
Müller et al. Molecular Cancer  (2015) 14:94 
DOI 10.1186/s12943-015-0358-5
RESEARCH Open Access
Next-generation sequencing reveals novel
differentially regulated mRNAs, lncRNAs, miRNAs,
sdRNAs and a piRNA in pancreatic cancer
Sören Müller1,2,4, Susanne Raulefs3, Philipp Bruns3, Fabian Afonso-Grunz1,2, Anne Plötner2, Rolf Thermann6,
Carsten Jäger3, Anna Melissa Schlitter9, Bo Kong3, Ivonne Regel3, W Kurt Roth6, Björn Rotter2, Klaus Hoffmeier2,
Günter Kahl1, Ina Koch4, Fabian J Theis7,8, Jörg Kleeff3†, Peter Winter2† and Christoph W Michalski5*†
Abstract

Background: Previous studies identified microRNAs (miRNAs) and messenger RNAs with significantly different
expression between normal pancreas and pancreatic cancer (PDAC) tissues. Due to technological limitations of
microarrays and real-time PCR systems these studies focused on a fixed set of targets. Expression of other RNA
classes such as long intergenic non-coding RNAs or sno-derived RNAs has rarely been examined in pancreatic
cancer. Here, we analysed the coding and non-coding transcriptome of six PDAC and five control tissues using
next-generation sequencing.

Results: Besides the confirmation of several deregulated mRNAs and miRNAs, miRNAs without previous implication in
PDAC were detected: miR-802, miR-2114 or miR-561. SnoRNA-derived RNAs (e.g. sno-HBII-296B) and piR-017061, a
piwi-interacting RNA, were found to be differentially expressed between PDAC and control tissues. In silico target
analysis of miR-802 revealed potential binding sites in the 3′ UTR of TCF4, encoding a transcription factor that
controls Wnt signalling genes. Overexpression of miR-802 in MiaPaCa pancreatic cancer cells reduced TCF4 protein
levels. Using Massive Analysis of cDNA Ends (MACE) we identified differential expression of 43 lincRNAs, long intergenic
non-coding RNAs, e.g. LINC00261 and LINC00152 as well as several natural antisense transcripts like HNF1A-AS1
and AFAP1-AS1. Differential expression was confirmed by qPCR on the mRNA/miRNA/lincRNA level and by
immunohistochemistry on the protein level.

Conclusions: Here, we report a novel lncRNA, sncRNA and mRNA signature of PDAC. In silico prediction of
ncRNA targets allowed for assigning potential functions to differentially regulated RNAs.

Keywords: Pancreatic cancer, MACE, 3′UTR, miRNA, Long non-coding RNA, Wnt signalling, Next-generation sequencing,
ZEB1, TCF4
Background
A five year survival of around 4% makes pancreatic
ductal adenocarcinoma (PDAC) the fourth leading cause
of cancer-related deaths worldwide [1]. To better under-
stand the aggressive growth and the poor response of
PDAC to chemotherapeutic agents, studies are required
that focus on molecular mechanisms underlying pancre-
atic cancer development and progression [2].
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Somatic mutations, alterations in coding- and non-
coding RNA expression as well as in the methylome of
pancreatic cancer cells have been intensively studied
[3]. The application of NGS technologies such as RNA-
seq, whole exome sequencing or bisulfite sequencing to
PDAC samples provided an unbiased view on genetic
and epigenetic alterations [4-6]. However, studies inves-
tigating the small ncRNAome of PDAC tissues and
healthy pancreas utilizing NGS methods are rare.
Studies utilizing microarrays revealed that deregulated

