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Abstract

MicroRNAs are a large class of post-transcriptional regulators that bind to the 39 untranslated region of messenger RNAs.
They play a critical role in many cellular processes and have been linked to the control of signal transduction pathways.
Recent studies indicate that microRNAs can function as tumor suppressors or even as oncogenes when aberrantly
expressed. For more general insights of disease-associated microRNAs, we analyzed their impact on human signaling
pathways from two perspectives. On a global scale, we found a core set of signaling pathways with enriched tissue-specific
microRNA targets across diseases. The function of these pathways reflects the affinity of microRNAs to regulate cellular
processes associated with apoptosis, proliferation or development. Comparing cancer and non-cancer related microRNAs,
we found no significant differences between both groups. To unveil the interaction and regulation of microRNAs on
signaling pathways locally, we analyzed the cellular location and process type of disease-associated microRNA targets and
proteins. While disease-associated proteins are highly enriched in extracellular components of the pathway, microRNA
targets are preferentially located in the nucleus. Moreover, targets of disease-associated microRNAs preferentially exhibit an
inhibitory effect within the pathways in contrast to disease proteins. Our analysis provides systematic insights into the
interaction of disease-associated microRNAs and signaling pathways and uncovers differences in cellular locations and
process types of microRNA targets and disease-associated proteins.
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Introduction

MicroRNAs are endogenous, non-protein coding, approximate-

ly 22-nucleotide RNA molecules that have recently emerged as

post-transcriptional regulators, known to influence diverse cellular

processes ranging from stem cell differentiation to apoptosis [1].

They mostly target the 39 untranslated region of a target mRNA,

thereby destabilizing the transcript and inhibiting its translation

[2,3]. While there is evidence [4–6] that microRNA expression

and maturation is induced by signaling pathways, microRNAs also

emerge as regulators of signaling proteins. In zebrafish, miR-9 has

been shown to regulate several components of the FGF signaling

pathway, and thus controls neurogenesis in the midbrain-

hindbrain domain during late embryonic development [7]. In

another recent example in fruit fly [8], miR-8 has been identified

to target both a transmembrane protein and a transcription factor

of the WNT signaling pathway. Ricarte-Filho et al. [9] showed

that the RET-pathway is mediated by let-7 which inhibits the

activation of the RET/PTC-RAS-BRAF-ERK cascade exempli-

fying the direct influence of a single microRNA on a submodule of

a signaling pathway. Given the generally large number of

microRNA targets [10] it is natural to assume that many

microRNAs regulate not only a single important pathway protein,

but rather coordinate protein levels on a pathway-wide scale.

Altered microRNA levels might then result in inaccurate target

protein levels, consequently fallacious signal transduction, and

potentially a disease phenotype.

From this perspective, it is intriguing to observe that medical

sciences increasingly focus on the impact of microRNA-mediated

regulatory control on diseases, especially in cancer: microRNAs

are intensively used as diagnostic and prognostic disease markers

[11], and even appear in first clinical trials [12]. Given the linkages

between signaling pathways and microRNA regulation on the one

hand, and microRNAs and disease phenotypes on the other, we

aim to unveil the connection between phenotypes and pathways

induced by microRNA mediated regulatory control.

In this work, we analyzed the tissue-specific regulatory patterns

of disease-associated microRNAs in signaling pathways on

different scales. Globally, we investigated the enrichment of

disease-associated microRNAs on different pathways, and more

locally, on the cellular location and process type of target proteins.

We used manually annotated data from hundreds of patient

studies to estimate the impact of disease-associated microRNAs on

signaling pathways. We identified a core set of pathways,

homogeneously enriched throughout nearly all diseases. Most of

these pathways have been associated with cell growth, prolifera-

tion, and apoptosis. However, deregulation of signaling pathways

can be induced by diverse factors. Point mutation of central
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signaling cascade proteins [13] have a severe impact on the

information flow as well as any change in the expression pattern of

cis or trans regulators. We thus compared the cellular localization

and process type of signaling proteins that are microRNA targets

with proteins that have been identified as disease-associated. In the

following, we show that in contrast to disease proteins, microRNA

targets are significantly enriched as inhibitors within the nucleus.

