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Abstract

Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of
new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents.
We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-
based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the
best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals.
After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs
from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals
(GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity:
one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.8561028 in the DISCOVERY step) and one
between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide
reductase A gene; p = 4.8461027), the latter finding being limited to children and adolescents as demonstrated in the
GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ,1.10 per risk allele for both loci.
Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary,
we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and
replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18,
SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major
common variants related to obesity overlap to a substantial degree between children and adults.
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Introduction

Recent genome-wide association studies (GWAS) conducted in

adult population-based samples assessed for body mass index

(BMI) or in case-control designs for extreme obesity led to the

discovery of genetic loci relevant for body weight regulation. The

first genetic loci were detected via variants in intron 1 of the FTO

(fat mass and obesity associated gene; e.g., [1–4]) and variants

approx. 200 kb downstream of MC4R (melanocortin 4 receptor

gene; [5–8]) reported by the GIANT (Genetic Investigation of

ANthropometric Traits) consortium. This consortium subsequent-

ly detected six additional genetic loci relevant for BMI in a meta-

analysis of 15 GWAS based on 32,387 probands and large

confirmation samples (.58,000 individuals; with single nucleotide

polymorphisms (SNP) in or near TMEM18, transmembrane

protein 18 gene; KCTD15, potassium channel tetramerization

domain containing 15 gene; GNPDA2, glucosamine-6-phosphate

deaminase 2 gene; SH2B1, SH2B adapter protein 1 gene;

MTCH2, mitochondrial carrier homologue 2 gene; NEGR1,

neuronal growth regulator 1 gene). In parallel, a combined

analysis of 34,416 individuals from Iceland, the Netherlands,

North America (European and African descent) and Scandinavia

revealed 11 regions of genome-wide significance at #1.661027 (in

or near FTO; MC4R; TMEM18; KCTD15; SH2B1; NEGR1;

SEC16B, SEC16 homologue B gene; ETV5, ets variant gene 5;

BDNF, brain-derived neurotrophic factor gene and two gene rich

loci on chromosome 6p21.33 and 12q13.13 with the closest genes

AIF1, allograft inflammatory factor 1 gene, and BCDIN3D,

BCDIN3 domain containing gene, respectively). Finally, shifting

to the analysis of extremely obese subjects, Meyre et al. [9]

analyzed GWAS data from 1,380 Europeans with early-onset and

morbid adult obesity and 1,416 age-matched normal-weight

controls and reported three new risk loci in NPC1 (Niemann-Pick

disease, type C1 gene), near MAF (v-maf musculoaponeurotic

fibrosarcoma oncogene homolog gene) and PTER (phosphotries-

terase related gene), which were followed-up in 14,186 European

subjects. Altogether, 16 genetic loci relevant for body weight

regulation have been identified by these three GWAS approaches

[10–12].

While meta-analytic combinations of multiple GWAS were

highly successful in population-based samples, no such approach

has up to now been applied to case-control designs for obesity.

Here we combined GWAS based on two samples that were

specifically ascertained for the analysis of paediatric extreme

obesity [3,9]. We aimed to identify genetic loci that are relevant

for early onset extreme obesity and to determine effect sizes of

such loci for obesity in adults and in population-based samples

including both children and adults (see Figure 1 for the general

design of the study).

In particular, our study design was based on two steps to enable

hypothesis-free SNP identification and confirmation. In the

DISCOVERY step, we screened 2,239,392 genotyped or imputed

SNPs and tested 1,596,878 SNPs (after quality control) for

association in a combined French and German sample of 1,138

extremely obese children and adolescents and 1,120 normal- or

underweight controls as based on a minor allele frequency above

1%. Next, we (de novo) genotyped all SNPs with strong evidence for

an association to obesity (according to p-value ranking; for details

see ‘‘Materials and Methods’’ and Text S1) in independent

samples of 1,181 obese children and adolescents and 1,960

normal- or underweight controls and in up to 715 nuclear families

with at least one extremely obese offspring. In the GENERAL-

IZATION step, we extended the focus of our study in two

dimensions - (i) from children and adolescents to adults and (ii)

from (extreme) obesity to the population level (in sum we (de novo)

genotyped 31,182 individuals in the GENERALIZATION step).

In addition to our hypothesis-free step-wise design, we aimed to

re-confirm the associations of the recently reported GWAS-based

genetic loci for body weight regulation [9,13,14] in our paediatric

extreme obesity GWAS meta-analysis.