microRNAs (miRNAs) have an impact on coding-gene ex-
pression in PDAC [7-12]. MiRNAs are a class of small
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non-coding RNAs (sncRNAs) that can repress gene ex-
pression [13]. Due to the known technical limitations of
microarrays or real-time PCR most studies were focused
on a fixed set of miRNA targets and many other sncRNA
types have not been implicated in PDAC, but their deregu-
lation and contribution to cancer progression has been de-
scribed for other cancer types [14,15]. These sncRNAs
include small nucleolar-derived RNAs (sno-derived RNAs,
sdRNAs), functioning like miRNAs, or regulating splicing
and translation [16], as well as piwi-interacting RNAs
(piRNAs), that are associated with chromatin organization,
messenger RNA stability and genome structure [17].
Similarly, only few studies have reported altered expres-

sion of long non-coding RNAs (lncRNAs) in PDAC [18].
LncRNAs represent a diverse class of modestly conserved,
polyadenylated, non-protein-coding RNAs with essential
roles in tumorigenesis [19]. LncRNAs comprise, among
others, long intergenic non-coding RNAs (lincRNAs) and
natural antisense transcripts (NATs). NATs, which are
transcribed from the opposite (“anti-sense”) strand of a
protein-coding gene can either stabilize or destabilize the
expression of their sense partner [20], lincRNAs act as
competitive endogenous RNAs (ceRNAs) and sequester
miRNAs (“miRNA sponge”) [21], target chromatin modifi-
cation complexes or RNA-binding proteins to alter gene
expressing programs [22].
Here, we used high-throughput NGS-based technolo-

gies, namely Massive Analysis of cDNA Ends (MACE)
and small RNA-sequencing (sRNA-seq), to characterize
the complete coding- and non-coding transcriptomes of
tissues from six PDAC patients and five normal controls.
We merged the expression pattern obtained by the two
techniques to gain insights into the altered miRNA regula-
tion of coding gene expression in PDAC as compared to
normal pancreatic tissues. Additionally, we provide evi-
dence for differential expression of a piRNA and several
sdRNAs, lincRNAs and NATs in PDAC.
Results
Differences in the coding transcriptome, lncRNAs and
sncRNAs between pancreatic cancer tissue from six pa-
tients and normal pancreatic tissue from five controls
were assessed by MACE and sRNA-seq. Sequencing re-
sults were experimentally validated by quantitative real
time PCR (qPCR) for seven genes (CD1A, CTHRC1,
FOXL1, GPR87, KLK7, TCF4, ZEB1), four miRNAs
(miR-103a-3p, 135b-5p, 145-5p, 802) and two lincRNAs
(LINC00152, LINC00261).
Overall, 396,542,460 sequences were generated. The

amount of high-quality reads used for the analysis
ranged from 4,150,706 reads in the MACE library for
cancer patient P3 to 11,007,400 in the sRNA-seq normal
pancreas library N2 (see Table 1). Robust expression was
detected for 13,614 coding genes and 432 lncRNAs
(Additional file 1: Table S1) whereas 1,961 mRNAs and 43
lncRNAs of these were significantly differentially expressed
between cancer and control tissues (Additional file 2:
Table S2). Unsupervised hierarchical clustering, princi-
pal component analysis (PCA) and Pearson’s moment
product correlation coefficients (PCCs) revealed a clear
separation between the groups based on the sequencing
results (Figure 1A-C). Notably, 70% of all reads across con-
trol libraries mapped to 25 genes (PNLIPRP1, CELA3B,
CPA2, CTRL, GP2, CPB1, CTRC, RBPJL, KLK1, PLA2G1B,
CELA2A, CEL, GNMT, CELA3A, CPA1, PRSS3P2, PRSS3,
CLPS, PNLIP, SLC39A5, SPINK1, CTRB1, TMED11P,
PRSS1, GATM), encoding pancreatic acinar cell secretory-
and related proteins (Table 2). In cancer libraries, only 3%
of reads were annotated to these genes. Their homogenous,
robust expression across all controls and strong downregu-
lation in all PDACs underlines the existence of normal pan-
creas function in control libraries, which is lost in PDAC
tissues. The significantly up-/downregulated lncRNAs, as
determined by MACE, are listed in Table 3.
From 921 sncRNAs with robust expression (Additional