Results

We captured the different entities of our investigation in a

multipartite graph. The graph consists of five sets of nodes

representing the entities microRNAs, proteins, tissue, diseases, and

pathways and links between but not within the set of nodes. Links are

given by a prediction tool and four databases. MicroRNAs (as

provided by the mirBase database [14]) are linked to diseases and

corresponding tissue via the PhenomiR database [15], a manually

curated database containing disease-associated microRNAs in

human disorders. MicroRNA target transcripts are determined by

TargetScanS [10] a prediction tool that shows a high performance on

different microRNA target data sets [16]. In addition, we used the

tissue atlas provided by Su et al. [17] to filter potential microRNA

targets for a specific disease and a given tissue. We unified the set of

mRNA transcripts and corresponding proteins to a set of nodes

denoted simply as proteins. This set is linked to signaling pathways via

the National Cancer Institute Pathway Interaction Database (NCI

PID) [18], containing 79 human pathways together with its

constituting components. Finally, disease proteins are identified by

their KEGG DISEASE annotation [19] (see Methods for a detailed

description of the materials used). Figure 1 summarizes the entities

and connections used. Notably, similar results were obtained with

other microRNA prediction tools and a different set of disease genes,

as provided by OMIM [20] (for a detailed discussion see Robustness

analysis in File S1).

MicroRNAs induce a core set of signaling pathways
across diseases and tissues

We first analyzed the connection between diseases and signaling

pathways, mediated by disease-associated microRNAs. In order to

project the properties of the multipartite graph onto a disease-

pathway correlation, we calculated the enrichment of disease-

associated microRNA targets in a particular pathway. We used the

tissue annotation in PhenomiR to filter for expressed microRNA

targets, as given by the tissue atlas of Su et al. [17]. For a particular

disease and a specific pathway, we computed the log odds ratio

(LOD score) by dividing the relative number of associated

microRNA targets in this pathway and tissue with the expected

number, based on the relative number of associated microRNA

targets in all signaling pathways given a specific tissue. Disease-

pathway interactions with no targets (white fields in the heatmap

Figure 2A) were excluded from further analyses (see Methods for a

detailed description). We obtained a matrix of LOD scores, where

each entry indicates the enrichment or depletion of tissue-specific

targets of disease-associated microRNAs in the respective signaling

pathway. We ordered this matrix according to a hierarchical

clustering along the disease axis and pathway axis, respectively.

Two features of the resulting heatmap are remarkable: First,

dividing the hierarchical clustering of the signaling pathways into 3

major sub-clusters, we found one cluster (cluster 2; mean

LOD = 0.55, variance = 0.008) showing a high enrichment

throughout all diseases (see Figure 2A). We define this cluster as

the core set of signaling pathways highly enriched with disease-

associated microRNA targets. The remaining clusters show a high

variance (cluster 3; mean LOD = 0.21, variance = 0.02) and a

common depletion of microRNA targets (cluster 1; mean

LOD = 20.36, variance = 0.07). Second, the 63 diseases split into

two clusters with high and low microRNA-pathway associations.

Within the larger of the two clusters, the enrichment of microRNA

targets is extremely homogenous. Moreover we performed a multi-

Figure 1. Illustration of the interactions between diseases, tissue, annotated disease-associated microRNAs, proteins, and human
signaling pathways. The multipartite graphs consists of five sets of nodes and links between them, established by different data resources: 165
microRNAs from the PhenomiR database with annotated deregulation in 63 diseases, 4907 target transcripts, predicted by TargetScanS and filtered
by the tissue atlas, 79 signaling pathways with constitutive proteins as given by the NCI PID database, and finally the subset of disease proteins as
provided by the KEGG DISEASE database.
doi:10.1371/journal.pone.0011154.g001
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scale bootstrap resampling approach (relative sample sizes of

bootstrap replication of 20%) [21] to test whether clusters 1–3 are

robust against variation in the data. We can reject the hypothesis

that the clusters do not exist with a significance level av0.05

indicating that the clusters 1–3 may stably be observed by

increasing the number of observations.

All signaling pathways located in the core set are given in

Table 1. The functions of these pathways reflect the affinity of

Figure 2. Impact of disease-associated microRNAs on signaling pathways. Enrichment for a particular disease and pathway was calculated
by a LOD score. A positive score indicates an enrichment of microRNA targets for a disease-pathway interaction. Negative scores indicate depletion.
A: Heatmap of microRNA target enrichment for a particular disease and pathway. Pathways and diseases are ordered by hierarchical clustering using
Manhattan distance and ward clustering. B: Boxplot of disease-pathway associations ordered according to hierarchical clustering along the pathways.
Red fields indicate an enrichments and blue a depletion. White fields indicate that no microRNA targets were found for this disease-pathway
association.
doi:10.1371/journal.pone.0011154.g002
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microRNAs to regulate cellular processes associated with apopto-

sis, proliferation or development, as we will outline with three

examples. (i) The PDGFa pathway, for example, promotes cell

migration, proliferation, and survival [22–25]. PDGF expression

has been demonstrated in a number of different solid tumors, from

glioblastomas to prostate carcinomas. Its biological function varies

from autocrine stimulation of cell growth to subtler paracrine

interactions involving adjacent stroma or vasculature [26]. (ii) It

was recently reported that let-7 has an influence on the RET-

pathway by effecting the cell growth and differentiation of

papillary thyroid cancer [9]. Ricarte-Filho et al. [9] concluded

that let-7 inhibited the activation of the RET/PTC-RAS-BRAF-

ERK cascade exemplifying the direct influence of a single

microRNA on a submodule of a signaling pathway. (iii) The

Reelin pathway has been directly correlated with tumor

aggressiveness [27–29]. Evangelisti et al. [30] linked this pathway

for the first time to cancer by showing the inhibition of Reelin by

miR-124a.

