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Abstract

The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus
(T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin
levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts
(n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P#561028). We then tested
whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P#0.011 to
declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated
the strongest associations with adiponectin levels (P-combined = 9.2610219 for lead SNP, rs266717, n = 14,733). A novel
variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin
(rs4311394-G, P-combined = 2.961028, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of
CHD (odds ratio [OR] = 1.12, P = 8.561026, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.261023,
n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal
muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon
CHD risk.
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Introduction

Adiponectin is an adipocyte-secreted protein that increases

insulin sensitivity [1,2,3], and has anti-diabetic [4,5,6] and anti-

atherogenic effects [7]. Several features render adiponectin an

attractive and tractable biomarker for large epidemiologic studies,

such as its long half-life, high ex vivo stability, and minimal diurnal

variability [8,9].

While adiponectin levels are highly heritable (30–70%)

[10,11,12], several well-designed studies have shown variable

association between common polymorphisms in the adiponectin

gene (ADIPOQ), possibly due to small sample sizes and different

panels of single nucleotide polymorphisms (SNPs), ethnicities and

clinical outcomes [12,13,14]. This has lead some observers to call

for a more complete and systematic characterization of the genetic

determinants of adiponectin levels [12].

Adiponectin Genome-Wide Association Study
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Our study therefore sought to address 2 questions: first, what

are the common genetic determinants of adiponectin levels both at

ADIPOQ and elsewhere? And second, do the variants robustly

associated with adiponectin levels influence metabolic traits and

risk of metabolic disease?

To comprehensively assess the influence of common genetic

variation on circulating adiponectin levels, we undertook a large-

scale meta-analysis of 3 genome-wide association studies (GWAS)

for circulating adiponectin levels from population-based cohorts

(n = 8,531 participants). From this first stage, we chose SNPs most

strongly associated with adiponectin levels (P,1024, n = 250), and

tested these for their association with adiponectin in 5 additional

population-based cohorts (n = 6,202). The 5 SNPs which achieved

genome-wide significance in the combined stage were then tested

for their association with: type 2 diabetes mellitus (T2D) in the

Diabetes Genetics Replication And Meta-analysis (DIAGRAM)

consortium [15] (n = 10,128); indices of insulin resistance in the

Meta-Analysis of Glucose and Insulin-related traits Consortium

(MAGIC) [16] (n = 24,188); risk of coronary heart disease (CHD)

in a consortium of 8 cohorts with available genome-wide

association data (n = 22,421); and body mass index (BMI) in the

Genetic Investigation of Anthropometric Traits (GIANT) consor-

tium (Text S1) [17,18] (n = 32,527) (Figure 1).

Results

Genome-Wide Association Study for Circulating
Adiponectin Levels

To identify genetic variants influencing adiponectin levels, we

performed a GWAS utilizing information from population-based

cohorts including, in total, 14,733 subjects of European descent

(Table 1). We identified 5 variants at 2 loci that achieved genome-

wide significance (P#561028) for their relationship with circulat-

ing adiponectin levels (Table 2). The SNP most strongly associated

with circulating adiponectin levels lies 30 kb upstream of the

ADIPOQ locus (rs266717; P-combined = 9.2610219) (Table 2,

Figure S1, Figure S2). In total, 4 SNPs at the ADIPOQ locus

demonstrated genome-wide significant associations with circulat-

ing adiponectin. All 8 studies contributed to these genome-wide

significant associations, with the exception of rs6444175, which

demonstrated some heterogeneity across cohorts (Table 2).

Our results also identified a novel intronic SNP (rs4311394)

located in the ARL15 (ADP-ribosylation factor-like 15) gene whose

G allele was robustly associated with decreased adiponectin levels

(P = 2.961028) (Table 2, Table S3, Figure 2). ARL15 is an ADP-

ribosylation factor-like GTP-binding protein, whose function is

unknown, yet belongs to a family of proteins involved in

intracellular vesicle trafficking [19].