Results

In our GWAS meta-analysis based on the German and French

study groups encompassing both young obese cases and normal

weight or lean controls we discovered three SNPs with genome-

wide significance (Table 1 and Figure 2, Figure S1) even when

applying the conservative Bonferroni correction at aBF<3.161028

for all 1,596,878 SNPs. While two markers are located in the

previously reported FTO (intron 1; rs1421085; p = 2.9961028)

and downstream of MC4R (rs17700144; p = 2.4061028), rs473034

indicates a new genetic locus for early onset extreme obesity

located on chromosome 8p23.1 (p = 2.7761028) with the closest

genes TNKS (tankyrase, TRF1-interacting, ankyrin-related ADP-

ribose polymerase gene; ,135 kb upstream of rs473034) and

MSRA (methionine sulfoxide reductase A gene; ,178 kb down-

stream of rs473034). In addition to the three genome-wide

significant regions, the GWAS data revealed 18 genomic regions

Two New Loci for Early–Onset Extreme Obesity
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of interest which were defined by (i) two-sided p-values of a lead

SNPs #1025 and (ii) more than a single SNP within a locus (lead

SNP 6500 kb) showing evidence for association as defined via a p-

value rank ,1,500 (roughly corresponding to p#561024; for

details see Text S1).

As part of our DISCOVERY step, we subsequently (de novo)

genotyped 44 SNPs representing these 21 genomic regions of

interest in independent 1,181 obese children and adolescents and

1,960 normal- or underweight controls and in up to 715 nuclear

families with at least one extremely obese offspring (Table 1; Table

S3). For 5 out of the 21 regions the association was directionally

consistent (i.e. we observed the same obesity risk effect allele as in

our GWAS meta-analysis) and the minimum combined p-value for

each region across the samples was p#561024 (Table 1; for

details see Text S1). These 5 genomic regions included three

known loci on chromosome 2p25.3 (TMEM18), 16q12.2 (FTO),

18q21.32 (39 of MC4R) as well as two new loci on chromosome

1q43-q44 and on chromosome 8p23.1 (Figure 2, Figure S2). The

SNPs of the first new locus on chromosome 1q43-q44 are located

within introns of the SDCCAG8 (serologically defined colon cancer

antigen 8 gene) whereas the second new locus on chromosome

8p23.1 between the TNKS and MSRA had already showed

evidence for an association at the genome-wide level in the initial

paediatric extreme obesity GWAS meta-analysis.

Based on these results, we extended the focus of our study in two

dimensions - from children and adolescents to adults and from the

extremes to the population level - looking for GENERALIZA-

TION of the replicated 5 regions represented by 10 SNPs

(Table 1). Comparing children and adolescents to adults using

case-control designs with overweight and obese cases vs. normal

weight controls revealed directionally consistent (see above)

findings for the variants of FTO, TMEM18 and the novel

SDCCAG8 (Table 1). Similarly the odds ratios for the respective

obesity risk effect alleles did not vary strongly by group (children

and adolescents vs. adults) with point estimates ranging between

1.35–1.45 (FTO), 1.35–1.45 (TMEM18) and 1.10–1.19

(SDCCAG8). For the SNPs related to MC4R and the new TNKS/

MSRA locus, however, we observed age dependent differences: For

MC4R, we confirmed the findings by Loos and co-workers [6] by

finding a stronger effect size estimator in children and adolescents

as compared to adults (1.44 vs. 1.14 for rs17700144 of MC4R;

p = 9.3961023 for the interaction of genotype and group). For

TNKS/MSRA, we found an effect in children and adolescents but

no effect in adults (e.g., 1.12 vs. 0.97 for rs516175). These

differences in obesity risk effects between children and adolescents

as compared to adults, however, were not due to large differences

in allele frequencies as based on the population-based samples

with a maximum difference of 0.82% for rs11127485 of TMEM18.

We then compared (extreme) obesity assessed in case-control

designs to the analyses of quantitative BMI data derived from

population-based samples in the GENERALIZATION step (3,525

children and adolescents and 25,958 adults of European origin;

Table 1, Table 2). BMI analyses revealed that the two SNPs in

FTO and TMEM18 would have also been detectable using

population-based samples of the given sizes from children/

adolescents and adults (p-values 7.8761024 and 9.99610216 for

FTO and 0.01 and 9.97610212 for TMEM18 with the values in

the adults being even significant at a stringent genome-wide

significance level of a= 561028). The MC4R SNP, however,

would have been harder to detect (p-values of 0.02 for children

and adolescents and 1.1061024 for adults); detection of the two

Figure 1. Study design to discover consistently associated genetic loci for (early-onset) obesity. In the DISCOVERY step we jointly
analysed two GWAS focussing on extremely obese children and adolescents. Markers with the smallest p-values of the GWAS were validated in
independent case-control and nuclear family samples again with a focus on overweight/obese children and adolescents. Afterwards, in the
GENERALIZATION step, we extended the focus in two dimensions—(i) from the extremes to the population level and (ii) from children and
adolescents to adults. Note that we used controls selected from the population-based samples for the cases-control comparison with obese
individuals for the GENERALIZATION (BMI quartile , median for children & BMI ,25 kg/m2 for adults).
doi:10.1371/journal.pgen.1000916.g001

