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Abstract

Two factors contribute to Burkitt lymphoma (BL) pathogenesis, a chromosomal translocation leading to c-myc oncogene
deregulation and infection with Epstein-Barr virus (EBV). Although the virus has B cell growth–transforming ability, this may
not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence
supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc–driven growth
program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong
resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell
transformation) and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the
candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs
seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated
with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral
to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells
is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is
never completely eclipsed in in vitro–transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-
term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein
independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue,
is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL,
may contribute to virus-associated lymphomagenesis in vivo.
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Introduction

Burkitt lymphoma (BL) is a human tumor of B cell origin whose

pathogenesis involves complementation between a defined cellular

genetic change, translocation of the c-myc oncogene into an active

immunoglobulin (Ig) locus, and a B cell-transforming virus,

Epstein-Barr virus (EBV) [1,2]. C-myc deregulation appears to

be the crucial lymphomagenic event, since all BLs worldwide carry

a c-myc/Ig translocation, and in model systems, expression of c-

myc from such a construct converts B cells to the proliferating BL

phenotype [3–6]. There is, nevertheless, strong selection for EBV

as a complementing agent. Thus all cases of BL in its high

incidence (endemic) form are EBV genome-positive, as are 15–

85% of the low/intermediate incidence (sporadic) BLs seen

elsewhere in the world [7]. However, the virus’ role in BL

pathogenesis has remained obscure, not least because EBV gene

expression in tumor cells does not mirror that of a typical growth-

transforming infection.

To illustrate the point, Figure 1 (bottom line) shows the pattern

of latent gene expression established when EBV transforms normal

B cells into permanent lymphoblastoid cell lines (LCLs) in vitro.

This entails expression of the non-coding EBER RNAs, the

BamHIA rightward transcripts (BARTs) from which most of the

EBV micro(mi)-RNAs are derived [8,9], six nuclear antigens

(EBNA1, 2, 3A, 3B, 3C and –LP) and three latent membrane

proteins (LMP1, 2A and 2B). The LMPs are each expressed from

their own EBNA2-activated promoters. By contrast, the individual

EBNA mRNAs are generated by differential splicing of long

primary transcripts, initiated immediately post-infection from the

BamHIW promoter, Wp, and later from an adjacent pan-EBNA

promoter, Cp [10]. Interestingly, the same cDNA cloning studies

that first characterised the EBNA mRNAs also identified rare
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clones that spliced downstream of EBNA2 into BHRF1 [11–13], a

gene later recognised as a viral homologue of cellular bcl2 [14].

However the BHRF1 protein could never be detected in tightly

latent LCLs and it was subsequently identified as an early lytic

cycle protein [15] expressed from its own lytic cycle promoter [12].

More recently, transcription of the BHRF1 gene has been detected

in freshly-infected B cells but, because this was transient and

accompanied by a number of other lytic gene transcripts, it was

thought to reflect opportunistic transcription from the incoming

un-methylated virus genome [16].

As also illustrated in Figure 1 (upper lines), EBV-positive BL

tumors display quite different forms of latency, with many of the

transforming proteins being down-regulated. Most BLs express the

EBERs, BARTs and just one protein, EBNA1, from an EBNA1-

specific promoter, Qp [17–19], a form of infection referred to as

Latency I. The resident EBV genome in these tumors is wild-type

and transformation-competent [17]. However, we recently

identified another subset (around 15%) of BLs where, in addition

to EBNA1, the EBNA 3A, 3B, 3C proteins and in some cases also

a truncated form of EBNA-LP were expressed, always in the

absence of EBNA2 and the LMPs [20]. This reflected the use of a

different transcriptional programme, called ‘‘Wp-restricted laten-

cy’’, where the EBNA transcripts all derive from the Wp promoter.

Interestingly, another defining feature of ‘‘Wp-restricted’’ tumors

was the presence of a mutant EBV genome with a deletion

Figure 1. Patterns of EBV latent antigen expression in BL cells and LCLs. EBV is detected in one of two restricted forms of viral latency in BL
cells. Most endemic BLs carry a wild-type EBV genome as a Latency I infection involving expression of a single EBV antigen, EBNA1, from the Qp
promoter. A subset of 15% endemic BLs carries a mutant EBNA2-deleted EBV genome and expresses a Wp-restricted form of latency. This involves
expression of EBNAs 1, 3A, 3B, 3C, and in some cases a truncated(tr) EBNA-LP from a highly active Wp promoter. By contrast, when EBV transforms
normal B cells into LCLs in vitro, the established lines express a wider range of transforming proteins. This typically involves a highly active Cp
promoter (plus low-level Wp activity) leading to expression of EBNAs 1, 2, 3A, 3B, 3C, and 2LP, and expression of LMPs 1, 2A, and 2B from their own
EBNA2-dependent promoters. Coordinates of the transcription start sites based on the standard B95.8 strain sequence [59] are 11336 for Cp, 14384
for the most 59 copy of Wp, 62423 for Qp, 166498 for LMP2A, 169740 for LMP2B, and 169128 for LMP1. Note that the non-coding EBER RNAs and
BART transcripts are expressed in all the above forms of latency.
doi:10.1371/journal.ppat.1000341.g001

Author Summary

Cancer almost always develops through the cumulative
effects of several independent changes in the target cell.
For certain tumors, one step in the chain involves infection
of the cell with a particular type of virus. The best example
is Burkitt lymphoma (BL), a tumor of B lymphocytes which
develops through the combined action of a genetic
accident leading to uncontrolled expression of the c-myc
oncogene and infection with a common herpesvirus, the
Epstein-Barr virus (EBV). Recent evidence suggests that,
although latent EBV infection can itself drive B cell growth,
the virus plays a different role in the context of BL, namely
to counteract the naturally poor survival ability of c-myc–
expressing cells while leaving their c-myc–driven growth
intact. Here we show that EBV achieves this by unexpect-
edly switching on a viral protein that was thought never to
be seen in latent infection; this viral protein resembles one
of the cell’s own key survival proteins called bcl2.
Furthermore, the work has led us to realise that this virally
encoded bcl2-like protein is not only important in the
context of BL but, contrary to conventional wisdom, is
actually part of EBV’s natural strategy for B cell growth
transformation.

The EBV Wp/BHRF1 Connection
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removing the EBNA2 gene and some adjacent upstream and

downstream sequences. Note that, although EBNA2-deletion

events are sometimes detectable by PCR amplification at sites of

lytic virus infection in the oropharynx [21,22], viruses with such a

deletion are defective in transformation and have rarely if ever

been detected as latent infections of the normal B cell pool.

Therefore, detecting such rare mutant genomes in a significant

number of BLs strongly suggests that infection with an EBNA2-

deletion mutant (or, more likely, the Wp-restricted latency with

which such infection is associated) has markedly increased EBV’s

potential to act as a cofactor in BL development.

As to what that co-factor role might be, studies of c-myc-driven

B cell lymphomagenesis in mouse models have shown that

complementary changes often act by counteracting the pro-

apoptotic effects of high c-myc expression, thereby giving free rein

to myc-driven proliferation [23,24]. Indeed the first evidence

suggesting an anti-apoptotic role for the virus in BL came from

work with a Latency I BL line, Akata-BL, where EBV-positive sub-

clones proved to be slightly less sensitive to apoptotic stimuli than

sub-clones that had lost the EBV genome during in vitro passage

[25]. This has prompted a large volume of work attempting to

identify which Latency I gene products provide a survival

advantage to BL cells, with evidence of anti-apoptotic potential

being reported for the EBERs [26–29], for EBNA1 [30] and most

recently for a BART-derived mi-RNA [31] in different experi-

mental contexts. However the levels of apoptosis protection

mediated by Latency I infection in vitro are relatively slight and

the underlying mechanism remains to be fully resolved. It was

therefore notable that Wp-restricted BL cell lines were much more

resistant to cell death triggers than either EBV-negative or Latency

I BL lines [32]. This observation strongly reinforced the idea that

EBV’s role in BL pathogenesis was to counteract the pro-apoptotic

influence of deregulated c-myc expression. Our objectives in the

present work, therefore, were (i) to identify the viral gene expressed

in Wp-restricted but not Latency I infection, that was responsible

for this large increment in apoptosis protection, and (ii) to

determine whether the effect was unique to an EBNA2-deleted

virus acting in the context of a BL cell or might be highlighting a

Wp-associated function that is a natural feature of wild-type virus

infections.