The pathways with the highest negative enrichments, as

depleted by disease-associated microRNA targets, are the IL-23

mediated pathway (playing a pivotal role in autoimmunity [31])

and BRAD1, which is associated with cell survival and cell death

[32]. Although we found a core set of pathways across diseases,

differences between disorders can arise due to different expression

levels of the respective microRNAs. The PDGFa pathway for

example shows high enrichments across diseases independent of

the microRNA prediction tool (see Table S1). We found miR-144

to be highly enriched in the PDGFa pathway. Analyzing the

expression profile, we found miR-144 down-regulated in cancer,

but up-regulated in Parkinson disease and idiopathic Myelofibro-

sis. Predicted targets of miR-144 are SRF, a transcription factor

activated by PDGFa, and FOS that is thought to have an

important role in signal transduction, cell proliferation and

differentiation [33–35]. This finding shows that although different

diseases are associated with the same signaling pathway,

differences in the effects of the stimulated pathways can be

induced by complementary expression profiles of microRNAs.

As the PhenomiR data set is dominated by cancer-related

diseases (60%), we divided the set of diseases into a subset of

cancer and non-cancer related microRNAs to study differences

between both groups. We found 14 out of 16 pathways of the

global core set also in the cancer-specific core set (see Table S2).

The core set for the non-cancer related pathways contains 12

pathways that were also found by the global data set, but we also

identify also two non-cancer specific pathway enrichments (see

Table S3) such as the KIT pathway and the NFkB pathway, that is

involved in the expression of genes associated with development,

cell death, and immune response [36–39].

Robustness analysis of the core set of signaling pathways
In order to ensure that our results are not artifacts of the chosen

prediction tool, we analyzed the data with four other prediction tools:

PicTar [40], Miranda [41], TargetSpy [42], and RNA22 [43].

Different features like conservation of the seed region or binding

energies are taken into account to predict microRNA-transcript

interactions in each tool. Based on these differences the overlap

between the target sets from different tools is generally rather low

[44]. We define for each tool the core set of signaling pathways, which

are highly enriched by microRNA targets and compare these list with

our core set listed in Table 1. The result shows that the signaling

pathways in our core set are mostly consistent with different

prediction tools (see Table S1). We found 8 out of 16 pathways

within the core set of at least 3 different prediction tools.

In order to test the significance of these pathways, we performed a

randomization approach, by comparing the median LOD score of

these pathways with the median scores obtained by two random

samplings. We first sampled 10.000 times pathway proteins keeping

the pathway size constant, second, we generated 10.000 times a

random microRNA predictor by sampling for each microRNA the

corresponding targets. Finally, we calculated a z-score to estimate the

significance of each pathway within the core set. We obtained high z-

scores for the pathways within the core set independent of the

sampling approach (see Table 1). The mean z-score for all pathways

is 12.51 (Z-scoreTargets) and 7.65 (Z-scorePathways), respectively.

The enrichment of microRNA targets is summarized in the

boxplot in Figure 2B, where the distribution of LOD scores for

each pathway is shown. The median LOD scores and their

variance for the set of signaling pathways are significantly

negatively correlated (Pearson correlation coefficient

CP = {0.37, P~7:10{3, see Figure S1). In contrast to depleted

pathways, highly enriched pathways are homogeneously targeted

by microRNAs across diseases. This indicates that disease-

associated microRNAs in human disorders target a core set of

signaling pathways irrespective of the specific disease and tissue.

We ensure that the LOD scores are not trivially biased by the

pathway size (CP = 20.032, P~0:83) and show the respective plot

in Figure S2. We noticed that the pathway enrichment is

significantly negatively correlated with the number of microRNAs

with targets in this pathway (CP = 20.31, P~0:0010), with up to

159 targeting microRNAs in the SMAD2 pathway.

Interaction of disease-associated proteins and microRNA
targets

Much effort has been invested in understanding the mechanisms

underlying the complex network of factors contributing to human

diseases. Databases like OMIM [20], KEGG DISEASE [19], or

Table 1. Core set of signaling pathways with highly enriched
microRNA targets.