file 3: Table S3), 123 were significantly differentially
expressed between the two conditions (Additional file 4:
Table S4). Similar to MACE, sRNA-seq allowed a clear
separation of cancer and control tissues by PCA, PCCs,
and unsupervised clustering (Additional file 5: Figure S1).
The twenty most significantly up-/downregulated sncRNAs
are listed in Table 4. Among all differentially regulated
sncRNAs, we found 104 mature miRNAs, 18 sdRNAs and
one piRNA. An overview of differential RNA expression
across the genome is given in Figure 2.
Enrichment analysis of protein-coding genes for
identification of biological and functional differences
Gene ontology (GO)-enrichment analysis of downregu-
lated genes in PDAC revealed a total of 39 significantly
enriched GO terms (Additional file 6: Table S5) across
all three GO categories. Most of these terms were
linked to normal pancreas function, as e.g. “Digestion”
(FDR = 1E-5), “Steroid metabolic process” (0.002) or “Tri-
acylglycerol lipase activity” (0.014). In addition, other
GO terms corresponding to translation of mRNAs into
proteins, as e.g. “Translational elongation” (5.6E-15),
“Cytosolic ribosome” (3.2E-8) or “Ribosomal subunit”
(2E-5) were enriched, indicating a loss of normal pancreas
function.
Upregulated genes in PDAC were enriched in 208

GO terms (Additional file 7: Table S6), including “Im-
mune response” (1.2E-17), “Cell proliferation” (4.45E-5)
and “Cell migration” (9E-5). The second set represents
an enhanced proliferative potential, the third a high
metastatic potential of the cancer cells. The most



Table 1 MACE and sRNA-seq read statistics

a) MACE

Condition Sample Raw Reads PCR-Duplicate removed Region of interest Sign. Upreg. RNAs

N1 20,406,430 11,609,003 7,811,603

N2 13,749,503 8,791,698 6,033,792

Normal N3 17,404,996 10,701,183 7,024,298 963

N4 14,868,474 9,666,314 6,411,998

N5 18,213,260 10,782,506 7,353,927

P1 8,706,841 7,921,368 4,377,691

P2 9,940,175 8,802,579 4,250,025 1,041

PDAC P3 8,463,912 7,489,546 4,150,706

P4 8,438,058 7,612,616 4,422,792

P5 13,350,594 11,634,367 5,405,594

P6 9,218,757 8,161,312 4,607,707

b) sRNA-seq

N1 19,268,787 9,886,904 6,603,800

N2 33,372,333 15,945,439 11,007,400

Normal N3 22,217,672 11,571,686 7,773,570 45

N4 27,924,894 6,763,260 5,439,290

N5 23,421,799 9,025,877 6,482,120

P1 24,349,755 9,837,308 6,887,790

P2 15,855,377 6,966,105 5,063,220 78

PDAC P3 19,711,102 9,580,636 6,321,340

P4 25,889,624 10,404,479 7,344,910

P5 22,130,647 11,117,354 7,402,310

P6 19,639,470 8,440,144 5,964,730

For each sample of control (N) and PDAC (P) tissues the number of raw sequencing reads, PCR duplicate-free reads, reads mapped to regions of interest (exons -MACE
or small ncRNAs -sRNA-seq) and the number of deregulated RNAs is provided for MACE and sRNA-seq libraries, respectively.
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significantly enriched GO term was “Extracellular
matrix” (2.2E-30), corresponding to genes involved in
fibrogenesis, such as collagens and fibronectin, as well as
TGFB and genes related to this pathway. Several categories
were related to a sustained angiogenesis, like “Vasculature
development” (2E-8) or “Blood vessel development” (8E-8).
Taken together, GO-analysis confirms a loss of normal
pancreatic function in the tumor tissues, in combination
with increased proliferative potential, extracellular matrix
(ECM) activation, blood vessel formation, metastatic
spread and the potential to escape the immune system.
LncRNA expression in PDAC
Of 432 lncRNAs with robust expression, eleven were sig-
nificantly up- and 32 downregulated in PDAC samples
(Table 3). Other studies have already examined three
lincRNAs (SNHG8, PVT1, H19), one NAT (HOTAIRM1)
and two lncRNAs (MIAT, GAS5) which we identified as
differentially expressed in PDAC [23]. Furthermore, the
differential expression of two lincRNAs (LINC00261,
LINC00152) [24] and two NATs (HNF1A-AS1, AFAP1-
AS1) [25,26] were implicated in other cancer types.