Materials and Methods

Cell lines
The standard Latency I BL cell lines, Rael-BL, Sav-BL, Kem-

BL and Akata-BL, and the Wp-restricted BL cell lines, Sal-BL,

Oku-BL and Ava-BL, have been described previously [20], as

have the Awia-BL cell line and derived single cell clones (EBV-

negative, Latency I and Wp-restricted) and the Awia-LCL [33].

An EBV genome-loss clone of Akata-BL (EBV-loss Akata-BL) was

isolated by single cell seeding of the Akata-BL parental cell line. All

BL cells were maintained in RPMI 1640 (Invitrogen) containing

10% (vol/vol) selected fetal calf serum and 2 mM glutamine

(standard medium), further supplemented with 1 mM pyruvate,

50 mM alpha-thioglycerol and 20 nM bathocupronine disulfonic

acid. LCLs, all maintained in standard medium, were generated

from the peripheral blood B cells of healthy control donors by

infection with wild-type B95.8 strain EBV (WT-LCLs) and with

B95.8-derived recombinant viruses lacking an intact BHRF1 gene

(BHRF1KO-LCLs) [16] or BZLF1 immediate early lytic gene

(BZKO-LCLs) [34]. Note that WT-LCLs typically contain 1–3%

of cells in lytic cycle whereas BZKO-LCLs do not contain any

lytically-infected cells since the immediate early BZLF1 gene is

essential for initiation of the lytic cycle [34]. To provide a

reference culture enriched in lytically-infected cells, Akata-BL cells

were treated with anti-IgG (Cappell) at a concentration of 0.1%

(vol/vol) for 72 hours to induce EBV lytic replication in up to 60%

cells [35].

Plasmids
Inducible gene expression was achieved using pRTS-CD2, a

derivative of the pRTS-1 expression plasmid [36]. This plasmid

carries a truncated rat CD2 gene, the EBV origin of replication

(oriP) and the EBNA1 gene (encoding the viral genome

maintenance protein), in addition to a bi-directional doxycycline

(dox)-regulated promoter controlling expression of GFP and

truncated NGF receptor in one direction and the EBV gene of

interest in the other direction. Plasmids were constructed that

carried the EBV (B95.8 strain) genes encoding either EBNA3A,

EBNA3B, EBNA3C or BHRF1. The BHRF1 construct contained

a minimal cDNA with no other flanking EBV sequence; as a non-

coding control, we also generated a mutated construct (mut-

BHRF1) in which the start codon ATG of the above BHRF1

cDNA had been changed to TAG.

Generation of stable cell lines carrying regulatable
expression plasmids

The pRTS-CD2 derived expression plasmids (10–15 mg DNA)

were electroporated, either alone or in combinations, into 107 Sav-

BL, Akata-BL and EBV-loss Akata-BL. Cells were allowed to

recover in culture overnight before isolating viable cells by density

centrifugation followed by separation of rat CD2-expressing

transfected cells by magnetic cell sorting using OX34 anti-rat

CD2 antibody and MACS anti-mouse IgG2a/b beads (Militenyl

Biotech) according to the manufacturer’s guidelines. Cultures were

expanded and maintained in standard medium. To induce

expression of GFP and the gene of interest, dox was titrated into

the medium at concentrations from 1 ng/ml to 1 mg/ml for

24 hrs. Typically this procedure yielded cultures in which 30–80%

cells stably carried the plasmid; the remaining 20–70% cells lacked

the plasmid and served as internal controls. As an additional

control in all experiments, Sav-BL, Akata-BL and EBV-loss Akata-

BL cells were also transfected with a control plasmid which lacked

any EBV gene insert but carried dox-inducible GFP and the

truncated NGFR. Cultures were established using the same

protocol as above and, following dox-induction, GFP-positive and

GFP-negative cells were compared in the same way.

Cell sorting and detection of EBNA3C-positive cells
In the experiment to demonstrate that GFP expression

correlated with expression of the inserted EBV gene of interest,

Akata-BL cells stably transfected with the pRTS-CD2 EBNA3C

expression plasmid were exposed to 1 mg/ml dox for 24 hrs and

then sorted using a FACS Vantage into GFP-positive and GFP-

negative populations. These cell populations were smeared onto

microscope slides and fixed in ice-cold methanol:acetone (1:1 vol/

vol ratio) at 220uC for 20 minutes prior to immunofluorescence

staining for EBNA3C. The slides were incubated for 30 minutes at

37uC in blocking buffer (16PBS containing 10% heat inactivated

normal goat serum) to prevent non-specific antibody staining,

before being stained for 1 hr at 37uC with an antibody specific for

EBNA3C (E3CA10 [37]) used at a concentration of 5 mg/ml

diluted in blocking buffer. Cells were washed three times in

16PBS and then stained with a goat anti-mouse Alexa Fluor

fluorochrome 594 conjugated secondary antibody (Invitrogen) at a

dilution of 1 in 1000 in blocking buffer. Cells were washed three

times in 16PBS, mounted in VECTASHIELD medium contain-
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ing 49,6 diamidino-2-phenylindole (DAPI) (Vector Labs) before

being visualised on a epifluorescence microscope.

EBV gene expression
Immunoblotting was carried out as described previously [20]

using mAbs to: EBNA1 (1H4), EBNA2 (PE2), EBNA3C

(E3CA10), LMP1 (CS1-4), BZLF1 (BZ-1) (all used at dilutions of

1 in 50) [20]; BHRF1 (5B11: Millipore, used at a dilution of 1 in

1000), Calregulin (H-170, Santa-Cruz Biotechnology, used at a

dilution of 1 in 1000) and polyclonal antibodies specific for

EBNA3A and 3B (Exalpha Biologicals, Maynard, MA; the

antibodies were used at a dilution of 1 in 1000 to detect EBNA3A

and 1 in 500 to detect EBNA3B) and for PARP1 N-terminal

region (H-300, Santa-Cruz Biotechnology, used at a dilution of 1

in 1000). All immunoblots were repeated several times on different

protein samples.

To quantify mRNA expression, total RNA extraction and

cDNA synthesis was carried out as described previously [38].

Quantitative Taqman (Q)RT-PCR assays specific for Wp-

initiated, Cp-initiated, Qp-initiated, EBNA2 and LMP1 latent

mRNA transcripts and for BZLF1 (immediate early) and gp350

(late) lytic transcripts are described previously, as are the cell lines

used as positive controls for each assay [38,39]. In addition,

expression of the early lytic gene BMLF1 was assayed using a new

QRT-PCR assay involving a cDNA primer (59-GAGGAT-

GAAATCTCTCCAT-39) and the primers (59- CCCGAACTAG-

CAGCATTTCCT-39) and (59-GACCGCTTCGAGTTCCA-

GAA-39) with a FAM labelled probe (59-

AACGAGGATCCCGCAGAGAGCCA-39). To quantify BHRF1

expression, we designed two assays using a common cDNA primer

(59-TTCTCTTGCTGCTAGCT-39), reverse primer (59-

TCCCGTATACACAGGGCTAACAGT-39) and FAM labelled

probe (59-AATAGGCCATCTTGCTCTACAAGATCTGGCA-

39) all within the BHRF1 coding HF exon, but in combination

with one of two different forward primers. Latent BHRF1

transcripts were detected using a forward primer either in the

Y2 exon (59-GAGGATGAAGACTAAGTCACAGGCTTA-39)

or in the W2 exon (59-TGGTAAGCGGTTCACCTTCAG-39).

Note that both of these upstream primers will detect latent BHRF1

transcripts in WT-LCLs, but only the W2 primer will detect latent

BHRF1 transcripts in Wp-restricted lines where the deletion has

removed the Y2 exon. A standard LCL with 3% of cells in lytic

cycle was used as the positive control for the RT-PCR assays

detecting lytic BMLF1, BZLF1 and gp350 transcripts and was

assigned an arbitrary value of 1. For quantifying the latent W2-

BHRF1 and Y2-BHRF1 spliced transcripts an LCL derived from

a lytic cycle-deficient BZKO virus was used as a positive control

cell line and assigned an arbitrary value of 1. All QRT-PCR assays

were carried out in triplicate and all experiments were conducted

on at least three occasions.