Pathway Median LOD microRNA Z-scoreTargets Z-scorePathways

Rhodopsin 0.76 miR-154 8.69 6.58

Botulinum 0.61 miR-29b 8.58 8.10

TGFBR 0.61 miR-216a 12.20 7.10

BMP 0.60 miR-224 9.37 7.93

IGF1 0.59 miR-375 9.39 8.12

VEGFR3 0.57 miR-422a 8.29 7.89

EphrinB/EPHB 0.57 miR-422a 11.44 8.06

PDGFa 0.56 miR-383 7.20 7.59

MET 0.55 miR-422a 10.96 7.61

EphrinA/EPHA 0.53 miR-136 8.31 8.15

RET 0.52 miR-422a 9.04 7.24

VEGFR1 0.51 miR-422a 11.72 7.82

REELIN 0.51 miR-197 7.76 6.86

TRKR 0.49 miR-335 12.94 7.88

mTOR4 0.47 miR-375 7.23 7.44

EPO 0.43 miR-134 6.75 8.00

The Median LOD score is calculated over all diseases for a particular pathway.
MicroRNA is the most enriched single microRNA within the corresponding
pathway. Z-scoreTargets was calculated by comparing the median LOD score
with the obtained score by a random sampling of microRNA targets. Z-
scorePathway was calculated by comparing the median LOD score with the
obtained score by a random sampling of pathway proteins.
doi:10.1371/journal.pone.0011154.t001
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HGMD [45] link dysfunctional proteins and genetic mutations to

human disorders. In order to focus on already confirmed gene-

disease interactions, we used the KEGG DISEASE database to

study similarities and differences to microRNA targets in signaling

pathways. In the following, we analyzed 23 diseases that are both

annotated in KEGG DISEASE and PhenomiR (see Methods). In

this subset, we analyzed 365 KEGG DISEASE proteins located in

the NCI PID signaling pathways and identified 123 (33.7%)

proteins as microRNA targets. The current estimation for the

amount of microRNA targets in the human genome lies between

30–35% [10,46]. This implies that there is no higher rate of

microRNA targets in the set of disease proteins than expected. In

order to study the interplay of disease proteins and microRNA

targets, we compared their mapping to NCI PID pathways (see

Figure 1). We found that typically, disease-affected proteins are

widely distributed over pathways for a particular disease. Focusing

on pathways showing a high fraction of disease-associated proteins,

we found no correlation of microRNA target enrichment and the

fraction of disease-affected signaling proteins (see Figure S3).

These findings imply that disease-affected proteins and disease-

associated microRNA targets do not prefer a common set of

signaling pathways. To elucidate those differences, we changed the

scale of our investigation and compare the localization and process

type of disease-associated microRNA targets and disease proteins.

MicroRNA targets are preferentially located in the
nucleus in contrast to disease proteins

To question whether microRNA targets and KEGG DISEASE

proteins differ with respect to their cellular location and process

type annotation, we divided the set of signaling proteins according

to their NCI PID annotation into four groups: extracellular region,

cell membrane, intracellular region, and nucleus. We then

estimated the fraction of microRNA targets as well as disease

proteins for each group and calculated the LOD enrichment

scores (see Methods for a detailed description). Surprisingly, we

found opposing patterns of cellular localization for disease-

associated proteins and microRNA targets (see Figure 3A).

