in the situation in

water, but in the corresponding mucus situation. By that, the bacteria may become more and aggressive

earlier than in ‘‘normal’’ patients.

6. DISCUSSION

By the approach presented here, we get a simpler possibility to understand the necessary scaling for the

approximative solution as, for example, in Müller and Uecker (2012); Müller et al. (2006); and Uecker et

al. (2014). As a result, we get a handy method for the numerical solution of stationary signaling substance

distributions for single cells located in R3. By using ‘‘mirror cells’’ (as usual, e.g., in electrostatics), many

confined geometries as half-spaces and cubes can be handled. Of course, it is not realistic to deal with

unlimited space, but as the diffusion of the signaling substance does not reach very far, this doesn’t play a

major role for practical purposes.

One relevant restriction concerns the distance between the single cells: The approximation is only valid

if the distance between cells is large in comparison with their diameter. Nevertheless, colonies with many

close cells can be easily simulated when handling the complete colony like one cell, where the production

rate is upscaled accordingly.

The simulations indicate that significant concentration gradients may emerge on microscale in a spatially

structured environment. It turns out that these gradients are of special importance for situations with low

diffusion rates, as can be found in, for example, mucus of some host epithelia or in the EPS matrix of

biofilms. The quorum sensing system is affected in two different ways: First, signal concentrations close to

the cells are higher. Therefore, smaller colonies are sufficient to induce the system. In fact, under extreme

diffusion confined conditions even a single cell may be sufficient for induction (Carnes et al., 2010). Second,

the relative influence of neighboring cells or colonies for induction decreases compared to the relevance of the

cell itself or the colony in which it grows. In other words, communication becomes more ‘‘private’’. This

reminds of the results of Fujimoto and Sawai (2013), who reported that reduced transport of signals through

the cell membrane results in a rather autonomous cell decision, whereas fast export supports a common of the

group. In other words, with low diffusion rates the influence of other cells or colonies decreases, that is, the

communication aspect of quorum sensing declines. All in all, communication is broken if the diffusion

coefficient is small. In this case, we cannot expect a synchronized, homogeneous response of the complete

population. The simulations indicate that in this case the population fragments are in small, heterogeneous

subpopulations. Similar to the results of Fujimoto and Sawai (2013), on population level, this could prin-

cipally change an all-or-nothing decision during growth into a rather graded decision, although on single cell

level the upregulation will remain switchlike. Changes of globality versus privacy in communication have an

impact on possible treatment strategies that aim at interfering with extracellular signaling.

Our results enable first insights into the fascinating question about the relevance of microscale com-

munication. It is connected with aspects of stability against cheaters, that is, mutants that do not contribute

to, but benefit from, the cooperation (Hense et al., 2007). Furthermore, the purpose of intra- or extracellular

signal degrading enzymes produced by the signaling cells themselves may be only fully understood if

investigated in microscale. As this resolution is still difficult to approach experimentally, mathematical

modeling and simulations provide central tools that allow for analyzing these effects.
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FIG. 3. Situation of 20 cells randomly distributed in space, adapted to the situation in lung mucus: water (left), 2.5%

mucus (center), and 8% mucus (right).
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APPENDIX A: COMPUTATIONS FOR PROP. 1

In order to solve Equation (4), we use the transformation

v(r) = s(r)=r‚ s(0) = 0

and find

0 = s00 - c=Ds + rvr<Rm=D: (17)

The solution is the sum of the homogeneous and the inhomogeneous solution. For the homogeneous

solution of (17), we obtain

s(t) = Ae
ffiffiffiffiffiffi
c=D
p

r + Be -
ffiffiffiffiffiffi
c=D
p

r

and the general solution for r < R reads

s(t) = Ae
ffiffiffiffiffiffi
c=D
p

r + Be -
ffiffiffiffiffiffi
c=D
p

r +
m

c
r:

Hence s(0) = 0 implies B = - A. Similarly for r > R we have

s(t) = Âe
ffiffiffiffiffiffi
c=D
p

r + B̂e -
ffiffiffiffiffiffi
c=D
p

r:

Since s(r)/r / 0 for r / N, Â = 0, one gets

s(t) = B̂e -
ffiffiffiffiffiffi
c=D
p

r:

We require s(t) 2 C1. The necessity of the smoothness on the boundary imposes the boundary conditions

where the solutions for r < R and r > R have to be equivalent at r = R, as well as the first derivatives

thereof:

A e
ffiffiffiffiffiffi
c=D
p

R - e -
ffiffiffiffiffiffi
c=D
p

R
� �

+
m

c
R = B̂e -

ffiffiffiffiffiffi
c=D
p

R

A
ffiffiffiffiffiffiffiffi
c=D

p
e
ffiffiffiffiffiffi
c=D
p

R + e -
ffiffiffiffiffiffi
c=D
p

R
� �

+
m

c
= -

ffiffiffiffiffiffiffiffi
c=D

p
B̂e -

ffiffiffiffiffiffi
c=D
p

R:

Hence,

A = -
m

2c
R +

ffiffiffiffi
D

c

s !
e -

ffiffiffiffiffiffi
c=D
p

R

and

B̂ =
m

2c
R +

ffiffiffiffi
D

c

s !
e -

ffiffiffiffiffiffi
c=D
p

R + R -

ffiffiffiffi
D

c

s !
e
ffiffiffiffiffiffi
c=D
p

R

" #
:

After computing the coefficients we obtain the explicit solution for r < R,

s(t) = Ae
ffiffiffiffiffiffi
c=D
p

r + Be -
ffiffiffiffiffiffi
c=D
p

r +
m

c
r:

Using A = - B and the value of A derived above, we obtain the explicit solution

=
m

c
R +

ffiffiffiffi
D

c

s !
1

2
e -

ffiffiffiffiffiffi
c=D
p

r - e
ffiffiffiffiffiffi
c=D
p

r
� �

e -
ffiffiffiffiffiffi
c=D
p

R +
m

c
r

and

u(r) =
m

c
1 + R +

ffiffiffiffi
D

c

s !
sinh ( -

ffiffiffiffiffiffiffiffi
c=D

p
r)

r
e -

ffiffiffiffiffiffi
c=D
p

R

" #
:

Respectively, for r > R we get
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:
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