SncRNA expression analysis
Of 921 measured sncRNAs, 45 (30 miRNAs, fourteen
snoRNAs, one piRNA) were significantly downregu-
lated in PDAC tissues. Previous microarray or qPCR
studies reported downregulation for 25 of these
(Table 4). The most significantly deregulated sncRNA
without previous implication in pancreatic cancer was
miR-802, which was highly expressed in normal pancreas
but not in PDAC tissues (log2fc = 11, FDR = 9E-29). Beside
sdRNAs (e.g. a 34 bp fragment from sno-HBII-296B)
and miRNAs, piR-017061, a piRNA located within the
HBII-296A snoRNA, was significantly downregulated
in PDAC compared to normal pancreas tissues (log2fc =
2.3, FDR = 0.0001).
A total of 78 sncRNAs (74 miRNAs, 4 sdRNAs) showed

significant upregulation in PDAC. Several of these were
previously implicated in pancreatic cancer development
(e.g. miR-21, 143, 222, 155, 10a, 874) others have not been



Figure 1 NGS MACE profiles discriminate PDAC from healthy control tissues. A) Unsupervised hierarchical cluster analysis of differentially
expressed genes with euclidean distance measure clearly separates healthy controls (N) and diseased patients (P). (B) Principle component
analysis (PCA) of all genes from the eleven samples under scrutiny. The first (x-axis) and second principal component (y-axis) account for 32% and
18%, respectively, of the total variation in the data. (C) Pearson product–moment correlation coefficient (PCC) for all samples compared within
the control and patient group as well as between both groups.
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shown to be upregulated in PDAC before (e.g. miR-31,
511, 2355). The expression of all differential miRNAs is
visualized in Additional file 8: Figure S2.

In silico target analysis of miR-802
We used omiRas [27] to decipher potential interactions be-
tween miR-802 and genes significantly upregulated in
PDAC, as detected by MACE. In total, 16 genes (AMPD3,
CDH11, IGFBP5, ITPR3, HOXA5, MMD, PGM2L1,
SLC4A7, ST8SIA4, TCF4, TMEM92, TRIB2, TSHZ3, RAI14,
ZFHX4, ZNF521) were predicted to be upregulated due to
loss of post-transcriptional silencing of miR-802 (for details
see Additional file 9: Table S7). Enrichment analysis of
miR-802 targets with starbase [28] revealed a significant
enrichment of targets in Wnt signalling (p = 0.006),
suggesting that loss of miR-802 might lead to increased
Wnt activity in PDAC.
The TCF4 transcript (3.3-fold upregulated in PDAC,

FDR= 0.001), encoding a transcription factor in the Wnt-
signalling pathway, has the highest number of three mir-
802 binding sites in its 3′ UTR (positions 3813, 4110, 5046,
Figure 3A), and the interaction is predicted by all six inter-
action databases used for analysis. Co-expression analysis of
all upregulated transcription factors (Additional file 10:
Figure S3) revealed that the expression of TCF4 is signifi-
cantly correlated with ZEB1 expression (PCC = 0.92, p =
5.2E-05). In addition, their expression is highly correlated
with the expression of miR-21 (PCC = 0.88, p = 0.0003974)
and inversely correlated with miR-802 expression (PCC =
−0.83, p = 0.0015) (Figure 3B, C).