Author Summary

Genome-wide association studies (GWAS) have successful-
ly contributed to the detection of genetic variants involved
in body-weight regulation. We jointly analysed two GWAS
for early-onset extreme obesity in 2,258 individuals of
European origin and followed-up the findings in 3,141
individuals. Evidence for association of markers in two new
genetic loci was shown (SDCCAG8 on chromosome 1q43–
q44 and between TNKS/MSRA on chromosome 8p23.1). We
also re-identified variants in or near FTO, MC4R, and
TMEM18 to be associated with extreme obesity. In
addition, we assessed the effect of the markers in 31,182
obese, lean, normal weight, and unselected individuals
from population-based samples and showed that the
variants near FTO, MC4R, TMEM18, and SDCCAG8 were
consistently associated with obesity. For variants of TNKS/
MSRA, the obesity association was limited to children and
adolescents. In summary, we detected two new obesity
loci and confirmed that the currently known major
common variants related to obesity overlap to a substan-
tial degree between children and adults.

Two New Loci for Early–Onset Extreme Obesity
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new loci SDCCAG8 and TNKS/MSRA would have been impossible

(Table 2).

In sum, our hypothesis-free step-wise design revealed three

known (FTO, MC4R and TMEM18) and two new loci (SDCCAG8

and TNKS/MSRA) with estimated odds ratios that ranged from

,1.07 to ,1.44 in children and adolescents and from ,1.17 to

,1.45 in adults with the strongest overall signals related to the

FTO locus. Modelling of the joint and epistatic effects revealed that

,1% of the BMI (or BMI-SDS when BMI is expressed as

standard deviation score) variance can be attributed to the five

variants analyzed in or near TNKS/MSRA, SDCCAG8, TMEM18,

FTO, and MC4R. For children and adolescents this value did not

change upon inclusion of gender, age and age2 as covariates

whereas it changed to 11% for the adult sample (KORA S2-S4).

Applying the model including the same covariates derived in one

population-based data set of adults (KORA S2-S4) to a second

population-based data sets of adults (Heinz-Nixdorf Recall Study)

r2 dropped from 11% to ,2%. Proceeding similarly for epistatic

effects, we found no evidence for strong epistatic effects using

regression tree analyses (Figure S3, Figure S4).

In addition to our hypothesis-free step-wise design, we

investigated our paediatric extreme obesity GWAS meta-analysis

data focussing on recently reported GWAS-based candidate

markers [9,13,14]. For the 16 confirmed genetic loci for which

quality controlled genotyped or imputed SNPs were available, two

loci on chromosome 1 (1p31.1–NEGR1, 1q25.2 - SEC16B), a locus

on 11p14.1 near BDNF, and a gene-rich locus on 12q13.13 near

BCDIN3D all showed directionally consistent effects of the

respective SNPs (all p#.005). Details on all analysed candidate

gene SNPs are provided in Table S4 and Table S5. Note that the

16 confirmed genetic loci [9,13,14] correspond to 46 SNPs in our

GWAS meta-analysis; in case of multiple markers at the same

locus all showed evidence for strong LD (r2..9).

Discussion

We identified two new genomic loci associated with paediatric

obesity on chromosomes 1q43–q44 and 8p23.1 by a meta-analysis

of two GWAS for early onset extreme obesity with a total 2,258

individuals of European origin. In addition, we confirmed the

three known loci FTO, MC4R and TMEM18 using a hypothesis-

free step-wise design. Leaving the hypothesis-free approach and

focussing on known GWAS-based candidate markers, we were

able to substantiate another four loci (NEGR1, SEC16B, BDNF and

BCDIN3D) of the 16 obesity loci previously detected in GWAS

[6,9,13,14]. Thus, we demonstrate that the currently known major

common variants related to obesity overlap to a substantial degree

between children and adults confirming previous observations for

FTO, MC4R, TMEM18, NEGR1 [2,6,14] and extending this

observation to SEC16B, BDNF and BCDIN3D; [13,14]. As our

meta-analysis includes data from Meyre et al. [9] an independent

well-powered replication of NPC1, MAF and PTER was not

possible here.