Association with Metabolic Disease and Metabolic Traits
Since glycemia, T2D and CHD have been correlated with

adiponectin levels, we tested whether genome-wide significant

SNPs for adiponectin levels were associated with glycemia, indices

of insulin resistance, and risk of T2D and CHD. Since 5 SNPs

(which, due to linkage disequilibrium, represented 4.59 indepen-

dent statistical tests [see Methods]) were tested for their association

with T2D, CHD and metabolic traits, we employed a conservative

Bonferroni-corrected threshold of a= 0.011 (where 0.011 = 0.05/

4.59) to declare statistical significance for these metabolic diseases

and traits. None of the SNPs at the ADIPOQ locus demonstrated a

robust relationship with T2D, CHD, homeostasis model assess-

ment insulin resistance (HOMA-IR), homeostasis model assess-

ment beta-cell function (HOMA-B) or BMI (Table 3, Table 4,

Table S4). However rs1648707, at ADIPOQ, was associated with a

non-statistically significant trend for its relationship with CHD

(P = 0.04) and T2D (P = 0.046).

In contrast, the risk allele rs4311394-G at ARL15, which was

associated with lower adiponectin levels, was also associated with: an

increased risk of CHD in a consortium of 7 CHD cohorts (Odds

ratio [OR] = 1.12, [95% Confidence Interval [CI]: 1.06, 1.17],

P = 8.561026, n = 22,421); an increased risk of T2D in the

DIAGRAM consortium [15] (OR = 1.11 [95% CI: 1.03, 1.18],

P = 3.261023, n = 10,128); and higher glycated hemoglobin in the

European Prospective Investigation of Cancer-Norfolk (EPIC-Nor-

folk) cohort (0.025% per G allele [95% CI: 0.01, 0.04], P = 5.061024,

n = 14,168) (Table 3). In the MAGIC consortium [16], the rs4311394-

G allele was associated with increased levels of fasting insulin

(P = 2.361023, n = 24,614), and demonstrated non-significant trends

Figure 1. Overall study design.
doi:10.1371/journal.pgen.1000768.g001

Author Summary

Through a meta-analysis of genome-wide association
studies of 14,733 individuals, we identified common
base-pair variants in the genome which influence circulat-
ing adiponectin levels. Since adiponectin is an adipocyte-
derived circulating protein which has been inversely
associated with risk of obesity-related diseases such as
type 2 diabetes (T2D) and coronary heart disease (CHD),
we next sought to understand if the identified variants
influencing adiponectin levels also influence risk of T2D,
CHD, and several metabolic traits. In addition to confirm-
ing that variation at the ADIPOQ locus influences
adiponectin levels, our analyses point to a variant in the
ARL15 (ADP-ribosylation factor-like 15) locus which de-
creases adiponectin levels and increases risk of CHD and
T2D. Further, this same variant was associated with
increased fasting insulin levels and glycated hemoglobin.
While the function of ARL15 is not known, we provide
insight into the tissue specificity of ARL15 expression.
These results thus provide novel insights into the
physiology of the adiponectin pathway and obesity-
related diseases.

Adiponectin Genome-Wide Association Study
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towards higher HOMA-IR (P = 0.01, n = 24,188) and HOMA-B

(P = 0.02, n = 24,130) (Table 4). In the GIANT consortium [17], the

same allele demonstrated a modest and non-significant association

with decreased BMI (P = 0.016, n = 32,527) (Table S4), indicating that

the disease and metabolic trait associations of rs4311394-G are

unlikely to be mediated through an increase in BMI.

Thus, in sum, the G allele at rs4311394 was consistently

associated with an increased risk of T2D and CHD, as well as

deleterious changes in the 5 metabolic traits tested.

Expression Studies
Since the function and distribution of ARL15 expression is

unknown, we assessed the level of ARL15 mRNA expression in

human tissues using quantitative real-time PCR across a wide

set of human tissues. We identified that ARL15 was expressed

most abundantly in skeletal muscle at a level 4-fold that of the

mean of all other tissues, with adipose expression detectable but

low (Figure 3). Using biopsied tissue from insulin-sensitive

tissues (liver, skeletal muscle and adipose tissue) in healthy

volunteers, immunoblots confirmed ARL15 expression in

skeletal muscle, although it was detectable in all 3 tissues

(Figure 4).

Discussion

By conducting a GWAS for the adipocyte-derived protein

adiponectin, we have identified a novel susceptibility variant in

ARL15, which is associated with lower adiponectin levels and

increased risk of T2D and CHD. Our results also help clarify

which variants at ADIPOQ influence adiponectin levels, thus

expanding our understanding of the adiponectin pathway.