Deregulated microRNAs preferentially target nuclear proteins

(LOD = 0.57, p~0:020), while disease-associated proteins in the

nucleus are underrepresented (LOD = 20.41, p~0:032). There-

fore, microRNA targets are almost twice more frequently located

in the nucleus as compared to disease proteins. Furthermore,

proteins located in extracellular region are only weakly controlled

(LOD = 20.81, p~4:9:10{3) by microRNAs. Disease associated

proteins showing again a complementary result compared to

microRNA targets (LOD = 0.44, p~0:068), being more than

twice more frequently located in the extracellular region. Proteins

located in the cell membrane or intracellular region show no

significant differences and enrichments for microRNAs or disease-

associations. Comparing these results with the subset of cancer-

related microRNAs we obtained the similar finding of a preferred

target location in the nucleus. This result shows that preferred

location is not based on a disease-specific set but a common

pattern, valid for cancer as well as non-cancer related microRNAs

(see Figure S4). We repeated the location analysis with different

prediction tools and obtained similar results for microRNA targets

(see Figure S5). Analyzing microRNA targets located in the

nucleus by Gene Ontology, we found 50% of those genes involved

in transcriptional regulation. In addition, we used the OMIM

Figure 3. Analysis of cellular location and process type distribution for microRNA targets and disease proteins. A: Signaling proteins
are divided into four different cellular location groups (extracellular region, cell membrane, intracellular region, and nucleus) based on their NCI PID
annotation. We calculated the enrichment of microRNA targets and disease proteins by a LOD score. We found an opposing patterns of cellular
localization for disease-associated proteins and microRNA targets. B: Process type information obtained by the NCI PID database was used to divide
signaling proteins into three different groups, activators, inhibitors, and ambivalent proteins (annotated as both activators and inhibitors). The result
indicates again complementary patterns for microRNA targets and human disease proteins. * indicates significant enrichment obtained by Fisher’s
exact test (P~0:05).
doi:10.1371/journal.pone.0011154.g003
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database to select disease-associated genes and found again a

opposite pattern of cellular localization for OMIM and microRNA

targets (see Figure S6).

In contrast to disease proteins, microRNA targets
frequently exhibit an inhibitory effect

We sorted the set of signaling proteins into three different

groups according to their process type annotation: activating

proteins, inhibiting proteins and proteins that can act as either

activators or inhibitors, further on denoted as ambivalent. We then

counted the number of microRNA targets as well as disease

proteins for each group in our signaling pathways and calculated

the LOD score. The result shows again a complementary pattern:

As shown in Figure 3B, targets of disease-associated microRNAs

are preferentially inhibitors (LOD = 1.62, p~1:2:10{4), whereas

only 6 disease-associated proteins (LOD = 22.08, p~1:5:10{5)

show a inhibitory effect. MicroRNA targets are enriched almost 14

times more in inhibiting proteins compared to disease proteins

showing a complementary focus. Ambivalent proteins show a

strong under-representation for microRNA targets (LOD = 20.96,

p~7:3:10{5), whereas disease-affected proteins are significantly

enriched (LOD = 1.26, p~3:6:10{9). For activators, we found a

significant under-representation for both disease proteins

(LOD = 20.75, p~1:0:10{4), and microRNA targets

(LOD = 20.60, p~2:7:10{3), respectively. Again, we found the

same result for cancer and non-cancer related microRNA targets

indicating a common pattern. Notably, the enrichment of process

types of disease proteins remains for the OMIM data set (see

Figure S7).

Discussion

In order to study the role of disease-associated microRNAs in

pathways, we applied a thorough statistical analysis to a

multipartite graph consisting of microRNAs, proteins, diseases,

tissue and signaling pathways. We investigated enrichment of

disease-associated microRNAs globally on different pathways by

considering of tissue-specific transcript expression, and more

locally, on the cellular location and process type of target proteins.

We found that the amount of regulatory control mediated by

disease-associated microRNAs differs from pathway to pathway.

In [47], the authors showed that the targets of a specific

microRNA cluster are significantly enriched in multiple pathways.

For the majority of diseases, a homogeneous enrichment profile of

microRNA targets throughout all pathways emerged. From our

analysis of the constituting multipartite graph, we found that

pathways are heterogeneously targeted by microRNAs. However,

the core set of pathways under strong microRNA control appear

to be homogeneously enriched throughout the majority of

diseases, since many diseases are linked to a large number of

microRNAs. So far, almost two third of the currently known

microRNAs are linked via large-scale expression analysis to a

phenotype. It is obvious that beside the phenotype responsible

microRNAs, many microRNAs are detected as deregulated in

human diseases but are not functionally linked to the phenotype.

What could be the biological function of a core set of globally

enriched pathways? We showed that these pathways are targets of

numerous deregulated microRNAs. One possible hypothesis is

that these pathways could serve as disease sensors, transferring the

information of erroneous cellular functions via deregulated

microRNAs to important output proteins, like cell cycle check-

points. From this perspective, it is intriguing that most top

enriched pathways are associated with apoptotic, proliferation or

developmental processes [48]. Entries in the PhenomiR database

obtained by patient studies are more than 60% cancer-related

diseases. Alterations in the expression or function of genes

controlling cell growth and differentiation are considered to be

the major cause of cancer. Notably, degenerative disorders like

Alzheimer or Parkinson disease show a similar pathway profile

compared to cancer-related phenotypes, although often with

different direction of microRNA expression.

Presumably, the impact on signaling pathways for disease-

associated proteins and microRNA targets differs. However, there

might be an interaction between the disease-associated micro-

RNAs and proteins to mediate deregulation of signaling pathways.