The new chromosome 1q43–q44 locus was represented by three

SNPs in strong pairwise LD (r2..9) which are located in introns 6,

9 and 10 of SDCCAG8. There is no obvious indication for an

involvement of SDCCAG8 in body weight regulation. Data on this

gene are scarce. It has been shown that SDCCAG8 is located in

centrosomes during interphase and mitosis in human and murine

cells. N- and C- terminal truncations of the human protein alter

this location; a possible role of SDCCAG8 (alternative name: NY-

CO-8) in centrosomal organization has been suggested [15]. It is

considered to be a naturally occurring autoantigen [16]. SDCCAG8

is ubiquitously expressed, amongst other tissues in thymus, small

intestine, colon mucosa, liver and brain (http://www.genecards.

org/cgi-bin/carddisp.pl?gene = SDCCAG8). Hypothalamus, pitu-

itary and adrenals have been shown to have a particularly high

transcript abundance. This pattern indicates a role of SDCCAG8

in this pivotal hormonal axis that is well-known for its impact on

body weight regulation [16]. Other candidate genes in proximity

of the three SNPs include CEP170 (centrosomal protein 170 kDa

gene, ,95 kb downstream of rs12145833) and AKT3 (v-akt

murine thymoma viral oncogene homolog 3 (protein kinase B,

gamma) gene, ,168 kb upstream of rs12145833) with the latter

being the more interesting candidate. The protein encoded by this

gene is a member of the AKT family known to regulate cell

signalling in response to insulin and growth factors. In particular

AS160, an Akt substrate of 160 kDa, and TBC1D1 (TBC1

domain family, member 1) have been suggested to have

complementary roles in regulating vesicle trafficking in response

to insulin [17] with TBC1D1 being persuasively linked to body

weight regulation [18–20]. However, we observed no evidence for

strong pairwise LD (r2..9) to any likely functional relevant variant

in a region of 61 Mb around the lead SNP (rs12145833) using

Ensembl (version 56; GRCh37, 02/2009; Figure S6).

Figure 2. Results of the meta-analysis of two genome-wide association studies for early-onset extreme obesity. SNPs are plotted on
the x-axis according to their position on each chromosome (HapMap, release 22) against the association signal on the y-axis (shown as -log10 of the
two-sided (deflated/adjusted) p-value). SNPs genotyped in the independent samples of the DISCOVERY step are shown as blue circles (some of them
are proxy SNPs of the best signals). SNPs followed-up in the GENERALIZATION step as well are shown as orange squares. For details on the marker
selection see Text S1.
doi:10.1371/journal.pgen.1000916.g002
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Table 2. GENERALIZATION.

GENERALIZATION

children and adolescents (n = 3,525) adults (n = 25,958)

chromosomal
regiona (sug-
gested gene)

SNP (obesity
risk effect
alleleb)

BMI-SDSd estimator
(beta) for effect
allele (95% CI) p-value

BMI estimator (beta)
for effect allele
(95% CI) p-value

combined BMI
estimator (beta) for
effect allele (95% CI)e

combined
p-valuee

1q43–q44 (SDCCAG8) rs10926984 (T) 0.016 (20.043;0.076) 0.59 K 0.04 (20.11;0.19) 0.57 0.02 (20.10; 0.13) 0.79

E 0.01 (20.22;0.25) 0.91

H 20.05 (20.31;0.21) 0.73

rs12145833 (T) 20.008 (20.067;0.050) 0.78 K 0.07 (20.08;0.22) 0.39 0.05 (20.05;0.16) 0.33

S 0.18 (20.09;0.44) 0.20

E 0.01 (20.22;0.25) 0.92

H 20.07 (20.33;0.19) 0.60

rs2783963 (C) 0.006 (20.054;0.066) 0.85 K 0.03 (20.12;0.18) 0.70 0.02 (20.10;0.13) 0.79

E 0.01 (20.23;0.25) 0.94

H 20.02 (20.28;0.24) 0.90

2p25.3 (TMEM18) rs11127485 (T) 0.079 (20.021;0.136) 0.01 K 0.37 (0.22;0.52) 9.2661027 0.35 (0.25;0.45) 9.97610212

S 0.46 (0.20;0.72) 0.001

E 0.19 (20.04;0.42) 0.11

H 0.38 (0.14;0.63) 0.002

8p23.1 (TNKS/MSRA) rs17150703 (A) 20.028 (20.103;0.047) 0.46 K 20.12 (20.31;20.06) 0.19 20.10 (20.23;0.03) 0.12

S 20.16 (20.49;0.18) 0.37

E 0.01 (20.28;0.31) 0.93

H 20.13 (20.44;0.19) 0.43

rs13278851 (A) 20.022 (20.096;0.052) 0.56 K 20.13 (20.31;0.06) 0.18 20.10 (20.24;0.04) 0.15

E 0.00 (20.30;0.30) 0.99

H 20.13 (20.44;0.19) 0.44

rs516175 (T) 20.004 (20.073;0.064) 0.90 K 20.03 (20.20;0.15) 0.76 20.04 (20.16;0.08) 0.49