Sequencing of the W2-HF PCR product
cDNA was generated as described above using the BHRF1

specific primer. An aliquot of 50 ng cDNA was amplified in a

conventional PCR reaction using Expand High Fidelity DNA

polymerase (Roche) and the W2 and BHRF1 PCR primers

described above. Briefly the cDNA samples were heated to 95uC
for 5 minutes before being subjected to 1 minute incubations at

95uC, 59uC, 72uC for 35 cycles. The W2-BHRF1 PCR products

were loaded and run on an 8% polyacrylamide gel in order to get

good separation of the 110–265 base pair products (the size of the

product depends upon the splicing pattern of the transcript in the

different cell lines, see Figure S3). The most intense bands were

excised from the gel and the DNA extracted and purified. The

DNA PCR product was sequenced using the W2 and HF primers

described above on an Applied Biosystems ABI 3700 automated

sequencer (carried out by the Functional Genomics Laboratory at

the University of Birmingham).

Apoptosis assays
For the standard panel of Awia-BL clones, 36104 cells were

seeded into wells of a flat-bottomed 96 well plate and treated with

either a final concentration of 0.25–1 mg/ml ionomycin (Sigma) or

2.5–10 mg/ml anti-IgM antibody (ICN Flow) at 37uC. Following

48 hrs ionomycin treatment or 72 hrs anti-IgM treatment, cells

were harvested, washed in 16PBS and resuspended in 0.5 ml

saline (pre-warmed to 37uC). Syto 16 (Molecular probes Europe,

Leiden, The Netherlands) was added to the cells at a final

concentration of 25 nM and incubated at room temperature for

1 hr, at which time 2.5 mg/ml propidium iodide (Sigma) was

added and the cells analysed immediately on a flow cytometer. A

two-dimensional dot plot was generated of Syto 16 fluorescence (y-

axis) versus propidium iodide fluorescence (x-axis). Syto 16 will

only stain viable cells whereas propidium iodide will preferentially

enter necrotic cells [40,41]. Viable cells (Syto 16 +ve, propidium

iodide 2ve), apoptotic cells (Syto 16 2ve, propidium iodide 2ve)

and necrotic cells (Syto 16 -ve, propidium iodide +ve) can

therefore be distinguished. Data for 5,000 cells was collected for

each cell line.

For the Akata-BL (parental and EBV-loss) and Sav-BL cultures

stably carrying dox-regulatable expression plasmids, cells were

plated out at a concentration of 26104 cells per well in a flat-

bottomed microtitre plate in media alone or media supplemented

with an appropriate concentration of dox (1–1000 ng/ml dox).

Cells were then incubated overnight at 37uC, 5% CO2 for the

expression of GFP and the EBV gene of interest to be induced.

The cells were then exposed to the apoptosis inducers, anti-IgM

(10–20 mg/ml) or ionomycin (5 mg/ml), and apoptosis assayed in

GFP-positive and GFP-negative cells within the same population

48–72 hrs later using propidium iodide (PI 2.5 mg/ml) to identify

dead cells. In these experiments cells were not dually stained with

Syto 16 because this dye is detected by flow cytometry in the same

channel as GFP. Cultures were then analysed by flow cytometry

immediately for GFP versus PI staining and results expressed as

the percentage death induction within the GFP-positive and GFP-

negative fractions. All apoptosis assays were carried out on

triplicate cultures on each occasion of testing, and each

experiment was carried out on at least three independent

occasions.

As an additional measure of apoptosis, 16105 Akata-BL cells

were plated out in multiple wells of a 24 well plate. To some wells,

dox was added to a final concentration of 500 ng/ml and the cells

incubated overnight at 37uC to allow the expression of GFP and

the gene of interest to be induced. Ionomycin was then added to

all the wells at a final concentration of 5 mg/ml and the cells

incubated at 37uC for 18 hrs. The cells were then harvested,

washed twice in 16PBS and the protein extracted. Western

blotting was carried out on 20 mg protein and the membranes

probed with an anti-PARP 1 antibody specific for the N-terminal

region (H-300, Santa-Cruz Biotechnology, used at a dilution of 1

in1000).

Infection of primary B cells
To analyse events occurring soon after EBV infection in vitro, B

cells isolated from adult peripheral blood mononuclear cells

(PBMCs) by positive selection using M-450 CD19 Dynabeads

(Dynal) were exposed to recombinant EBV (WT, BZKO or

BHRF1KO virus) at a MOI of 100 overnight at 37uC, then
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resuspended in fresh media and plated out at a concentration of

46106 cells per well of a 24 well plate. At each time point (0, 8, 12,

24, 48, 72, 120 hours post-infection) cells were harvested for RNA

(46106 cells) and protein (86106 cells). All infections were carried

out on at least three independent occasions.

T cell recognition assays
These experiments involved both freshly-infected B cells studied

4 and 8 days post infection and established LCLs as targets,

infections being carried out using recombinant WT virus, the

BZKO virus or the BHRF1KO virus. In each case cells were

isolated from individuals of known HLA type, positive for

DRB1*0401 and DRB1*1501 restricting alleles, or (as a control)

from donors mismatched for the alleles. Target cells pre-pulsed for

1 hr with 5 mg/ml relevant epitope peptide served as a positive

control. To assay T cell recognition standard numbers (2000 cells

per well) of CD4+ T cells specific for the HLA-DRB1*0401-

restricted BHRF1 122-133 epitope (designated PYY, [42]), the

HLA-DRB1*0401-restricted EBNA2 11-30 epitope (designated

GQT, [43]) or the HLA-DRB1*1501-restricted gp350 61-81

epitope (designated LDL, [44]) were incubated in 200 ml medium

in 96-well V-bottom plates with 105 target cells per well. The

supernatant medium, harvested after 18 hrs, was then assayed for

IFNc by ELISA (Perbio) in accordance with the manufacturer’s

protocol. All T cell assays were conducted in triplicate and all

experiments on freshly infected cells and on established LCLs were

conducted on at least three independent occasions.

Statistical analyses
The numerical data derived from the QRT-PCR and apoptosis

assays were statistically analysed using the computer program

GraphPad Prism 4 (GraphPad Software, CA, USA). For the

QRT-PCR assays, the normalised values from all the replicates of

the Wp-restricted and Latency I BL cell samples were compared

using an unpaired student t-test (two-tailed, 95% confidence

interval). For the apoptosis assays performed on the Awia-BL cell

lines (Figure S1B), triplicate values for each cell line were used and

an unpaired student t-test (two-tailed, 95% confidence interval)

employed for the following comparisons; EBV-negative BLs to

Latency I BLs and Wp-restricted BLs to EBV-negative and

Latency I BLs. For the apoptosis assays performed on the cell lines

carrying the pRTS-CD2 plasmids, the values for the percentage

death induction in the GFP-positive and GFP-negative cells within

each population from triplicate cultures were analysed. Since the

individual readings were derived from the GFP-positive and GFP-

negative cells within the same culture, here we carried out a paired

student t-test (two-tailed, 95% confidence interval) to compare

death induction in the GFP-positive (plasmid-positive) cells to the

GFP-negative (plasmid-negative) cells.

Results

The strength of protection from cell death offered to BL cells by

a Wp-restricted form of infection is best illustrated in the context of

an isogenic system. Awia-BL is an endemic tumor with a

characteristic t(8:14) c-myc/Ig translocation from which we were

able to isolate Wp-restricted, Latency I and EBV genome-loss

clones in early passage [33]. Figure S1A shows an immunoblot of

EBV latent protein expression in these cells, indicating that Wp-

restricted clones are distinct from Latency I clones in expressing

the EBNA3 proteins in addition to EBNA1. Figure S1B shows

representative data from experiments in which these same clones

are subjected to graded doses of cell death triggers such as B cell

receptor ligation (anti-IgM) or an intracellular calcium ionophore

(ionomycin). We have previously shown that the cell death being

induced in this system is largely via apoptosis, involving caspase

cleavage [33]. Clearly, the Wp-restricted cells are resistant to

triggering doses (10 mg/ml anti-IgM, 1 mg/ml ionomycin) that

induce widespread death in Latency I and EBV-negative cells. By

comparison, the protection being offered by Latency I infection in

such assays is much less marked, with differential survival of

Latency I compared to EBV-negative clones only being seen as a

partial effect at lower anti-IgM and ionomycin doses. Such results

strongly suggested that one or more of the viral genes that were

exclusive to the Wp-restricted form of infection were responsible

for a pronounced increment in cell survival capacity. Referring

back to Figure 1, the obvious candidates in that respect were the

EBNA3 proteins and/or the predicted product of a truncated

EBNA-LP coding sequence (i.e. containing the repeat domains

encoded by the W1 and W2 exons, but lacking the unique

domains encoded by the Y1 and Y2 exons that are always

removed by the deletion). In that regard, while Wp-restricted BL

lines and clones are consistently EBNA3-positive, many lack

detectable expression of EBNA-LP yet still retain strong apoptosis

resistance in the anti-IgM and ionomycin assays [32]. Hence, even

though truncated EBNA-LP has been associated with anti-

apoptotic effects in some systems through an interaction with

protein phosphatase PP2A [45], it could not be responsible for the

global apoptosis protection observed in Wp-restricted BLs. At this

point, therefore, we focused on EBNA3A, 3B and/or 3C as the

potential mediators of protection.