It would be interesting to evaluate whether a given disease emerges

due to protein deregulation caused by mutations with a successive

deregulation of microRNAs, or due to deregulated microRNA

levels, leading to pathogenic protein levels in turn. For a subset of

microRNAs, located in the intron of a host gene, an examination

of a common phenotypic effects is possible. Recently, we showed

that intronic microRNAs support the regulatory effect of their host

genes [49]. Here, we find one disease-associated microRNA-target

pair with a common phenotype: both the host gene PTK2 and its

intronic microRNA miR-151 are annotated with lung cancer in

KEGG DISEASE and PhenomiR, respectively. In this case, the

impact on the associated signaling pathways via correlated mir-

151 and PTK2 deregulation is probably controlled by a single

promoter. To unveil interactions between microRNAs and

pathway proteins on a systems level, a much more precise

knowledge of microRNA transcriptional regulation is needed.

We analyzed the subcellular location and process type behavior

of disease-associated proteins and microRNA targets. Our result

on the preferred cellular locations of microRNA targets shows an

enrichment of proteins in the nucleus. This finding is in line with a

study by Cui et al. [50], who obtained a similar result for the

localization of microRNA targets on a much smaller set of

signaling networks and microRNAs in mammalian hippocampal

CA1 neurons. In addition, we found that disease-associated

proteins often constitute the initial players of signaling networks

and thus show an opposite pattern to microRNA targets. The

deregulation of a single proteins at the cell surface receptor can

have a severe impact on the whole signaling information flow

stimulated by the receptor. For example, for growth factor

receptors, the activation under normal conditions promotes

cellular survival, whereas over-expression promotes tumor cell

growth [51]. Therefore, cell surface receptors are well suited as

drug targets, as diminishing the signal through these receptors has

the potential to normalize cellular behavior. The deregulation of a

single protein in the intracellular region or the nucleus might

influence only a subpart of the signaling network.

A large fraction (50%) of microRNA targets located in the

nucleus are involved in transcriptional regulation. It was shown

that transcription factors like MYC, JUN, or FOS, have a short

mRNA lifetime based on their RNA stability [52,53]. Within these

studies the importance of the 39 untranslated region for the mRNA

stability was mentioned. Thus, microRNAs presumably tune RNA

stability in a tissue or stage dependent manner. Deregulated

microRNAs changing the stability of transcription factors of a

signaling pathway may then lead to malfunction of different

cellular processes [54]. Motivated by the affinity of microRNAs to

regulate with associated pathways apoptosis, proliferation or

development [1], we suppose that the regulation of stability

extends to proteins with short half-lives that are required only for

limited time in, e.g., cell cycle, growth, or differentiation.

In a recent study, Legewie et al. [55] introduced a set of signal

inhibitors with a short mRNA and protein lifetime that are

transcriptionally induced upon stimulation. These rapid feedback

miRNAs in Signaling Pathways
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inhibitors (RFIs) are thought to tune the signal transduction

cascades, allow for swift feedback regulation and establish short

latency phases after signaling induction. As we found an

enrichment of inhibitory proteins targeted by microRNAs, the

question arises, if RFI proteins are potential microRNA targets.

Using the TargetScanS prediction tool we were able to confirm 18

out of 19 (95%) RFIs as microRNA targets (P~0:023). We thus

assume that the short mRNA lifetime of RFIs can be attributed to

the degradation activity promoted by microRNA binding.

Inhibiting proteins are preferentially located in the nucleus (see

Table S4), whereas activating or ambivalent proteins are randomly

distributed in the cellular regions. Interestingly, disease proteins

showed a frequent association with ambivalent process type. We

assume that for ambivalent proteins, deregulation of the

expression levels imparts a more severe effect on signaling

cascades as compared to activators or inhibitors alone.

The usage of hypergraphs for a proper representation of

interconnected entities in systems biology has been acknowledged

recently [56]. Here, we applied a thorough statistical analysis not

only to bipartite but to a multipartite graph consisting of

microRNAs, proteins, diseases, and signaling pathways in a

tissue-specific manner and uncovered the impact of disease-

associated microRNAs on human signaling pathways.

Materials and Methods

In this section, we give a detailed overview about the resources

and methods, which were used to interconnect the different

entities shown in Figure 1.

Human signaling pathway data
Human signaling pathway data was obtained from the

National Cancer Institute Pathway Interaction Database (NCI

PID) [18], which is a manually curated collection of biomolecular

interactions and key cellular processes assembled into signaling

pathways. NCI PID holds 128 pathways including 47 sub-

networks. We combined all subnetworks with their parent

networks to the set of signaling pathways. In addition, we kept

all pathways that have more than one predicted microRNA

target gene, leading to a final data set of 79 human signaling

pathways containing 1573 unique human proteins. The database

also provides information on subcellular location terms from the

Gene Ontology Consortium. We used this information to divide

all subcellular locations into four different groups: extracellular

region, cell membrane, intracellular region and nucleus. Finally,

location information for 1083 proteins containing 135 extracel-

lular region, 344 cell membrane, 373 intracellular region and 231

proteins located in the nucleus were obtained. In addition, we

extracted process type information for each biological process,

which can be input, output, positive or negative regulator. In

total, there are 1120 interactions of which 765 are activating, 74

inhibiting and 281 proteins acting as activators as well as

inhibitors.