S 20.13 (20.45;0.19) 0.42

E 0.00 (20.29;0.26) 0.99

H 20.05 (20.35;0.26) 0.77

16q12.2 (FTO) rs1558902 (A) 0.074 (0.031;0.116) 7.8761024 K 0.29 (0.18;0.40) 1.3461027 0.31 (0.24;0.39) 9.99610216

S 0.19 (20.01;0.39) 0.07

E 0.44 (0.27;0.61) 4.6961027

H 0.34 (0.14;0.53) 7.7661024

rs9935401 (A) 0.074 (0.030;0.117) 9.0461024 K 0.29 (0.18;0.40) 3.3561027 0.30 (0.23;0.38) 7.99610215

S 0.17 (20.02;0.37) 0.09

E 0.44 (0.26;0.60) 1.3661026

H 0.33 (0.13;0.53) 0.001

18q21.32 (MC4R) rs17700144 (A) 0.064 (0.011;0.116) 0.02 K 0.10 (20.03;0.23) 0.13 0.17 (0.08;0.26) 1.1061024

S 0.28 (0.05;0.51) 0.02

E 0.18 (20.02;0.39) 0.08

H 0.27 (0.04;0.50) 0.02

Evidence for quantitative associations (BMI or standard deviation score of BMI (BMI-SDS)) assessed cross-sectionally for 5 loci (10 SNPs) under an additive genetic model.
Effect sizes as point estimators and 95% confidence intervals (95% CI), p-values (two-sided) and combined effect estimators and p-values are presented for the adults
with abbreviations for the samples: KORA, SHIPc, EPIC-Potsdam, Heinz-Nixdorf Recall Study; all samples are described in detail in Text S1.
aposition and stranding according to dbSNP BUILD 129; Map to Genome Build 36.3;
b(obesity) effect risk alleles as derived from the paediatric extreme obesity GWAS meta-analysis;
cresults for SHIP are based on in silico GWAS data–proxy markers (FTO: rs8050136 for rs9935401, rs1421085 for rs1558902; MC4R: rs476828 for rs17700144); one marker
for each region was regarded as sufficient if the others were not available;

dBMI-SDS is a normalized version of BMI expressed as standard deviation score that includes information on age and gender; the results were similar if age and gender
were included as covariates;

eby inverse normal method (function metagen in the package meta of R) with weights proportional to the sample size (fixed effects model).
doi:10.1371/journal.pgen.1000916.t002
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The new chromosome 8p23.1 locus, for which we observed

genome-wide significance in our GWAS meta-analysis (Figure 1,

Figure S2), was also represented by three SNPs with strong

pairwise LD (r2..9). TNKS and MSRA are the genes located closest

to our association finding. MSRA encodes a repair enzyme for

oxidative damage in proteins by enzymatic reduction of

methionine sulfoxide. Oxidation of methionine residues in proteins

is considered to be an important consequence of oxidative damage

to cells [21]. Oxidation of proteins by reactive oxygen species

(ROS) is generally associated with oxidative stress, aging and many

neurodegenerative diseases such as Alzheimer’s disease [21]. Also,

obesity is associated with oxidative stress in the mitochondrion,

with the chronic excess of ROS resulting in mitochondrial

dysfunction in liver and skeletal muscle contributing to insulin

resistance [22]. MSRA is mainly expressed in kidney followed by

liver, brain, and adipose tissue (http://biogps.gnf.org/#goto =

genereport&id = 4482). The other candidate gene at the chromo-

some 8p23.1 locus is TNKS which is ubiquitously expressed

(http://biogps.gnf.org/#goto = genereport&id = 8658). Tankyr-

ase is a Golgi-associated poly-ADP-ribose polymerase, which is

involved in the regulation of GLUT4 trafficking in 3T3-L1

adipocytes. Mice lacking Tnks show increased energy expenditure,

fatty-acid oxidation, and insulin-stimulated glucose utilization;

they are lean even with excessive food intake [23]. In other

GWAS, the 8p23.1 genomic region has been related to increased

triglyceride levels [24] and to waist circumference in adults [21].

The variants with the strongest reported association signals

(rs7819412; rs7826222 which is now labelled rs545854) are about

1.3 and .08 Mb downstream of our best finding (rs473034). For

the former, the association to obesity was moderate in our GWAS

meta-analysis data (p = 0.02) whereas for the latter no genotype

data were available (with pairwise LD between rs545854 and

rs473034 of r2,.01 (D’ = .03) according to Ensembl version 56).

Thus, further research is needed to elucidate if our finding for

TNKS/MSRA detected in paediatric extremes of the quantitative

trait BMI and the finding for waist circumference in adults [21]

point to the same underlying genetic mechanism.