ARL15 is widely expressed [20]. However its function is unknown,

and there have been no phenotypes previously associated with this

gene. Based on its predicted protein sequence, ARL15 is structurally

similar to ADP-ribosylation factors and Ras-related GTP-binding

proteins which play key roles in the regulation of intracellular vesicle

trafficking [19], and which have been specifically implicated in insulin

signaling and insulin-stimulated glucose transport [21,22,23,24]. Our

preliminary data demonstrate that ARL15 is expressed in insulin-

responsive tissues, including adipose tissue. Interestingly, expression

was highest in skeletal muscle, which is the main site of insulin-

mediated glucose disposal, but which does not synthesize adiponectin.

Thus, ARL15 is a good candidate to be involved in cellular insulin

resistance and/or adiponectin trafficking and secretion. Its implica-

tion in metabolic diseases by a non-hypothesis-based genetic

approach provides strong impetus for further functional studies.

Table 1. Participant characteristics (n total for all cohorts = 14,733).

Study

Number of
Subjects
(% Women)

Method of
Adiponectin
Measurement

Adiponectin
(mg/ml) (SD)

Adiponectin
Males (mg/ml)
(SD)

Adiponectin
Females (mg/ml)
(SD) Age (SD) BMI (SD)

Discovery
Samples

TwinsUK 1399 (100) ELISA{ 8.1 (3.9) - 8.1 (3.9) 48.5 (13.1) 25.1 (4.7)

GEMS 1751 (59.3) ELISA{ 6.8 (4.8) 5.8 (4.0) 8.3 (5.5) 52.5 (9.5) 28.5 (3.6)

CoLaus 5381 (47.8) ELISA{ 10.1 (8.1) 7.4 (5.4) 12.4 (9.4) 53.2 (10.8) 25.8 (4.6)

Replication
Samples

BLSA 562 (52.9) RIA{ 13.4 (8.5) 11.5 (7.7) 15.4 (8.9) 67.9 (13.8) 26.8 (4.5)

EPIC-Norfolk 970 (35.5) ELISA* 6.9 (3.9) 5.6 (2.7) 9.1 (4.6) 62.1 (8.2) 28.3 (4.2)

Framingham 2228 (54.6) ELISA* 10.5 (6.4) 7.6 (4.5) 13.0 (6.8) 60.4 (9.5) 27.8 (5.0)

InCHIANTI 1027 (54.7) RIA{ 13.5 (9.8) 10.5 (7.6) 15.9 (10.8) 67.6 (15.3) 27.1 (4.1)

ALSPAC 1415 (51.3) ELISA* 13.1 (5.3) 12.8 (5.1) 13.3 (5.5) 9.9 (0.3) 17.7 (2.9)

*Plasma.
{Serum.
SD: Standard Deviation, GEMS: Genetic Etiology of Metabolic Syndrome, BLSA: Baltimore Longitudinal Study of Aging, EPIC-Norfolk: European Prospective Investigation
of Cancer-Norfolk, ALSPAC: Avon Longitudinal Study of Parents and Children, ELISA: Enzyme-Linked Immunosorbent Assay, RIA: Radio-Immunoassay, BMI: Body Mass
Index.
doi:10.1371/journal.pgen.1000768.t001

Table 2. Relationship of SNPs achieving genome-wide significance for their association with adiponectin levels (n = 14,733 from
the 8 studies in Table 1).

Locus Chr SNP
Allele
(A1*/A2) MAF

Effect Size on Ln- Transformed
Adiponectin (95% CI)

Change in Adiponectin (mg/ml)
for Each Effect Allele P-Value

Q-Test
P-Value

ARL15 5 rs4311394 G*/A 0.41 20.04 (20.06, 20.03) 0.96 2.9E-08 0.38

ADIPOQ 3 rs6444175 G/A* 0.28 20.08 (20.1, 20.07) 0.92 1.2E-21 0.005

ADIPOQ 3 rs266717 T/C* 0.48 0.07 (0.05, 0.09) 1.07 9.2E-19 0.67

ADIPOQ 3 rs1426810 G*/A 0.42 0.07 (0.05, 0.08) 1.07 2.2E-18 0.15

ADIPOQ 3 rs1648707 C*/A 0.07 20.06 (20.07, 20.04) 0.94 3.0E-12 0.42

A1 = Effect Allele.
*Minor Allele. Effect Size is the change in Natural Log-Transformed adiponectin levels per effect allele.
Chr: Chromosome, SNP: Single Nucleotide Polymorphism, MAF: Minor Allele Frequency, CI: Confidence Interval.
doi:10.1371/journal.pgen.1000768.t002
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Our study sheds further light on the role of ADIPOQ SNPs on