Apoptosis assays following inducible EBNA 3 protein
expression in Latency I BL cells

In these experiments, we sought to avoid the problems of inter-

clonal variability that can beset gene transfection and drug

selection experiments in the BL system. Instead we used a new

EBV ori-p-based plasmid, illustrated in Figure S2A, which is

designed for stable maintenance as an episome in BL cells [36].

Vectored expression of a surface marker, rat CD2, early after

transfection allows transfected cells to be enriched, generating a

passageable culture in which typically 30–80% of cells carry the

plasmid. Thereafter expression of the gene of choice can be

induced in a dose-dependent manner by addition of dox. At the

same time, dox-dependent co-induction of GFP allows one to

distinguish the plasmid-positive cells by FACS staining (Figure 2A).

Note, we have confirmed that GFP and the inserted EBV gene of

interest are co-expressed in the same cells following induction of

the bi-directional promoter with dox (Figure S2B). Initially, two

Latency I BL lines (Sav-BL and Akata-BL) were transfected with

vectors expressing either EBNA3A, 3B or 3C. Figure 2B (left)

confirms that, in each case, expression of the gene of interest is

tightly dox-dependent and can be induced either to physiologic

(LCL-like) levels or much higher depending on the dox

concentration. Following induction, the culture is subjected to

apoptotic triggers and subsequently stained with propidium iodide

(PI), thereby allowing comparison of the percentage of dead/dying

cells in the GFP-positive (EBNA3-expressing) versus GFP-negative

(control) fraction. Figure 2B (right) shows data from such an

experiment on the Sav-BL background. None of the EBNA3

proteins, expressed individually, offered any apoptosis protection.

We then carried out experiments in which the same Latency I lines

were co-transfected with the EBNA3A and 3C vectors, since

EBNAs 3A and 3C can act cooperatively to alter other aspects of

the BL phenotype [46], or with all three EBNA3 vectors. The

appropriate combinations of EBNA3 proteins were detectably

induced in each case but again showed no evidence of apoptosis
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Figure 2. Analysis of the role of the EBNA3 proteins in apoptosis protection. Sav-BL cells were stably transfected with expression plasmids
encoding GFP in combination with one or more of the EBNA3 proteins under the control of a bi-directional dox-responsive promoter. (A) FACS
profiles showing GFP expression in an EBNA3A-transfected Sav-BL line before and after 24 hr exposure to increasing doses of dox. (B) Left panel
shows immunoblotting of either EBNA3A-, EBNA3B-, or EBNA3C-transfected Sav-BL lines following 24 hrs exposure to increasing concentrations of
dox; expression levels are compared to those seen naturally in a control LCL. Protein size markers are in kD. Right panel summarises the results of an
apoptosis assay on the Sav-BL cells carrying either the EBNA3A, 3B, or 3C plasmids as above or a control plasmid. Cultures of untreated cells or cells
induced for 24 hrs with 500 ng/ml dox were exposed to 5 mg/ml ionomycin for 48 hrs, and death induction was detected by PI staining and flow
cytometry. In the dox-induced cultures, cell death was separately assayed in the GFP-positive (EBNA3-positive; green bars) and GFP-negative (EBNA3-
negative; black bars) cells within the same culture. (C) An equivalent experiment to that described in (B) above, now conducted on Sav-BL cells
transfected either with all three EBNA3 expression plasmids, or with EBNA3A and EBNA3C together, or with a control plasmid. Left panel shows
immunoblotting for the EBNA3 proteins in these transfected lines following 24 hrs exposure to 500 ng/ml dox. Right panel summarises the results of
an apoptosis assay on these same cells, either untreated or induced for 24 hrs with 500 ng/ml dox and then exposed to 5 mg/ml ionomycin for
48 hrs. Results are expressed as in (B) above. Note that the apoptosis assay results in (B) and (C) are shown as the mean percentage death induction+/2
SD of triplicate cultures of each type in a representative experiment; cells expressing EBNA3A and/or 3B and/or 3C were not significantly
protected from apoptosis compared to control cells. In each case, similar results were obtained in three further experiments of the same
type.
doi:10.1371/journal.ppat.1000341.g002
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protection, either in Sav-BL (Figure 2C) or Akata-BL cells (data

not shown).

Expression of BHRF1 as a latent protein in Wp-restricted
BL cells

In view of these results, we turned to the possibility that viral

gene expression in Wp-restricted BL cells was more extensive than

first thought and that other anti-apoptotic candidates, perhaps

inappropriately expressed as a consequence of the EBNA2 gene

deletion, had been missed. In that regard, Figure 3A illustrates the

position of the deletions in Wp-restricted BL lines in relation to the

EBV genome as a whole. Note that, in the wild-type genome, the

whole BamHI W fragment is tandemly reiterated to form a large

internal repeat that lies immediately upstream of the BamHI Y

fragment containing the EBNA2 gene. While all four Wp-

restricted lines analysed (Awia-BL, Sal-BL, Oku-BL, Ava-BL)

carry virus genomes with unique deletion boundaries (see

Figure 3A, black bars), in each case the deletion extends upstream

of the EBNA2 coding sequence into a BamHI W fragment, thereby

removing the unique Y1,Y2 exons of EBNA-LP, and downstream

into the BamHI H fragment, removing most if not all of the

BHLF1 lytic cycle gene. As illustrated, this brings that copy of the

Wp promoter which is nearest the 59 deletion boundary proximal

to the previously described lytic cycle gene encoding the viral

(v)bcl2 homologue BHRF1 [15].

We therefore designed a QRT-PCR assay for a transcript that

splices from the W2 exon (present in all Wp-driven RNAs) into the

BHRF1-coding exon. This was then used to look for evidence of

such a W2-BHRF1-spliced species in the previously described

panel of Awia-BL clones and in other BL lines representative of

Wp-restricted and Latency I infections. Figure 3B shows the results

of these W2-BHRF1 transcript assays alongside parallel QRT-

PCR assays specific for (i) the Qp-driven EBNA1 transcript known

to be expressed in Latency I lines, (ii) all Cp-driven transcripts, and

(iii) all Wp-driven transcripts. Within the BL cell panel, the Wp-

restricted BL lines and clones were, as expected [20], distinguished

by high Wp usage in the absence of either Qp or Cp activity;

importantly, these same Wp-using cells also expressed correspond-

ingly high levels of the W2-BHRF1-spliced transcript. For all four

Wp-restricted BL tumors, the products of RT-PCR amplification

with the W2 and BHRF1 primers were then sequenced to

determine their splice structure. As fully described in Figure S3,

the structures were slightly different in each tumor depending

upon the position of the 59 deletion boundary relative to the W1

and W2 exons and the position of the 39 boundary relative to the

H2 exon that lies immediately upstream of BHRF1. However, all

transcripts spliced from the BamHI W fragment into the BHRF1-

coding exon.

We therefore screened the same cell line panel for the presence of

BHRF1 protein by immunoblotting with the specific mAb 5B11. As

illustrated in Figure 3C, the Wp-restricted BL cells did indeed

express the protein, although at levels below that seen in a reference

track made from a culture enriched in lytically-infected cells; note

that, in lytic cycle, BHRF1 is abundantly expressed from its own lytic

cycle promoter situated just upstream in the H2 exon [12]. To

counter the possibility that BHRF1 expression in Wp-restricted BL

lines simply reflected the presence of a few cells spontaneously

entering lytic cycle, we screened these same lines by QRT-PCR

assay for transcription of the immediate early lytic gene BZLF1

(Figure 3B) and by immunoblotting for BZLF1 protein (Figure 3C),

both sensitive indicators of lytic cycle activity. There was no evidence

of such activity, strongly suggesting that BHRF1 is indeed being

expressed as a latent protein in Wp-restricted BL cells.