In our study we used two steps to enable hypothesis-free SNP

identification and confirmation covering the extremes and the

population distribution of BMI in paediatric as well as adult

samples. Both dimensions of our design are related to statistical

power considerations and the genetic architecture of the

phenotype studied. A case-control design with highly selected

individuals outperforms a design using unselected population-

based individuals if the same number of individuals are

genotyped and if the same alternative hypothesis holds true (see

Text S1). This contrast will be aggravated the more extreme the

selection and possibly also the younger the subjects [25]. In

addition the selection of extremes may lead to the detection of

genetic variations that are rare in the population, that

accumulated in families and that might result in stronger effect

sizes. Nevertheless, the power of our GWAS meta-analysis sample

is still limited for small effects (see Text S1) and growing consortia

like GIANT [14] will be best suited to detect them. Not

surprisingly, we confirmed the strongest effects (odds ratio for the

obesity risk effect alleles of ,1.4) reported for children and

adolescents near FTO, MC4R and TMEM18 [12] but also found

support for variants near NEGR1, SEC16B, BDNF and BCDIN3D.

Thus, one may speculate, that the genetic architecture in the

paediatric extremely obese is in part similar to the BMI findings

based mainly on adults from large population-based assessments

(e.g. [13,14]). On the other hand, some of the related effect sizes

of these variants seem to vary longitudinally as shown here for

MC4R and previously stressed by others [6,26] while other

genetic loci might only be relevant for (paediatric) extreme obe-

sity such as TNKS/MSRA.

In conclusion, two new loci related to body weight regulation

were identified using highly selected paediatric samples from the

extremes of the quantitative phenotype BMI. By showing that one

locus is relevant across all age groups whereas the impact of a

second is limited to childhood and adolescence, our data support

previous studies showing the importance of age-related aspects

upon interpretation of GWAS signals.

Materials and Methods

Study samples, genotyping, and quality control
Our study design consisted of two steps (Figure 1). As first part

of the DISCOVERY step we performed a meta-analysis of two

genome-wide association studies (GWAS) including 1,370 indi-

viduals of French and 888 of German ancestry, defined by self-

reported ethnicity. Ascertainment in both GWAS was very similar

with a focus on extremely obese children and adolescents and

normal weight or lean controls (Table S1). Body-mass-index (BMI

in kg/m2) was calculated and the extremes were defined using

percentile criteria of large population-based samples of the general

population [27,28]. We applied the cut-offs $97th percentile and

$90th percentile to define ‘obesity’ and ‘overweight’ in children

and adolescents; most of the cases with extreme obesity had a BMI

$99th percentile (Table S1; [29]). Whole-genome genotyping was

carried out using the Illumina Human CNV370-Duo array

(French GWAS) and the Affymetrix Genome-Wide Human SNP

Array 6.0 (German GWAS). Genotype data quality measures, e.g.

genotype calling rates, were similar in both GWAS (Table S2). To

combine both datasets, the GWAS genotypes were imputed using

publicly available HapMap CEU (release 22; http://www.

hapmap.org). From this GWAS meta-analysis, we selected 44

SNPs covering 21 loci (Table S3; Figure S5) which we (de novo)

genotyped in 1,181 overweight and obese children and adolescents

and 1,960 normal weight or lean children and adolescents and

young adults (controls) of European ancestry and up to 715

nuclear families with obese offspring of European ancestry were

examined. The SNP selection was based on (i) an unadjusted two-

sided p-values #1025 and (ii) more than a single SNP within a

locus (lead SNP 6500 kb) showing evidence for association (with a

p-value rank ,1,500 roughly corresponding to p#561024; for

details see Text S1). Sub-whole genome SNP genotyping was

performed using by the MALDI-TOF mass spectrometry-based

iPLEX Gold assay. In the GENERALIZATION step, 10 SNPs,

for which DISCOVERY step had revealed consistent observations

(Table 1; Table 2), were further investigated for generalizability to

adults and to unselected population-based samples. Thus, 711

overweight and obese children and adolescents (Datteln Paediatric

Obesity sample), 3,525 children and adolescents from the general

population (GINI, LISA, Berlin School Girls), 988 obese adults

(Marburg Adult Obesity sample) and 25,958 adults from the

general population (EPIC-Potsdam Study, KORA S2-S4, SHIP,

Heinz-Nixdorf Recall Study) each of European ancestry were

genotyped. SNP genotyping was performed by the MALDI-TOF

mass spectrometry-based iPLEX Gold assay at the Helmholtz

Zentrum, München and at the Department of Genomics, Life &

Brain Center, Bonn or by KBioscience, Hoddeston, UK. All were

assessed for genotype calling rates and deviations from Hardy–

Weinberg equilibrium (for details see Text S1).