adiponectin levels — which has been the source of several

inconsistent reports [12,13,14,25] — since we have systematically

tested all common HapMap CEPH (Centre d’Étude du Polymor-

phisme Humain) SNPs through genotyping and imputation across

the ADIPOQ locus in 14,733 individuals (Figure S2). Among the SNPs

Figure 2. Association between SNPs near ARL15 and adiponectin levels. (A) 2Log(P-value) measures for association between single nucleotide
polymorphisms (SNPs) and chromosomal position. (B) Linkage disequilibrium in GOLD heat map Haploview 4.0 color scheme, CEPH (Centre d’Étude du
Polymorphisme Humain) population. The x axis represents genomic position in Mb (A) and in kb (B). All P-values are derived from the discovery meta-
analysis of CoLaus, TwinsUK, and Genetic Etiology of Metabolic Syndrome (GEMS) cohorts, except that for the lead SNP, rs4311394 (in red), which is
derived from the combined P-value from the CoLaus, TwinsUK, GEMS, Framingham, InCHIANTI, Baltimore Longitudinal Study of Aging (BLSA), Avon
Longitudinal Study of Parents and Children (ALSPAC), and European Prospective Investigation of Cancer-Norfolk (EPIC-Norfolk) cohorts.
doi:10.1371/journal.pgen.1000768.g002

Table 3. Association of genome-wide significant SNPs with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD)
(n = 10,128 for T2D; n = 22,421 for CHD).

Locus SNP Effect Allele Odds Ratio (95% CI) for T2D P-Value for T2D Odds Ratio (95% CI) for CHD P-Value for CHD

ARL15 rs4311394 G 1.11 (1.03, 1.18) 0.0032 1.12 (1.06, 1.17) 8.561026

ADIPOQ rs6444175 G 0.99 (0.93, 1.07) 0.86 0.97 (0.93, 1.01) 0.14

ADIPOQ rs266717 T 1 (0.94, 1.07) 0.98 0.98 (0.94, 1.02) 0.29

ADIPOQ rs1426810 G 1.01 (0.94, 1.07) 0.86 0.96 (0.92, 0.998) 0.04

ADIPOQ rs1648707 C 1.06 (1, 1.13) 0.046 1.05 (1.003, 1.09) 0.04

SNP: Single Nucleotide Polymorphism, CI: Confidence Interval.
doi:10.1371/journal.pgen.1000768.t003
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previously associated with adiponectin levels at ADIPOQ, the

rs1648707 SNP achieved genome-wide significance in our analysis

for adiponectin. rs1648707 is in moderate linkage disequilibrium with

rs266729 (r2 = 0.74), which has previously been associated with

adiponectin levels, but not consistently with T2D [12]. We did not

assess rare variants, and were thus unable to test the association of

rs17366743 (minor allele frequency = 0.075) with adiponectin levels,

which has been previously associated with T2D and with fasting

glucose, but not with adiponectin levels [13].

Interestingly, ADIPOQ SNPs that showed genome-wide signif-

icant associations with adiponectin levels did not show associations

with T2D or CHD. This raises the question of how ARL15

interacts with adiponectin to influence disease risk. The demon-

strated relationship of ARL15 with the metabolic traits and diseases

may represent adiponectin-independent effects of ARL15 — a

hypothesis that could be tested by adjusting the relationship

between ARL15 and CHD or T2D for adiponectin levels (which

was not possible in this study, as the disease cohorts had no

measured adiponectin levels). Alternatively, recent evidence

suggests that adiponectin may be influenced directly by insulin

exposure [26–35], allowing adiponectin to act as a surrogate

marker for integrated total insulin exposure as a result of its stable

half-life and relatively low diurnal variability. Consequently,

ARL15 may be an upstream mediator of the relationship between

insulin and adiponectin, and may thus impact upon T2D and

CHD through an insulin-dependent pathway which involves, but

is not entirely dependent upon, adiponectin. In addition, since we

demonstrated that the ARL15 variant was associated with

adiponectin levels across all age ranges, including children in the

Avon Longitudinal Study of Parents and Children (ALSPAC)

cohort, this variant likely affects lifelong adiponectin levels, which

may influence its relationship with T2D and CHD.