Disease-associated microRNAs
Human disease-associated microRNAs were obtained from the

PhenomiR database [15]. PhenomiR is a manually curated

collection of microRNA-disease associations, containing a total

of 11 029 microRNA expression-phenotype relations collected

from 542 different experiments. We used patient study data only

and obtained 486 disease-associated microRNAs in 83 different

diseases including up to 5 subtypes per disorder. For each disease,

we take only those microRNA into account, that have at least one

target in the specific tissue annotated by PhenomiR and obtained

finally 165 different microRNAs in 63 diseases-tissue combina-

tions.

MicroRNA target prediction
Hausser et al. [16] analyzed different features of microRNA

targets and showed within their work that TargetScanS has a good

performance on different data sets. We used TargetScanS as the

main prediction tool but to handle the issue of the unknown

reliability of microRNA prediction tools we used several other

prediction tools like PicTar, intersection of PicTar and TargetS-

canS, Miranda, RNA22, and TargetSpy to confirm our results.

We used for each method default parameter settings.

MicroRNA targets filtered by tissue expression
As microRNA expression is tissue-specific annotated in

PhenomiR, we used the tissue atlas provided by Su et al. [17] to

filter potential microRNA targets in a specific tissue. The data was

downloaded from the NCBI Gene Expression Omnibus (GEO),

and the processed data was used. We mapped the predicted

microRNA target transcripts on the tissue atlas and considered a

transcript as expressed in a specific tissue, if either one replicate

has a present call or both show at least a marginal call, similar to

the work of McClintick et al. [57].

Human disease data
Human disease proteins were taken from the KEGG DISEASE

database [19]. It associates 5 neurodegenerative disorders, 5

infectious and metabolic disorders and 13 different cancer

diseases. Finally, we obtained 909 proteins from 23 different

diseases, which are also found in the PhenomiR database. For

results obtained by the NCBI OMIM database see Figure S6 and

Figure S7.

Pathway profile
Pathway profiles were calculated for all diseases annotated in

PhenomiR passing the tissue filter. For each disease-pathway

interaction we estimated the enrichment of microRNA targets of

disease i in pathway j defined by a log odds ratio (LOD score):

LODi,j~log2

Ti,j

Pj

�Pn
k~1 Ti,kPn
k~1 Pk

� �

where Ti,j is the number of microRNA targets for all disease-

associated microRNAs in disease i and pathway j; Pj is the

number of proteins in pathway j;
Pn

k~1 Ti,k is the number of

microRNA targets for all disease-associated microRNAs in disease

i over all pathways;
Pn

k~1 Pk: is the number of proteins over all

pathways. We use these LOD scores to build up a heatmap using

Manhattan distance function and ward clustering. A positive value

indicates an enrichments and a negative a depletion. Whenever we

identified no target for a particular disease-pathway interaction

Ti,j~0 and therefore the resulting LOD scorei,j is {?. As

commonly done, we excluded all cases with Ti,j~0 for calculating

the mean and quantiles for each pathway. In addition, these cases

were also excluded from the clustering taking the reduced

dimensions into account.

Cellular location analysis
We used the subcellular location annotation of the NPI PID

database to estimate the microRNA target enrichment. The

enrichment was calculated by the logarithm of base 2 of the odds

ratio (LOD score) and its significants was obtained by Fisher’s

exact test.
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Process type analysis
In addition to the subcellular location, the NPI database

provides information about specific process types of proteins in

signaling processes. We used this information to analyze the

interaction between inhibiting as well as activating proteins in

signaling processes. Within this analysis we calculated the

enrichment of microRNA targets as well as KEGG DISEASE

proteins for different process types. The enrichment was calculated

by the logarithm of base 2 of the odds ratio (LOD score) and its

significants was obtained by Fisher’s exact test.

Supporting Information

File S1 Robustness analysis.

Found at: doi:10.1371/journal.pone.0011154.s001 (13.55 MB

PDF)

Figure S1 Anticorrelation of median LOD score against

variance for signaling pathways. We obtained a significant

negative correlation (Pearson correlation coefficient Cp = 20.37,

P = 0.007). The result implies that deregulated microRNAs in

human diseases target the same set of signaling pathways

irrespective of the specific disorder. The results of the linear

regressions is shown by the black line.