Inducible BHRF1 expression protects Latency I BL cells
from apoptosis

We then asked whether expressing appropriate levels of BHRF1

protein in Latency I BL cells would be sufficient to confer the

marked resistance to apoptotic triggers characteristic of Wp-

restricted BL cells. In this regard, recent work has identified three

EBV miRNAs whose expression is associated with BHRF1

transcription and whose coding sequences lie close to, but outside,

the BHRF1 protein-coding sequence [8,9,47]. Therefore, to avoid

any possible contribution from these or other as-yet-undiscovered

miRNAs from this region, the following experiments used an

expression construct containing only the BHRF1 cDNA sequence

and, as a control, the same construct with a mutation in the initial

methionine codon (mut-BHRF1). These constructs were cloned

into the dox-regulatable vector and introduced into two Latency I

BL lines, Akata-BL and Sav-BL. Figure 4A confirms induction of

BHRF1 protein expression in Akata-BL cells carrying the wild-

type BHRF1 coding sequence; note that with an inducing dose of

1 ng/ml dox, BHRF1 expression was similar to that seen in the

Wp-restricted Awia-BL clones whereas, at 1 mg/ml dox, it

approached the much higher levels seen in EBV lytic cycle. These

BHRF1 transfectants, plus control transfectants carrying either the

mut-BHRF1 sequence or an empty vector and also the previously

described EBNA3A, 3B, 3C Akata-BL transfectants, were then

exposed to different dox concentrations before assaying for

sensitivity to a 5 mg/ml ionomycin challenge. As shown in

Figure 4B, the wild-type BHRF1 transfectants were completely

protected even at the lowest level of BHRF1 expression whereas

the other three types of transfectant remained as sensitive as the

co-resident non-transfected population. Equally efficient protec-

tion from ionomycin- and anti-IgM-induced apoptosis was also

mediated by BHRF1 in the Sav-BL cell line (data not shown). To

ensure that this effect of BHRF1 was also apparent in an EBV-

negative BL cell background, we generated the same panel of

transfectants in EBV-loss Akata-BL cells and obtained an exactly

similar pattern of results, as shown in Figure S4A. Throughout

these experiments we also confirmed that the anti-IgM- and

ionmycin-induced cell death was occurring predominantly by

apoptosis, with typical PARP cleavage detectable in dying cells

and protection from that cleavage in cells induced to express

BHRF1 (Figure S4B).

Expression of BHRF1 as a latent protein in B cell growth–
transforming infections: Physiological relevance of the
Wp/BHRF1 connection

Having observed this connection between Wp activity, BHRF1

expression and apoptosis resistance, we were interested to check its

possible relationship to the recent finding that, in vitro, BHRF1 is

transiently expressed in newly-infected B cells, thereby promoting

their survival immediately post-infection [16]. We therefore asked

whether the W2-BHRF1-spliced transcript seen from an EBNA2-

deleted genome in Wp-restricted BL cells might also be expressed

in normal B cells following infection with a transforming (i.e. non-

EBNA2-deleted) virus.

In this regard, it is known that Wp is activated immediately

following infection, rapidly rises to a peak and then falls as Cp

takes its place as the dominant EBNA promoter; LMP1

transcription is EBNA2-dependent and is not seen until after Cp

becomes dominant [48]. Since the Wp (and Cp) promoters

specifically give rise to RNAs with a W1W2Y1Y2 splice structure

[11,49,50], it was anticipated that any latent BHRF1 transcript

encoded by such a virus would be detectable both by the

previously designed W2-BHRF1 transcript assay and by a newly
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designed QRT-PCR assay using Y2 and BHRF1 primer pairs.

The relevant splice structures and primer/probe locations are

illustrated in Figure 5A. Normal B cells from healthy donors were

therefore exposed to EBV, cultured and then harvested after

intervals up to 120 hrs later. Note that, to avoid possible

complication from lytic BHRF1 gene expression in these

experiments, we used a recombinant EBV strain (BZKO) that

had been rendered incapable of lytic cycle entry by deletion of the

BZLF1 immediate early gene. Figure 5B shows the QRT-PCR

results obtained when virus gene expression in infected B cells

was analysed using the W2-BHRF1 and Y2-BHRF1 assays, as

well as the standard assays detecting all Wp-initiated transcripts,

all Cp-initiated transcripts and LMP1 transcripts. As shown in

Figure 5B, W2-BHRF1-spliced and Y2-BHRF1-spliced transcripts

were detected as early as 8 hrs post-infection, peaked within 12 hrs

and then fell, exactly matching the kinetics of Wp-activity.

Figure 5C shows the results obtained when cells from the same

experiment were assayed for protein expression by immunoblot-

ting. EBNA2 and EBNA-LP, the immediate products of Wp

transcription, were easily detectable by 24 hr while low levels of

BHRF1 were just detectable by 24–48 hrs, some 2–3 days before

LMP1. In view of the low levels of BHRF1 detected by

immunoblotting, we sought to confirm protein expression by

another method. This took advantage of the fact that cells

endogenously expressing BHRF1 are efficiently recognised by

CD4+ T cells specific for a derived peptide epitope presented by

the HLA-DR4 allele [42]. We therefore raised CD4+ T cell clones

specific for this BHRF1 epitope from a DR4-positive EBV-

immune donor and tested these on autologous B cells after

infection with the BZKO virus. As an internal control, we also

tested the same target cells for recognition by CD4+ T cells against

another DR4-restricted epitope, this time derived from an antigen

known to be expressed early post-infection, EBNA2 [43]. The

results of these assays are presented in Figure 5D as histograms of

interferon-gamma (IFNc) release; in each case, recognition of

infected targets is shown relative to the maximum seen when the

same target cells are pre-pulsed with the relevant synthetic epitope

peptide. Both sets of antigen-specific T cells showed clear

recognition of target B cells at both 4 and 8 days post-infection;

indeed the BHRF1 effectors gave the stronger signals. Note that

this recognition required de novo protein synthesis (rather than

antigen acquired from the virus preparation) since DR4-positive B

cells assayed immediately after overnight exposure to the virus

were not recognised (data not shown). To further check that the

BHRF1 effectors were specific, we carried out an equivalent

experiment this time using a recombinant EBV (BHRF1KO) in

which the BHRF1 gene has been inactivated by insertion of a

kanamycin resistance cassette [16]. Cells infected with this virus

were indeed not recognised by the BHRF1-specific effectors but

were recognised by T cells specific for EBNA2 (Figure 5D).

Because all of the above experiments had involved recombinant

viral strains, we then repeated the work on cells freshly infected

with wild-type virus and obtained a similar pattern of results

whether assaying for BHRF1 expression by transcription, by

immunoblotting or by T cell detection (Figure S5).

Given that Wp has been shown to remain constitutively active

at a low level in all LCLs [51,52], we went on to ask whether latent

BHRF1 expression might persist in the longer term. LCLs were

therefore established from a range of donors using both wild-type

and BZKO virus strains, then assayed after 2–4 months in culture

for latent BHRF1 transcripts, as well as for representative early

(BMLF1) and late (gp350) lytic cycle RNAs. Latent BHRF1-

spliced transcripts were consistently detected in all LCLs, whether

transformed with wild-type or BZKO virus; data from the Y2-

BHRF1 QRT-PCR assay are shown in Figure 6A; results from the

W2-BHRF1 assay were very similar (data not shown). Sequencing

of the W2-BHRF1 RT-PCR products confirmed that they did

indeed represent RNAs with the predicted W2-Y1-Y2-BHRF1

splice structure (see Figure S3). By contrast BMLF1 and gp350

transcription was only detected in LCLs carrying wild-type virus,

reflecting the presence in these lines of a small percentage of cells

spontaneously entering lytic cycle. Interestingly, in all the LCLs,

residual Wp activity correlated well with latent BHRF1 transcript

levels. However these levels were lower than those seen in freshly-

infected cells and, accordingly, BHRF1 protein expression in

BZKO LCLs was often at or below the borderline of detectability

by immunoblotting (data not shown). However, we reproducibly

could detect endogenous expression of the BHRF1 protein in both

BZKO and wild-type LCLs by CD4+ T cell assay. Figure 6B

shows the results of such assays conducted on pairs of LCLs

generated from three different donors; note that these donors were

chosen because they were positive both for HLA-DR4, the

restricting allele for the BHRF1-specific T cells, and for HLA-

DR15, the restricting allele for a CD4+ T cell clone specific for

gp350, a late lytic cycle protein. As expected, only wild-type LCLs

with some cells in lytic cycle could be recognised by the gp350-

specific effectors. However, BHRF1-specific CD4+ T cells

consistently recognised both the wild-type and the BZKO LCLs

at remarkably high levels, up to 33% of that seen on cells pre-

pulsed with cognate peptide.