In conclusion, this study expands our understanding of the

genetic influences on adiponectin levels. We have implicated a

novel locus, ARL15, in the regulation of adiponectin levels and

clarified the role of variants near ADIPOQ on adiponectin levels.

Finally, we provide further evidence that the variant at ARL15

may influence risk of T2D and CHD, thus providing impetus for

further study of ARL15.

Methods

We undertook a GWAS to detect SNPs which were associated

with adiponectin, and tested the physiologic and clinical relevance

of these SNPs by assessing their association with indices of glucose

homeostasis and BMI in European populations, and with T2D

and CHD in large clinical cohorts (Figure 1).

Ethical Considerations
All studies including biopsy of liver, skeletal muscle or adipose

tissue from healthy volunteers for immunoblotting studies were

approved by institutional ethics review committees at the relevant

organizations. All participants provided informed written consent.

Table 4. Association of genome-wide significant SNPs with indices of insulin homeostasis.

Locus SNP Effect Allele
Insulin Effect Size
(95% CI) [n = 24,616] Insulin P-Value

HOMA-IR Effect
(95% CI) [n = 24,188]

HOMA-IR
P-Value

HOMA-B Effect
(95% CI) [n = 24,130]

HOMA-B
P-Value

ARL15 rs4311394 G 0.014 (0.005, 0.023) 2.061023 0.012 (0.002, 0.021) 0.01 0.009 (0.001, 0.017) 0.02

ADIPOQ rs6444175 G 0.002 (20.006, 0.011) 0.62 0.005 (20.004, 0.014) 0.30 0.003 (20.005, 0.01) 0.45

ADIPOQ rs266717 T 20.003 (20.011, 0.005) 0.46 20.001 (20.01, 0.007) 0.76 20.006 (20.013, 0.001) 0.08

ADIPOQ rs1426810 G 0 (20.008, 0.008) 0.99 0.001 (20.007, 0.01) 0.81 20.002 (20.009, 0.005) 0.63

ADIPOQ rs1648707 C 0.009 (0.001, 0.017) 0.032 0.007 (20.001, 0.016) 0.10 0.003 (20.004, 0.01) 0.41

SNP: Single Nucleotide Polymorphism, CI: Confidence Interval, HOMA-IR: Homeostasis Model Assessment Insulin Resistance, HOMA-B: Homeostasis Model Assessment
Beta-Cell Function.
doi:10.1371/journal.pgen.1000768.t004

Figure 3. Tissue distribution of ARL15 expression. mRNA levels
determined by quantitative real-time PCR in a panel of human tissues.
doi:10.1371/journal.pgen.1000768.g003

Figure 4. Western blot showing ARL15 expression in insulin-
responsive tissues in humans with a-tubulin as a loading
control. HEK293 = untransfected HEK293 cells; ARL15 = HEK293 cells
transiently expressing wild type human ARL15. SkM = skeletal muscle;
WAT = white adipose tissue.
doi:10.1371/journal.pgen.1000768.g004
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Study Populations
The first stage of the GWAS for adiponectin levels was

performed in 3 population-based cohorts utilizing subjects of self-

described European ancestry, which were not selected for

diabetes, heart disease or any metabolic trait (Table 1). The

discovery cohorts included CoLaus [36], TwinsUK [37,38], and

Genetic Etiology of Metabolic Syndrome (GEMS) [39]. Partic-

ipants of the CoLaus study were individuals of European

ancestry, randomly selected from 56,694 permanent residents of

Lausanne, Switzerland, between the ages of 35 and 75 years.

Recruitment took place between April 2003 and March 2006.

TwinsUK is a population-based sample of British twins, which is

representative of the general United Kingdom population, and is

extensively phenotyped for aging-related traits [40]. GEMS is a

case-control study of dyslipidemic individuals between the ages of

20 and 65 years. Cases and controls were matched based on

gender and recruitment site. The GEMS and CoLaus studies

were sponsored in part by GlaxoSmithKline. All participants

were informed of this sponsorship, and consented for the use of

their data and biologic samples by GlaxoSmithKline and its

subsidiaries.

The validation cohorts included the Framingham Offspring

Study (FOS) [13], Baltimore Longitudinal Study of Aging (BLSA)

[41], InCHIANTI [42,43], ALSPAC [44] and EPIC-Norfolk [45].