Table 2 Expression of genes encoding pancreatic acinar cell secretory- and related proteins

PRSS1 CLPS CTRB1 PNLIP CPA1 CEL CELA3A PLA2G1B CTRC CELA2A

N1 20.6 20.4 20.0 20.0 19.9 19.1 19.0 18.6 18.8 18.5

N2 20.8 20.3 20.3 20.2 19.9 19.2 19.2 18.8 18.3 18.5

N3 20.4 20.0 19.9 19.7 19.7 18.9 18.8 18.3 18.0 18.5

N4 20.1 19.5 19.8 19.3 19.7 18.6 18.3 18.0 18.3 17.3

N5 20.7 20.1 20.3 20.0 19.9 19.1 18.7 19.0 18.9 18.5

P1 13.4 12.8 12.8 12.4 12.0 11.2 11.2 10.4 10.3 10.3

P2 13.9 13.2 13.2 12.8 12.6 11.7 11.6 10.9 10.8 10.7

P3 14.4 13.3 14.1 13.5 13.4 12.4 12.1 11.6 11.8 10.9

P4 14.3 13.2 14.0 13.4 13.3 12.3 11.9 11.5 11.7 10.8

P5 13.8 13.2 13.2 12.8 12.5 11.6 11.6 10.8 10.7 10.7

P6 14.0 13.4 13.4 13.0 12.7 11.8 11.9 11.0 10.9 10.9

Mean N 20.6 20.1 20.1 19.9 19.8 19.0 18.8 18.6 18.5 18.3

Mean P 14.0 13.2 13.5 13.0 12.8 11.9 11.7 11.1 11.1 10.7

Log2 FC 6.4 6.9 6.6 6.8 7.0 7.1 7.1 7.5 7.3 7.6

The normalized logarithmic expression of the ten most highly expressed genes in normal pancreas tissues for all five control- (N) and six PDAC (P) sequencing
libraries. All genes encode pancreas-specific proteins and are homogenously, highly expressed across all control libraries and more than ~100-fold decreased in all
PDAC tissues.
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Overexpression of miR-802 decreased TCF4 protein
expression
Considering the absent expression of miR-802 in PDAC
tissues and the in silico predicted binding sites of TCF4,
we re-expressed miR-802 in MiaPaCa PDAC cells and
assessed TCF4 expression. First, we induced miR-802 re-
expression in MiaPaCa cells transfected with PCMV-MIR-
802 (Figure 4a). Highly elevated levels of miR-802 were
observed 24 h after transfection. To assess the effect of
miR-802 on TCF4 protein levels, we harvested transfected
MiaPaCa cells and analysed the proteins by western blot
analysis (Figure 4b). Here, TCF4 protein levels decreased
to 67% as compared with samples transfected with the
negative control (Figure 4c).

Validation of ZEB1 expression at the protein level
Since we hypothesize that miR-802 regulates ZEB1 expres-
sion via TCF4, we analysed expression levels of ZEB1
by immunohistochemistry in samples of human PDAC
(n = 10) and normal pancreatic tissues (n = 10). In nor-
mal pancreatic tissue, ZEB1 was sparsely seen in peria-
cinar cells (e.g. stellate cells). As depicted in Figure 5,
we detected ZEB1 in PDAC samples in stromal cells
within desmoplastic areas, but epithelial tumor cells did
not express ZEB1. In accordance with previous observa-
tions [29] we detected ZEB1 in all analyzed pancreatic can-
cers only in the stromal compartment but not in epithelial
cells. This observation emphasizes ZEB1 as a mesenchymal
differentiation marker. We speculate that the newly identi-
fied miRNA802 might be involved in the regulation of
ZEB1 and consequently might promote the mesenchymal
character of pancreatic cancer.
MiRNA-mRNA interaction network analysis of
differentially expressed genes
To test whether miRNAs are involved in tumor-specific
functional categories detected by GO-enrichment analysis,
we exemplarily created a miRNA-mRNA interaction net-
work for the term “Cell motion” (Figure 6). The network
contains interactions between gene products of upregulated
transcripts in PDAC, as well as downregulated miRNAs
whose loss might cause the upregulation of their target
genes, predicted by at least three independent miRNA-
mRNA interaction tools.
Of 63 differentially regulated genes involved in cell

motion, 43 form a highly connected protein-protein
interaction network with 164 connections.
From this network, twelve genes (COL5A1, FN1, ITGA4,