Discussion

This work was prompted by the recent finding that, in 15% of

endemic BLs, tumor pathogenesis appears to have selected for

infection of the target cells with an EBNA2 gene-deleted virus, a

transformation-defective mutant that we presume represents only

a tiny fraction of the total virus load in the B cell system in vivo.

Figure 3. Gene expression analysis of Wp-restricted and Latency I BLs. (A) Linear BamHI restriction map of the EBV genome with a region
containing two copies of the BamHI W repeat, and the adjacent BamHI Y and H regions expanded. Wp-restricted BLs carry deletions in that region
(see black bars) as described in [20,33]. These deletions remove part of a BamHI W fragment, all of BamHI Y fragment (including the EBNA2 gene), and
part of the BamHI H fragment (including most or all of the BHLF1 gene). (B) Results from QRT-PCR assays used to detect Qp, Wp, and Cp promoter
activity, W2-BHRF1-spliced transcripts, and BZLF1 lytic transcripts in (left panel) EBV-negative (w,z), Latency I (a,d), and Wp-restricted (k,m) Awia-BL
clones, and (right panel) Wp-restricted BLs, Ava, Oku, Sal, and Latency I BLs, Kem, Sav, and Rael. For each assay, a schematic shows the positions of
primer and probe sequences relative to the transcript in question. Results of QRT-PCR assays are shown as the mean+/2SD of triplicate readings. In
each case, absolute values were normalised with reference to a GAPDH cellular transcript control and expressed relative to the normalised value from
an appropriate positive control cell line which had been assigned an arbitrary value of 1. The results shown are from one representative experiment.
Transcripts initiating from Qp were significantly upregulated in Latency I BLs compared to Wp-restricted BLs (p,0.0001). Transcripts initiating from
Wp and transcripts splicing from the W2 exon into the BHRF1 coding exon were significantly expressed in Wp-restricted BLs compared to Latency I
BLs (p,0.005). Similar results were obtained in three further experiments of the same type. (C) Immunoblotting of the same cell lines as in (B) using
antibodies specific for BHRF1, BZLF1, and Calregulin. Akata-BL cells induced into lytic cycle by sIgG cross-linking (approximately 60% lytic) were used
as a positive lytic control. This result was confirmed in two further experiments on additional samples taken from these lines; size markers are in kD.
doi:10.1371/journal.ppat.1000341.g003
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Such infection is associated with activation of the Wp latent

promoter and a broadening of latent antigen expression beyond

that typically seen in Latency I BLs [20]. The fact that this is also

accompanied by a marked increase in the tumor cell’s resistance to

apoptosis [32] immediately helps to explain why such a rare virus

mutant had been captured within a disproportionately large

number of tumors. This, in turn, greatly strengthens the argument

[25] that EBV’s role in BL pathogenesis is anti-apoptotic rather

than growth-promoting. Here we show that this marked resistance

is mediated by Wp-driven expression of the viral bcl2 homologue,

BHRF1, a protein hitherto mainly associated with the virus lytic

cycle. Furthermore we find that the Wp/BHRF1 connection,

though discovered in the context of a mutant virus in BL cells, is

also an integral feature of normal B cell infection with wild-type

virus. This link with Wp not only explains the burst of BHRF1

expression observed in B cells immediately post-infection [16] but

has also led to the finding that BHRF1 remains constitutively

expressed as a latent protein in all EBV-transformed LCLs.

We initially focused on the EBNA3 proteins as the most likely

mediators of protection from anti-IgM- and ionomycin-induced

apoptosis since, at the time, these were the only viral antigens

consistently found in Wp-restricted and not in Latency I BL cells.

Furthermore in a recent report where EBV-negative BL cells had

been stably infected with recombinant viruses (rEBVs) [46], the

protection offered by wild-type rEBV infection against cell death

induced by nocodazole (which disrupts mitotic spindles), cisplatin

(a DNA cross-linking agent) and roscovitine (a cyclin-dependent

kinase inhibitor) was lost with virus strains from which either the

EBNA3A or EBNA3C gene had been deleted, suggesting that

EBNA3A and 3C can act cooperatively to influence the BL

phenotype. As a preliminary to the present study, we performed

similar infection experiments with EBNA3-knockout viruses on

several EBV-negative BL backgrounds but, in our hands, the

apoptosis assay results on infected lines proved difficult to interpret

because such protocols do not faithfully reproduce Wp-restricted

latency. Thus, after the drug selection that is required to establish

stable infectants, the selected cells expressed variable levels of viral

and cellular anti-apoptotic proteins, namely LMP1 and bcl2, that

are never seen in Wp-restricted BL lines (G.L. Kelly, unpublished

results). This emphasised the importance of establishing a more

controlled experimental system in which to study the effects of

specific latent antigens on the apoptosis phenotype. We therefore

turned to a novel ori-p-based vector system [36] that allows

candidate genes, alone or in combination, to be introduced into

Latency I BL lines in silent form and then expression induced to

physiologic or supra-physiologic levels by graded doses of dox.

This avoids subjecting cells to any drug selection prior to apoptosis

assays, and has the added advantage that both vector-positive and

control cells exist within the same culture, the former being

identified by dox-induction of GFP from the same vector. Using

this system, we induced expression of EBNA3A, EBNA3B and/or

EBNA3C in two different Latency I cell backgrounds and in an

EBV-negative BL backgound, then assayed these cells for

sensitivity to triggers of apoptosis (anti-IgM and/or ionomycin)

known to distinguish between Latency I and Wp-restricted BL

cells. We saw no protection by the EBNA3 proteins, whether

expressed individually or together, and whether induced at

physiologic levels or much higher.

We therefore began to search for other possible mediators of the

anti-apoptotic effect, starting from the observation that all cases of

BL presenting with a Wp-restricted pattern of gene expression

carried an EBNA2 gene-deleted virus [20,33]. Close inspection of

the different deletions found in individual Wp-restricted tumors

showed that each placed a copy of the Wp promoter immediately

upstream of the gene encoding BHRF1, a viral bcl2 homologue

hitherto thought to be expressed predominantly in lytic cycle [15].

Indeed a W2-BHRF1-spliced RNA could be amplified from all

Figure 4. Analysis of the role of BHRF1 in apoptosis protection.
(A) Akata-BL cells transfected with the dox-regulated BHRF1 cDNA were
either left untreated or induced for 24 hrs with different dox
concentrations as shown, then BHRF1 expression assayed by immuno-
blotting. Akata-BL cells induced into lytic cycle by IgG cross-linking
(approx 60% in lytic cycle) were used as a positive control. This result
was confirmed in two further induction experiments with this line. Size
marker is in kD. (B) Akata-BL cells transfected either with the empty dox-
inducible vector (control), or with dox-inducible vectors carrying the
BHRF1 cDNA or an ATG-mutated BHRF1 cDNA (mut-BHRF1), or co-
transfected with dox-inducible vectors expressing EBNAs 3A, 3B, and 3C
(E3A, B, C) were either left untreated or induced for 24 hrs with graded
doses of dox before exposure to 5 mg/ml ionomycin for 48 hrs. Cell
death was measured by PI staining in the GFP-negative (black lines) and
GFP-positive (green lines) cells within the same culture. Results are
shown as the mean percentage death induction+/2SD of triplicate
cultures of each type in a representative experiment; cells expressing
BHRF1 were significantly protected compared to controls at all dox
doses (p,0.0001), cells expressing other constructs were not (p.0.05).
In each case, similar results were obtained in two further experiments of
the same type.
doi:10.1371/journal.ppat.1000341.g004
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Wp-restricted BL cell lines tested, but never from Latency I lines in

which Wp was silent. Moreover a BHRF1 protein could be

detected by immunoblotting in all Wp-restricted lines, though at

levels much weaker than seen in lytic cycle. Interestingly BHRF1

protein expression and levels of Wp-initiated and W2-BHRF1-

spliced transcripts were lower in Awia-BL than in other Wp-

restricted lines, perhaps reflecting the single EBV genome copy

number in Wp-restricted Awia-BL clones [33]. These results

implied that, if ectopic expression of BHRF1 were to explain the

apoptosis resistance of these cells, the protein must be active at

much lower concentrations than hitherto appreciated. Thus earlier

studies had shown that BHRF1 can protect B cells from apoptosis

induced by a number of different triggers including growth factor

withdrawal [53], TRAIL death receptor signalling [54], c
irradiation and chemotherapeutic drugs [55]. However, such

experiments frequently involved vectors giving high level expres-

sion. We therefore used the dox-inducible vector system to express

BHRF1 in Latency I BL lines at levels ranging from that seen in

the Awia-BL clones up to those typical of lytic infection.