The FOS is a population-based sample of residents of Framing-

ham, Massachusetts. Adiponectin was measured at exam 7 (1998–

2002). BLSA is an observational study that began in 1958 to study

normative aging in a cohort of healthy persons 17 years of age and

older at study entry. InCHIANTI is a population-based cohort

designed to study aging-related traits and disease from the Chianti

geographic region (Tuscany, Italy). ALSPAC is a population-based

birth cohort study consisting initially of over 13,000 women and

their children recruited in the county of Avon, UK, in the early

1990s. The EPIC-Norfolk cohort is a British population-based

study of white persons recruited from Norfolk, UK, between 1993

and 1997. All individuals in all replication cohorts were of self-

described European descent.

Phenotyping and Genotyping for Metabolic Traits, T2D,
and CHD

Only the SNPs which achieved genome-wide significance for

adiponectin levels in the combined analysis of data from all 8

cohorts were assessed for their relationship with adiposity-driven

diseases and traits, which included: T2D, CHD, fasting glucose,

glycated hemoglobin, BMI and insulin, as well as measures of

insulin resistance (HOMA-IR) and beta-cell function (HOMA-B)

estimated by the homeostasis model [46].

T2D risk was estimated from the DIAGRAM consortium (a

meta-analysis of 3 T2D genome-wide association scans [http://

www.well.ox.ac.uk/DIAGRAM/], which included 4,107 T2D

cases and 5,187 controls). The 3 populations were the Wellcome

Trust Case Control Consortium (WTCCC), the Finland-United

States Investigation of NIDDM [Non-Insulin-Dependent Diabetes

Mellitus] Genetics (FUSION), and the Diabetes Genetics Initiative

(DGI). A full description of this meta-analysis is available

elsewhere [15,47].

The association between susceptibility alleles and fasting

glucose, insulin and measures of insulin resistance and beta-cell

function were tested in MAGIC [16]. This consortium includes

data from 36,610 individuals of European descent who were

included in 4 distinct consortia: [a] The European Network for

Genetic and Genomic Epidemiology (ENGAGE) project, com-

bining data from deCODE, Northern Finland Birth Cohort 1966,

Netherlands Twins Register/Netherlands Study of Depression and

Anxiety and the Rotterdam study; [b] the GEMS study, which

includes data from the CoLaus and TwinsUK scans; [c] DFS,

which includes the DGI, FUSION and SardiNIA scans; and [d]

the Framingham Heart Study. Details of all of these studies,

phenotyping and genotyping protocols have been published

previously [16].

The association between susceptibility alleles and CHD was

tested in 8 cohorts (n = 22,421). These cohorts included PennCath

[48], MedStar, the Ottawa Heart Study [49], the WTCCC

coronary heart disease (CAD) study [50,51], a case-control study

of CHD nested in the EPIC-Norfolk cohort comprising partici-

pants with available genome-wide data [52], German Myocardial

Infarction Family Study (GerMIFS) I and GerMIFS II [50,53],

and the Rotterdam Study [54] (Table S2). The rs4311394 SNP

was assessed by imputation in the GerMIFS I cohort, and did not

meet quality control criteria. Thus, results for this SNP are

reported for all cohorts except GerMIFS I (Figure S3). All other

SNPs were assessed in all cohorts.

Associations with BMI were tested in the GIANT consortium

[17,18], which encompasses 15 cohorts of 32,527 individuals of

European descent. It has been described in detail previously,

including information on genotyping and phenotyping [17].

Genotyping
Table S1 outlines the genotyping methods used for each cohort,

individual and SNP exclusion thresholds, and imputation

algorithms. For the CoLaus and GEMS studies, genotypes were

obtained using the Affymetrix Genechip Human Mapping 500k

array with the Bayesian Robust Linear Modeling using Mahala-

nobis distance (BRLMM) algorithm [52]. The TwinsUK samples

were genotyped using the Illumina calling algorithm on the

Illumina HumanHap300, HumanCNV370 Duo and HumanHap

550 [40]. The FOS employed the Affymetrix 500k and MIPS 50k

genotyping arrays. Both the BLSA and InCHIANTI cohorts used

the Illumina Human Hap 550 genotyping arrays, while the

Illumina Human Hap300 array was used in the ALSPAC cohort.

Targeted genotyping was performed in the EPIC-Norfolk cohort

using TaqMan SNP genotyping assay (Applied Biosystems,

Warrington, UK) according to the manufacturer’s protocol.

Genotype frequencies were in Hardy Weinberg Equilibrium

(HWE) (P.0.50), call rates were .94% and concordances were

.98% for the TaqMan assay.