The RefSeq accession numbers for the reported genes are: FTO:

NM_001080432; MC4R: NM_005912; TNKS: NM_003747;

SDCCAG8: NM_006642.2; TMEM18: NM_152834; CEP170:

NM_014812; AKT3: NM_181690.
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Statistical analysis
After similar quality control analyses of both GWAS, the

imputed GWAS were jointly analysed using the inverse normal

method to combine p-values of allele-based chi-square tests.

Details on the imputation and on the marker selection for the

follow-up are described in Text S1. In the paediatric extreme

obesity GWAS meta-analysis data set we also explored genetic

variants for obesity recently derived from other GWAS [9,13,14]

and variants for ‘classical’ obesity candidate genes [3,30] by testing

the best SNP reported in Scuteri et al. [4].

In both the DISCOVERY and the GENERALIZATION part of

the study either log-additive or additive genetic models were

applied. Case-control samples were analysed using logistic regres-

sion (both with and without gender and age as covariates). The

nuclear families were analysed using UNPHASED (Version 3.0.13;

[31]) which addresses the correlation among sibs and provides

estimators; nuclear family data and case-control data sets were

combined using a method described in [32]. In the GENERAL-

IZATION step, BMI in adults of population-based samples was

analysed using linear regression with gender and age as covariates.

Similarly, we used linear regression analyses for the population-

based samples of children and adolescents. However, as phenotype

we used a normalized version of the BMI applying Cole’s least mean

square method [33] to express BMI as a standard deviation score

(BMI-SDS) which is comparable to the BMI z-score as e.g. used by

the Center for Disease Control and Prevention (http://www.cdc.

gov/). As BMI-SDS already includes information on gender and

age additional sensitivity analyses were performed where these

covariates were omitted. Note that the case-control analyses in

GENERALIZATION step are not completely independent from

the population-based analyses. In particular, controls in GENER-

ALIZATION were individuals from the population-based samples

which either had a BMI,25 for adults or a BMI percentile below

the median. Due to the similarity to the original design it was

nevertheless decided to report both analyses.

As secondary sensitivity analyses, we performed gender stratified

analyses in all GENERALIZATION samples for the markers

which we followed-up. We explored the recessive and dominant

genetic model, investigated the impact of the control group cut-off

for the case-control analyses (results not shown as they did not alter

the conclusions drawn here) and explored joint and epistatic effects

(multiple linear regression and regression trees using lm, rlm, and

party of R.2.9.1) of all five loci (see Figure S3, Figure S4). To

address, to some extent, problems of the ‘bias-variance trade-off’

and the ‘winners curse’ [34], the largest GENERALIZATION

population-based sample KORA (n = 12,002) was chosen for this

modelling. The model was tested in the Heinz-Nixdorf Recall

Study sample (n = 4,646). These two samples were chosen due to

their largest similarities in the recruitment and due to the

availability of directly genotyped SNPs. In addition, we also

explored the sample of population-based children and adolescents

(GINI, LISA, Berlin School Girls; n = 3,525) separately.

Unless otherwise stated, all reported p-values are nominal, two-

sided and not adjusted for multiple testing. To address multiple

testing in the paediatric extreme obesity GWAS meta-analysis we

applied a Bonferroni-corrected aBF<3.161028 to the quality

controlled SNPs on autosomes. Confidence intervals were calculat-

ed with coverage of 95% (abbreviated 95%CI). More details on

quality control and power considerations are provided in Text S1.

Ethics statement
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and approved by all local IRB boards.

Supporting Information

Figure S1 DISCOVERY: Quantile-quantile plot of SNPs of the

GWAS meta-analysis focussing on extremely obese children and

adolescents joint analysis (grey unadjusted; black adjusted results -

for details on the adjustment see Text S1). The deviation from the

45-degree-line is due to the presence of multiple truly associated

markers, the ascertainment of the study samples and in part due to

the strategy of the combination for C/G or A/T SNPs.

Found at: doi:10.1371/journal.pgen.1000916.s001 (4.19 MB TIF)

Figure S2 Regional plots of two new loci associated with

obesity. The SNPs are plotted on the x-axis according to their

position on each chromosome (HapMap, release 22) against the

meta-analysis association signal on the y-axis (shown as -log10 of

the two-sided p-value). The plots were generated using SNAP

([24] of Text S1).