Remarkably, BHRF1 was fully protective against anti-IgM- and

ionomycin-induced apoptosis even at the very lowest level,

strongly supporting the view that BHRF1 expressed as a latent

protein from the Wp promoter is responsible for the apoptosis

resistance of Wp-restricted BLs.

We then went on to ask whether the Wp/BHRF1 connection

was unique to the EBNA2-deleted viruses selected for in BL

pathogenesis or a hitherto-unrecognised facet of Wp usage in wild-

type virus infections. This latter possibility was raised by a recent

study showing that BHRF1 was expressed in the first few days

following B cell infection with wild-type virus and that this was

important for optimal transformation efficiency [16]. There the

transient expression of BHRF1 and of a second viral bcl2 family

member BALF1, which together appear to protect recently-

infected B cells from apoptosis [16], was ascribed to opportunistic

transcription from the virus genome following its delivery to the

cell nucleus as linear unmethylated DNA. However we found that

BHRF1 expression in recently-infected cells was temporally linked

to Wp activity and to the detectability of BHRF1 transcripts

passing through W2 and Y2 upstream exons. Thus, transcript

levels measured by the total Wp, W2-BHRF1 and Y2-BHRF1

QRT-PCR assays all peaked around 12 hrs post-infection and

then started to decline as promoter usage switched from Wp to the

upstream Cp promoter. These findings suggest that BHRF1

expression is a specific consequence of Wp activation in newly-

infected cells and not simply opportunistic transcription from an

unmethylated virus genome.

Finally, given recent work showing that Wp is never completely

eclipsed by Cp in growth-transforming infections [51,52], we

examined established LCLs for evidence of BHRF1 expression.

Both W2-containing and Y2-containing BHRF1 transcripts were

consistently detected, whether cells had been transformed with

wild-type or lytic cycle-deficient (BZKO) virus. Interestingly some

of the earliest analyses of EBV transcription, including work on the

tightly latent IB4 LCL, had isolated rare cDNA clones that

included W1,W2 and BHRF1 sequences [11–13]. However, in the

apparent absence of detectable BHRF1 as a latent cycle protein,

the significance of the above findings remained obscure. With the

advent of more sensitive enhanced chemiluminescent methods for

immunoblot detection, we now find that BHRF1 protein is

consistently detectable in recently-infected B cells (at times

immediately following the peak of Wp activity) and is often just

detectable at trace levels in immunoblots of established, tightly-

latent, LCLs. The possibility of confirming these observations

using T cells, rather than an antibody, as the probe came with the

description of CD4+ T cells specific for a defined BHRF1 peptide

epitope that recognise target cells endogenously expressing

cognate antigen [42]. Here we used the greater sensitivity of these

BHRF1-specific CD4+ T cells to show that the protein is indeed

constitutively expressed in all established LCLs, even in lines

devoid of lytically-infected cells. This puts BHRF1 in a special

category of EBV antigens that straddle the lytic/latent divide.

Thus it is abundantly expressed from its own promoter in early

lytic cycle and also constitutively expressed from a latent cycle

promoter in growth-transforming infections.

Setting the present work in its wider context, it is now known

that herpesviruses from several different genera have acquired

bcl2-homologous genes during their evolution, and express these

genes during lytic virus replication, thereby extending survival of

the infected cell and maximising virus production [56,57]. In the

case of EBV, and presumably the other gamma-1-herpesviruses of

Old World primates [58], the vbcl2 homologue has also been

recruited as part of the B cell growth-transforming programme

that is unique to these viruses and appears to be important in virus

colonisation of the naı̈ve host. This has been achieved by placing

BHRF1 under a promoter, Wp, that both initiates transformation

and remains constitutively active at some level in transformed cells.

While the Wp/BHRF1 connection increases the overall efficiency

of B cell transformation [16], it also brings the risk that in other

situations inappropriate activation of Wp will lead to unscheduled

BHRF1 expression and enhanced survival of the affected cell. We

suggest that this is indeed the case in the subset of endemic BLs

studied here, where the presence of an EBNA2-deleted virus

genome results in high Wp activity and constitutive BHRF1

expression. This draws a direct parallel between the pathogenesis

of EBV-positive BL and that seen in mouse models of c-myc-

driven lymphomagenesis [23,24], where the drive towards full

Figure 5. Analysis of early events of in vitro B cell transformation. Primary B cells were isolated and infected with the lytic cycle-deficient
BZKO rEBV. (A) Map of the latent BHRF1 transcript expressed in LCLs showing the positions of the primers (black arrows) and probe (black box)
sequences used to detect W2-BHRF1 and Y2-BHRF1 spliced transcripts by QRT-PCR. (B) Analysis of gene expression using QRT-PCR assays to measure
Wp and Cp activity and latent W2-BHRF1, Y2-BHRF1 spliced, and LMP1 transcripts at time points (0 to 120 hrs) following EBV infection. Results,
expressed as in Figure 3B, are shown as the mean+/2SD of triplicate readings from a representative experiment. Similar patterns of results were
observed in two further infection experiments. (C) Immunoblotting to detect expression of EBNA-LP, EBNA2, BHRF1, and LMP1 at time points
following EBV infection. The established LCL X50-7 was used as a positive control for EBNA-LP, EBNA-2, and LMP1 expression. Akata-BL cells induced
into lytic replication by surface IgG cross-linking (60% cells in lytic cycle) was used as a positive control for lytic BHRF1 expression. An EBV-negative
Awia-BL clone was used as a negative control throughout. Size markers are shown in kD. This result was confirmed in two further infection
experiments. (D) CD4+ T cell recognition of HLA-DR4-positive primary B cells 4 and 8 days after infection with either the BZKO virus (lytic cycle-
deficient) or with the BHRF1KO virus. Data are shown for (left panel) a DR4-restricted T cell clone specific for an EBNA2 epitope GQT, and (right panel)
a DR4-restricted T cell clone specific for a BHRF1 epitope PYY. Results are expressed as IFNc release into supernatant as measured by ELISA; values
(mean+/2SD of triplicate readings) are shown for infected B cell targets (black bars) and for the same target cells pre-pulsed with the relevant
epitope peptide (grey bars). A similar pattern of results was obtained in three successive experiments; there was never any recognition of DR4-
mismatched targets included as controls in the same assays (data not shown).
doi:10.1371/journal.ppat.1000341.g005

The EBV Wp/BHRF1 Connection

PLoS Pathogens | www.plospathogens.org 12 March 2009 | Volume 5 | Issue 3 | e1000341



malignancy occurs only when a target cell expressing a

deregulated c-myc oncogene acquires complementary changes

that counteract c-myc-driven apoptosis. The present work suggests

that, in a subset of EBV-positive BLs, the complementary factor

can be BHRF1. In so doing, it provides the first evidence

implicating a herpesvirus bcl2 protein in viral oncogenesis.