Found at: doi:10.1371/journal.pone.0011154.s002 (0.12 MB TIF)

Figure S2 Pathway size against pathways ordered by median

LOD score. We found no correlation (Cp = 20.032, P = 0.83)

between pathway size against pathways ordered by median LOD

score. The results of the linear regressions is shown by the black

line.

Found at: doi:10.1371/journal.pone.0011154.s003 (0.15 MB TIF)

Figure S3 Correlation between KEGG DISEASE proteins and

microRNAs in signaling pathways, using 24 diseases both

annotated in PhenomiR and KEGG DISEASE. Median LOD

score of signaling pathways against the fraction of disease-

associated pathway proteins (Cp = 0.14, P = 0.21). We consider

all pathways showing a fraction of disease-associated proteins

$0.2. We observe no significant correlation between increasing

LOD scores and the fraction of disease proteins even if we exclude

the outlier (marked in red) (Cp = 0.18, P = 0.127). The results of

the linear regressions is shown by the black line.

Found at: doi:10.1371/journal.pone.0011154.s004 (0.15 MB TIF)

Figure S4 Comparison between different disease sets. Observed

LOD scores for cellular location of all disease-associated micro-

RNA targets and two subsets of diseases (Cancer, Non Cancer)

using TargetScanS. For cancer and non cancer, we observed

similar scores compared to scores obtained by using all diseases

showing that the location pattern is rather a common result and

not depended on the subsets of cancer and non-cancer related

microRNAs.

Found at: doi:10.1371/journal.pone.0011154.s005 (0.14 MB TIF)

Figure S5 Comparison between different microRNA prediction

tools. Observed LOD scores for cellular location of several

microRNA prediction methods (Intersection of PicTar and

TargetScanS, TargetScanS, PicTar, Miranda, TargetSpy, and

RNA22) and KEGG DISEASE proteins. Different features like

conservation of the seed region (e.g., TargetScanS) as well as

binding energies (e.g., Miranda) are taken into account to predict

microRNA-transcript interactions. Based on differences in these

prediction methods the overlap between the targets from different

tools is low (Sethupathy, 2006). In this work, it was also shown

that Miranda has similar high sensitivity compared to the top

method like TargetScanS, but exhibit a substantial increase in the

number of total predictions. This could be one explanation why

Miranda shows a different result for microRNA targets in

extracellular and intracellular regions compared to the remaining

prediction tools, which show very similar results. The findings

indicate robustness of our results, independent on the prediction

tools. In addition, this findings support our result of complemen-

tary behavior of KEGG DISEASE proteins and microRNA

targets.

Found at: doi:10.1371/journal.pone.0011154.s006 (0.19 MB TIF)

Figure S6 Comparison between different disease gene sets.

Observed LOD scores for cellular location of microRNA

targets and two sets of disease-associated genes (KEGG

DISEASE and OMIM). For OMIM, we observed similar

scores compared to KEGG DISEASE proteins that confirms

our finding and shows robustness of our results. In addition,

this finding supports our result of complementary behavior of

disease-associated genes (KEGG DISEASE and OMIM) and

microRNA targets.

Found at: doi:10.1371/journal.pone.0011154.s007 (0.15 MB TIF)

Figure S7 Comparison between different disease gene sets.

Observed LOD scores for process type behavior of microRNA

targets and two sets of disease-associated genes (KEGG DISEASE

and OMIM). For OMIM, we observed similar scores compared to

KEGG DISEASE proteins that confirms our finding. In addition,

this finding supports our result of complementary behavior of

disease-associated genes (KEGG DISEASE and OMIM) and

microRNA targets.

Found at: doi:10.1371/journal.pone.0011154.s008 (0.15 MB TIF)

Table S1 Core set of signaling pathways. Prediction tools show

the fraction of different tools having the corresponding pathway

within the top cluster.

Found at: doi:10.1371/journal.pone.0011154.s009 (0.02 MB

XLS)

Table S2 Core set of signaling pathways obtained by the cancer

related microRNAs. Prediction tools show the fraction of different

tools having the corresponding pathway within the top cluster.

Found at: doi:10.1371/journal.pone.0011154.s010 (0.02 MB

XLS)

Table S3 Core set of signaling pathways obtained by the non-

cancer related microRNAs. Prediction tool shows the fraction of

different tools having the corresponding pathway within the top

cluster.

Found at: doi:10.1371/journal.pone.0011154.s011 (0.02 MB

XLS)

Table S4 Correlation between cellular location and process

type. Number of signaling proteins within the four different

cellular locations and three different process types.

Found at: doi:10.1371/journal.pone.0011154.s012 (0.03 MB

XLS)
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