Adiponectin Measurement
The TwinsUK and EPIC-Norfolk cohorts measured adiponec-

tin levels with an in-house 2-site enzyme-linked immunosorbent

assay (ELISA) using antibodies and standards from R&D Systems

Europe (Abingdon, Oxford, UK) in plasma. The day-to-day

coefficients of variation (CV) for adiponectin were 5.4%, 5.2%,

and 5.8% at a concentration of 3.6 mg/ml, 9.2 mg/ml, and

15.5 mg/ml, respectively [38]. The FOS, CoLaus and GEMS

measured adiponectin using the ELISA assay (R&D Systems,

Minneapolis, Minnesota, United States of America; Intra-assay

CV: 5.8%) [13]. Importantly, while CoLaus and GEMs measured

adiponectin in plasma, the FOS measured adiponectin in serum.

The ALSPAC cohort measured adiponectin using a commercially

available ELISA kit (R&D systems, Oxon, UK) previously

validated against the corresponding radio-immunoassay (RIA).

The inter-assay CV for this adiponectin assay was ,7.5%. The

InCHIANTI and BLSA studies measured adiponectin levels using

the adiponectin RIA assay of Linco Research (St. Charles,

Missouri, USA). The detectable ranges for the RIA assay used

in InCHIANTI and BLSA are 0.78 mg/ml–200 mg/ml.
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Expression Experiments
Relative levels of ARL15 mRNA in human tissues were assessed

by quantitative real-time PCR of a commercially available human

tissue panel of RNA (AMS Biotechnology, Abingdon, UK). 500 ng

of RNA were reverse-transcribed using 125 ng of random

hexamers and 500 mM deoxynucleotide triphosphates (dNTPs)

(both from Promega, Madison, Wisconsin, USA) and 500 ng of

Superscript III reverse transcriptase (Invitrogen). Gene expression

was quantified on an ABI7900 Real-Time PCR system (Applied

Biosystems, Foster City, California, USA) in TaqMan Mastermix

(Applied Biosystems). Primers and probe for ARL15 were supplied

by Applied Biosystems (ABI Hs00219491_m1), and ARL15

expression was normalized to expression of PPIA (Cyclophilin

A). PPIA primers (59-ACGGCGAGCCCTTGG-39 (sense), 59-

TTTCTGCTGTCTTTGGGACCT-39 (antisense)) and probe

(59-[FAM] CGCGTCTCCTTTGAGCTGTTTGCA[TAMRA]-

39) were synthesized by Sigma-Aldrich. Skeletal muscle biopsies

were a gift from Dr Anna Krook, from the Karolinska Institute.

Frozen skeletal muscle, liver and white adipose tissue samples were

homogenized in lysis buffer (50 mM Tris-HCl, pH8.0, 150 mM

NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, and Complete

Protease Inhibitor Cocktail [Roche]), and cell debris removed by

centrifugation. Cleared supernatants were boiled in sodium

dodecyl sulphate (SDS) sample buffer and run on an SDS

polyacrylamide gel before transfer to a polyvinylidene difluoride

(PVDF) membrane (Amersham) and subsequent immunoblotting

with either purified rabbit anti-human ARL15 antibody (Protein-

tech Group) or anti-a-tubulin antibody (sc-8035; Santa Cruz

Biotechnology). Full-length human wild type ARL15 cDNA was

purchased from Open Biosystems and subcloned into pCDNA 3.1

(Invitrogen) using the XhoI and HindIII restriction sites. HEK293

cells (American Type Culture Collection [ATCC]) were transient-

ly transfected using the CalPhos Mammalian Tranfection Kit

(Clontech) according to the manufacturer’s instructions.

Statistical Methods
In all cohorts, the adiponectin concentrations were natural

logarithm transformed to create a normally distributed phenotype.

Adiponectin levels were subsequently adjusted for age, sex and

BMI — important correlates of adiponectin levels [4,5]. All results

reported for association of genetic variants with adiponectin levels

are adjusted for age, sex and BMI. All statistical tests assumed an

additive effect of the effect allele. In the TwinsUK cohort, we

found that there was little difference when comparing results both

adjusted, and unadjusted, for BMI (the Spearman coefficients for

the beta coefficients was 0.94 and 1.0 for P-values [P-values for

both Spearman coefficients,161025]).