Supporting Information

Figure S1 Latent antigen expression and sensitivity to cell death

triggers among Awia-BL clones. (A) Immunoblotting to detect

expression of EBV latent antigens EBNA1, 2, 3A, and LMP1 in

Awia-BL clones which were either EBV-negative (clones w,z),

Latency I (clones a,d), or Wp-restricted (clones k,m); an LCL of

normal B cell origin (Awia-LCL) transformed with wild-type Awia-

BL virus strain (rescued from Latency I Awia-BL cells) was used as

a positive control. Size markers are in kD. Representative results

from one of three successive cell samples. (B) Results of assays to

detect the percentage death induction in the above clones

following exposure to increasing concentrations of anti-IgM for

72 hours (top panel) or ionomycin for 48 hours (bottom panel), as

described in Materials and Methods. Results are expressed as

mean percentage death induction+/2SD of triplicate cultures of

each type. Significant differences (p,0.0001) were observed

between Latency I lines and EBV-negative lines at lower but not

at higher concentrations of the inducers, and between Wp-

restricted lines and both Latency I and EBV-negative lines at the

higher concentrations. Results are representative of those seen in

two further experiments.

Found at: doi:10.1371/journal.ppat.1000341.s001 (0.29 MB PDF)

Figure S2 Schematic of the pRTS-CD2 expression plasmid and

validation of the system. (A) The expression plasmid pRTS-CD2

carries the EBV origin of replication (oriP) and constitutively

expresses the EBV genome maintenance protein (EBNA1) and a

truncated rat CD2 protein. In addition, it carries a bidirectional

doxycyclin (dox) regulatable promoter (BI-Tet) which on addition

of dox to the media drives expression of neuronal growth factor

receptor (NGF-R) and green fluorescent protein (eGFP) as markers

of plasmid-positive cells, and the EBV gene insert of interest. (B)

Immunofluorescence staining for EBNA3C (left panels) and DAPI

(middle panels); a merge of the two stains is shown in the right

panels. Akata-BL cells stably transfected with the pRTS-CD2

EBNA3C expression vector were exposed to dox for 24 hrs to

induce expression of both GFP and EBNA3C from the bi-

directional dox-responsive promoter, cell sorted into GFP-positive

and GFP-negative populations, and then cell smears of these

populations were stained for EBNA3C. All the GFP-positive sorted

cells stained positive for EBNA3C (top panels), and all the GFP-

negative sorted cells stained negative for EBNA3C (bottom

panels), thereby validating the system.

Figure 6. BHRF1 expression in LCLs transformed with either
wild-type or BZKO rEBV. (A) Gene expression analysis using QRT-PCR
assays to detect Wp-initiated, Cp-initiated, and Y2-BHRF1 latent cycle
transcripts, the BMLF1 early lytic cycle transcript and the gp350 late lytic

cycle transcript in LCLs transformed either with wild-type EBV or the
lytic cycle-deficient BZKO virus. Results, expressed as in Figure 3B, are
shown as the mean+/2SD of triplicate readings from a representative
experiment. Similar patterns of results were observed in two further
experiments. (B) CD4+ T cell recognition of three pairs of LCLs (wild-
type and BZKO LCLs) derived from donors expressing both HLA-DR4
and HLA-DR15. Data are shown for (upper panel) a DR4-restricted clone
specific for a BHRF1 epitope PYY and (lower panel) a DR15-restricted
clone specific for the gp350 epitope LDL. Data are expressed as in
Figure 5D as IFNc release (mean+/2SD of triplicate readings). A similar
pattern of results was obtained in three successive experiments; there
was never any recognition of DR4-/DR15–mismatched targets included
as controls in the same assays (data not shown).
doi:10.1371/journal.ppat.1000341.g006
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Found at: doi:10.1371/journal.ppat.1000341.s002 (2.73 MB PDF)

Figure S3 W2-BHRF1 transcript structures in Wp-restricted BL

lines. A linear map of part of the EBV genome is shown

encompassing two copies of the BamHI W repeat (each with W1

and W2 exons), the adjacent BamHI Y fragment (with Y1 and Y2

exons and the EBNA2-coding exon), and the BamHI H fragment

(with the BHLF1-coding exon, the H2 exon, and the BHRF1-

coding exon). The exon coordinates, based on the B95.8 strain

sequence [59], are 45274-45339 for the most 59 copy of W1,

45421-45552 for the most 59 copy of W2, 47761-47793 for Y1,

47878-47999 for Y2, 48386-50021 for EBNA2, 52557-50572 for

BHLF1 (only open reading frame currently defined), 53759-53895

for H2, and 54336-55518 for BHRF1. Shown below are the

structures of the transcripts amplified by W2-BHRF1 RT-PCR

from four Wp-restricted BL lines, relative to the deleted fragment

in these same lines; the coordinates of the previously determined

deletion [20,33] are shown. In Awia-BL, the 59 end of the deletion

lies within a W2 exon and the amplified product has a W2-W1-

BHRF1 exon structure with some transcripts splicing into the

previously recognised position at the start of the BHRF1 exon

(B95.8 coordinate 54336) and others splicing further into the exon

at a point just 16 nucleotides upstream of the start of the BHRF1

coding sequence (B95.8 coordinate 54360). In Sal-BL, the 59 end

of the deletion lies within a W1 exon and the 39 end lies within H2;

the amplified product has a W2-[truncated W1]-[truncated H2]-

BHRF1 exon structure, with the same two entry points into the

BHRF1 exon as described above. In Oku-BL, the 59 end of the

deletion is downstream of W2, and the amplified product has a

W2-BHRF1 exon structure splicing into the recognised start of the

BHRF1 exon. In Ava-BL, the 59 end of the deletion is in W2 and

the amplified product has a W2-BHRF1 exon structure, again

splicing into the recognised start of the BHRF1 exon. Note that in

all LCLs examined, the W2-BHRF1 amplified product had a W2-

Y1-Y2-BHRF1 exon structure, again splicing into the recognised

start of the BHRF1 exon.

Found at: doi:10.1371/journal.ppat.1000341.s003 (0.05 MB PDF)

Figure S4 Analysis of the role of BHRF1 in apoptosis protection.

(A) Repeat of the experiment described in Figure 4, now

conducted on transfectants of an EBV-loss Akata-BL clone.

Transfectants carrying an empty control vector, EBNA3A, 3B

and 3C vectors, a BHRF1 vector or a mut-BHRF1 vector were

either left untreated or exposed to 500 ng/ml dox for 24 hr prior

to challenge with 5 m/ml ionomycin. Levels of cell death (mean

percentage death induction+/2SD of triplicate cultures of each

type) are shown for untreated cultures and for the GFP-positive

(green bars) and GFP-negative (black bars) cells within induced

cultures; cells expressing BHRF1 were significantly protected

compared to controls (p = 0.0014), cells expressing other constructs

were not (p.0.05). Results are representative of those seen in two

further experiments. (B) Analysis of control and BHRF1

transfectants of Akata-BL cells either left untreated or exposed

to 500 ng/ml dox for 24 hrs prior to challenge with 5 m/ml

ionomycin. The cells were then harvested 18 hrs later, a protein

preparation separated by gel electrophoresis and blotted with an

antibody to the N-terminal fragment of PARP1. Cleavage of full-

length PARP1 to an N-terminal fragment is indicative of

apoptosis. Results shown are representative of two independent

experiments; size markers are in kD.

Found at: doi:10.1371/journal.ppat.1000341.s004 (0.44 MB PDF)

Figure S5 Analysis of early events of in vitro B cell transforma-

tion. Repeat of the experiment described in Figure 5, now using a

wild-type EBV preparation. (A) Analysis of EBV gene expression

using QRT-PCR assays of Wp and Cp activity and of W2-BHRF1

transcript levels in primary B cells at time points (0–120 hr)

following EBV infection. Results, expressed as in Figure 5B, are

shown as the mean+/2SD of triplicate readings from a

representative experiment. Similar patterns of results were

observed in two further infection experiments. (B) Immunoblotting

to detect expression of EBNA-LP, EBNA2, and BHRF1 at the

same time points. Control tracks are as in Figure 5C. Size markers

are in kD. This result was confirmed in two further infection

experiments. (C) CD4+ T cell recognition of HLA-DR4-positive

primary B cells 4 and 8 days after infection with wild-type virus.

Data are shown for (left panel) a DR4-restricted T cell clone

specific for an EBNA2 epitope GQT, and (right panel) a DR4-

restricted T cell clone specific for a BHRF1 epitope PYY.

Recognition of target cells, with and without pre-pulsing with the

relevant epitope peptide, are expressed as in Figure 5D. A similar

pattern of results was obtained in three successive experiments;

there was never any recognition of DR4-mismatched targets

included as controls in the same assays (data not shown).

Found at: doi:10.1371/journal.ppat.1000341.s005 (0.30 MB PDF)
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