Found at: doi:10.1371/journal.pgen.1000916.s002 (8.26 MB TIF)

Figure S3 GENERALIZATION: Regression trees to explore

epistatic effects of validated markers in two independent

population-based samples of adults (left: KORA; right: Heinz-

Nixdorf Recall Study; see main text and Text S1 for details). Only

the five loci of main paper were modelled. Splits in the branches of

the tree indicate different risk classes starting with the strongest

predictor. Here the samples are first split by FTO genotype and

then by TMEM18 genotype. Here we observe some weak evidence

for a marker by marker interaction as the sub-branching in the

FTO genotype branches is not the same for both branches.

Found at: doi:10.1371/journal.pgen.1000916.s003 (9.26 MB TIF)

Figure S4 GENERALIZATION: Regression trees to explore

epistatic effects of validated markers in one population-based

sample of children and adolescents (GINI, LISA, Berlin School

Girls; left: modelling of the five loci only; right: modelling of the

five loci plus sex, age and age 2; see main text and Text S1 for

details). Splits in the branches of the tree indicate different risk

classes starting with the strongest predictor. Here the samples are

first split by FTO genotype and then by MC4R genotype.

However, as shown on the right panel, if age (regression tree

based cut-off at 13.19 years) is included only the FTO genotype

remains as predictor.

Found at: doi:10.1371/journal.pgen.1000916.s004 (9.42 MB TIF)

Figure S5 DISCOVERY: 21 regions of interest from the meta-

analysis of two genome-wide association studies for early onset

extreme obesity. Displayed are the number of SNPs per region for

all 213 SNPs with an unadjusted two-sided p-values #1025 (see

Text S1 for details).

Found at: doi:10.1371/journal.pgen.1000916.s005 (4.19 MB TIF)

Figure S6 Regional plots of the new chromosome 1q43–q44

locus located in SDCCAG8. All variants of Ensembl (version 56;

GRCh37, 02/2009) in a region of 6 1Mb around the lead SNP

(rs12145833) are displayed. The x-axis displays the chromosomal

position of the variant whereas the y-axis indicates LD (r2) of that

variant with rs12145833; the different colours code for different

variant classes (see legend). The plots were generated using

CandiSNPer ([25] of Text S1).

Found at: doi:10.1371/journal.pgen.1000916.s006 (5.52 MB TIF)

Table S1 DISCOVERY: Description of samples that were

jointly analysed in our genome-wide association analysis.

Found at: doi:10.1371/journal.pgen.1000916.s007 (0.05 MB

DOC)

Table S2 DISCOVERY: Genotype data for both GWAS in

extreme early onset obesity.
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Found at: doi:10.1371/journal.pgen.1000916.s008 (0.04 MB

DOC)

Table S3 DISCOVERY: Evidence from obese children and

adolescents (n = 1,181) versus controls (n = 1,960) and 715 nuclear

families with obese offspring. All these samples were not part of the

meta-analysis of two GWAS for early onset extreme obesity.

Found at: doi:10.1371/journal.pgen.1000916.s009 (0.20 MB

DOC)

Table S4 DISCOVERY: GWAS-based SNPs of previously

reported candidate markers for BMI and/or obesity sorted by

chromosome and physical position. The first two columns indicate

the name of a previously identified marker and the implied,

described candidate genes (in bold those which were confirmed

and which are reported in the introduction of the main text). The

columns 6–11 summarize the data of three recently published

large-scale GWAS (Willer et al., 2009 (publication ‘‘WI’’ and

‘‘WI.b’’ for the Appendix of ‘‘WI.b’’), Thorleifsson et al., 2009

(publication ‘‘TH’’), and Meyre et al., 2009 (publication ‘‘ME’’)).

Note that parts of the data sets in Meyre et al. (2009) overlap with

our meta-analyses data set. The table displays the phenotype,

obesity risk effect allele, the frequency of the effect allele, the

estimated additive effect and the related nominal p-value are

derived from publicly available resources. The effect is displayed

using the measurement regarded most appropriate for the design

of the GWAS. The remaining columns correspond to the

respective results observed GWAS meta-analysis.

Found at: doi:10.1371/journal.pgen.1000916.s010 (0.54 MB

DOC)

Table S5 DISCOVERY: SNPs of previously identified ‘classical’

obesity candidate genes. The first column indicates the name of a

previously identified candidate gene. The second column indicates

SNPs which showed strongest association in Scuteri et al. (2007)

for the phenotype, effect allele, frequency, the estimated additive

effect and the related nominal p-value in columns 6–9. The

remaining columns correspond to the respective results observed

in our GWAS meta-analysis (only markers with two-sided adjusted

p-values ,.1 and the ‘directionally consistent’ obesity risk effect

allele are displayed).

Found at: doi:10.1371/journal.pgen.1000916.s011 (0.07 MB

DOC)

Text S1 DISCOVERY and GENERALIZATION.

Found at: doi:10.1371/journal.pgen.1000916.s012 (0.27 MB

DOC)
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