ITGB1, MET, NRP2, PDGFRB, ROBO1/SLIT, SEMA3A,
SEMA3C, SPOCK1/SPARC, THBS1) are connected to the
loss of seven miRNAs (miR-29c-3p, 30a, 130b-3p, 148-3p,
216, 217, 219-5p). Five genes (MET, NRP2, ROBO1/SLIT,
SEMA3A, THBS1) are under potential post-transcriptional
control of two or more of these miRNAs. This crosstalk
predicts miR-130b to regulate the expression of five genes
from the network (MET, SPOCK1/SPARC, THBS1, ITGA4,
NRP2).

Confirmation of differentially expressed genes, lincRNAs
and miRNAs by qPCR
To validate sequencing results obtained by sRNA-seq and
MACE, the expression of seven candidate genes, upregu-
lated in PDAC (TCF4, ZEB1, CD1A, FOXL1, GPR87,
KLK7, CTHRC1), one down- and three upregulated miR-
NAs (miR-802, 135b-5p, 145-5p, 103a-3p) as well as two



Table 3 Differentially expressed lncRNAs

lncRNA NEV Normal NEV PDAC Log2 FC FDR Class Regulation PED Other

LINC00671 81.13 0.47 7.45 0.0000000 lincRNA DOWN

DGCR5 83.72 2.89 4.86 0.0000000 lncRNA DOWN

LINC00261 278.16 7.04 5.30 0.0000000 lincRNA DOWN D [24]

TRHDE-AS1 24.54 1.05 4.54 0.0000015 NAT DOWN

PITPNA-AS1 94.22 16.50 2.51 0.0000085 NAT DOWN

lincRNA 820.02 190.34 2.11 0.0000189 ncRNA DOWN

SNHG9 595.61 149.36 2.00 0.0000217 lincRNA DOWN

lincRNA 27.79 134.36 −2.27 0.0000230 ncRNA UP U [24]

CEBPA-AS1 37.03 5.21 2.83 0.0000629 NAT DOWN

lincRNA 357.77 90.05 1.99 0.0000661 ncRNA DOWN

SCARNA22 56.28 7.07 2.99 0.0001779 ncRNA DOWN

SCARNA2 27.72 4.21 2.72 0.0002533 ncRNA DOWN

HNF1A-AS1 72.29 10.99 2.72 0.0002943 NAT DOWN U [26]