The SNPTEST software program [51] was used to perform

genome-wide association testing in the GEMS and CoLaus

cohorts, while the Merlin software package [55] was used to

perform association testing in the TwinsUK cohort. The meta-

analysis of the discovery phase cohorts (CoLaus, TwinsUK and

GEMS) was performed using Liptak-Stouffer’s method for

combination of independent tests, where P-values are converted

to Z-scores by a standard normal curve and weighted by each

study’s sample size [56].

All SNPs that achieved a combined P-value of #1024 in

the meta-analysis (n = 250) were tested for their association in

the additional cohorts (InCHIANTI, BLSA, ALSPAC and the

Framingham Offspring Cohort). Two SNPs that were not near the

ADIPOQ locus, and which demonstrated associations of #561027

with adiponectin levels in the combined analysis, were further

verified in an additional replication cohort (EPIC-Norfolk), where

association with adiponectin was tested using a generalized linear

model. For the quantitative trait analyses, individuals with known

T2D were excluded. For the T2D case-control analyses, each SNP

was tested for association using a logistic regression analysis,

adjusted for age, sex and BMI. All analyses for the EPIC-Norfolk

cohort were performed with SAS 9.1 (SAS Institute Inc., Cary,

North Carolina, USA). To perform a meta-analysis of all

replication and discovery cohorts, we employed inverse-variance

techniques in the STATA software package (College Station,

Texas, USA).

We declared statistical significance in the GWAS as P#561028,

where this threshold is based on a Bonferroni correction of

a= 0.05 divided by one million, the estimated number of

independent common tests among common SNPs in the CEU

population of the HapMap II project [57]. Using this threshold, 5

SNPs achieved genome-wide significance for their relationship

with circulating adiponectin levels in the combined analysis of all

adiponectin cohorts. These were subsequently tested for their

association with glycated hemoglobin, indices of insulin resistance,

beta-cell function and risk of T2D and CHD. The number of

independent statistical tests represented by these 5 SNPs,

accounting for linkage disequilibrium at ADIPOQ, was assessed

by spectral decomposition of matrices of pairwise linkage

disequilibrium between the 4 SNPs at the ADIPOQ locus [58].

In total, 3.59 independent statistical tests were performed at this

locus, and one at the ARL15 locus. Thus, statistical significance in

the follow-up studies was declared at P#0.011 (based on a

Bonferroni correction of a= 0.05 divided by 4.59, the number of

statistically independent SNPs tested in the follow-up analyses).

Since 2 cohorts measured adiponectin concentrations using an

RIA method (BLSA and InCHIANTI) whilst all others used an

ELISA method, and since one study, ALSPAC, was based on

children, rather than adults, we tested for evidence of heteroge-

neity in the combined analysis using the Q-test P-value [59].
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Figure S1 Association between SNPs near ADIPOQ and

Adiponectin levels. (A) 2log (P value) measures for association

between SNPs and chromosomal position. (B) Entrez Genes. (C)

Linkage disequilibrium in GOLD heat map Haploview 4.0 color

scheme, CEPH population. The x axis represents genomic

position in Mb (A) and in kb (B,C). All P values are derived from

the discovery meta-analysis, except for the genome-wide signifi-

cant SNPs (Table 2), which are derived from the combined P

values from all cohorts (displayed in red).

Found at: doi:10.1371/journal.pgen.1000768.s001 (1.13 MB TIF)

Figure S2 Relationship of genome-wide significant SNPs from

the current study with selected previously published SNPs at the

ADIPOQ locus.

Found at: doi:10.1371/journal.pgen.1000768.s002 (1.54 MB TIF)

Figure S3 Forest Plot of Association of rs4311394 with Risk of

CHD (total n = 22,421).

Found at: doi:10.1371/journal.pgen.1000768.s003 (0.28 MB TIF)

Table S1. Genotyping information for the adiponectin discovery

and replication cohorts.

Found at: doi:10.1371/journal.pgen.1000768.s004 (0.04 MB
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Table S2 Cohort information, case and control definitions for

coronary heart disease cohorts. (A) Cohort information for

coronary heart disease cohorts and (B) Case and control definitions

for coronary heart disease cohorts.
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Table S3 Quality control parameters for rs4311394 at ARL15

from each cohort involved in the adiponectin GWAS.

Found at: doi:10.1371/journal.pgen.1000768.s006 (0.03 MB
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Table S4 Relationship of genome-wide significant SNPs with

body mass index (BMI) in the GIANT consortium.
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