SDCBP2-AS1 18.87 1.90 3.31 0.0002948 NAT DOWN

NAT 23.83 3.16 2.91 0.0003537 ncRNA DOWN

NAT 11.60 56.22 −2.28 0.0003752 ncRNA UP U

LINC00339 355.98 10.67 5.06 0.0004037 lincRNA DOWN

TMEM44-AS1 36.53 7.99 2.19 0.0009294 NAT DOWN

LINC00263 44.69 10.62 2.07 0.0010579 lincRNA DOWN

lncRNA 10.01 46.87 −2.23 0.0011936 ncRNA UP U

NAPA-AS1 25.94 4.71 2.46 0.0012669 NAT DOWN

LINC00340 4.16 28.42 −2.77 0.0013636 lincRNA UP

EPB41L4A-AS1 303.58 97.66 1.64 0.0015839 NAT DOWN

SERTAD4-AS1 3.19 22.21 −2.80 0.0016944 NAT UP

LHFPL3-AS2 20.61 3.08 2.74 0.0023207 NAT DOWN

LINC00673 8.59 42.30 −2.30 0.0023447 lincRNA UP

DNAJC27-AS1 20.43 3.65 2.49 0.0030115 NAT DOWN

lncRNA 6.87 43.83 −2.67 0.0056448 ncRNA UP U

BOLA3-AS1 34.96 9.42 1.89 0.0074620 NAT DOWN

ZNF503-AS2 21.89 4.65 2.24 0.0079046 NAT DOWN

ACVR2B-AS1 13.06 1.46 3.16 0.0095731 NAT DOWN

PRRT3-AS1 28.36 7.04 2.01 0.0095911 NAT DOWN

LINC00346 1.41 13.14 −3.22 0.0121525 lincRNA UP

LINC00086 11.86 1.76 2.76 0.0132691 lincRNA DOWN

RUNX1-IT1 2.57 30.23 −3.56 0.0136106 ncRNA UP

THAP7-AS1 29.29 8.11 1.85 0.0198907 NAT DOWN

ZNF503-AS1 11.56 1.93 2.58 0.0240067 NAT DOWN

RNF157-AS1 10.82 1.91 2.50 0.0245309 NAT DOWN

AFAP1-AS1 17.34 153.08 −3.14 0.0265179 NAT UP U [25]

PSMG3-AS1 24.17 6.92 1.80 0.0291786 NAT DOWN
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Table 3 Differentially expressed lncRNAs (Continued)

LINC00578 2.50 13.79 −2.46 0.0404404 lincRNA UP

lncRNA 2,303.62 721.52 1.67 0.0452843 ncRNA DOWN D

lncRNA 964.77 471.70 1.03 0.0464071 ncRNA DOWN

For each differentially expressed lncRNA (FDR < 0.05) the mean normalized expression values (NEV) for each group is provided together with the ratio between
normal and PDAC expression in log2 scale (log2 FC). Furthermore, “Class” indicates the lncRNA type, “PED” the expression as provided by the pancreatic cancer
expression database (U: Upregulated in PDAC, D: Downregulated in PDAC) and the last column presents information about the expression level of the RNA in
other types of cancer.
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lincRNAs (LINC00152, LINC00261) was verified by
qPCR. The expression of HPRT1 and miR-16 was used for
normalization between both samples. The results of the
qPCRs are given in Figure 7.
Except for miR-103a-3p, all tested RNAs were below a

significance threshold of p < 0.05 (Wilcoxon’s rank sum
test) when comparing expression of control and tumor
samples. This is consistent with sequencing results,
where similarly only miR-103a-3p did not reach the level
of significance.
CD1A, FOXL1, GPR87 and KLK7, mRNA expression

was undetectable by qPCR in normal pancreatic tissue.
This is consistent with sequencing results, where no or at
most two reads (normalized) were annotated to these
transcripts. Similar to sequencing, all four genes were ro-
bustly expressed in PDAC tissues, with Ct values ranging
from 24.8 to 31.1 and a median Ct of 27.3.
Consistent with MACE results, CTHRC1, TCF4 and

ZEB1 were significantly higher expressed in PDAC com-
pared to normal pancreas tissues, with median normal-
ized Ct (ΔCt) values between −1.8 and 1.8 in cancer- and
3.1-5.1 in normal tissues. The expression differences
(log2 ratio normal/tumor tissue) measured by qPCR
(negative ΔΔCt) highly agree with the log2 fold-changes
of the sequencing results (PCC = 0.86).
Similarly, downregulation of miR-802 was validated by

qPCR, with a median negative normal/tumor ΔΔCt of 8.2
and p = 0 (Wilcoxon’s rank sum test), which is consistent
with the log2fc and p-value estimated by sRNAseq (10.9, 0).
Similar agreements between sequencing and qPCR results
were obtained for the other three miRNAs.
Furthermore, the upregulation of LINC00152 (MACE

log2fc: 2.3, qPCR: 1.5) and downregulation of LINC00261
(MACE log2fc: 5.3, qPCR: 4.4) in PDAC tissues was con-
firmed by qPCR.

External validation of MACE data by microarray
Badea and colleagues [30] investigated 36 whole tumor-
and adjacent normal pancreatic tissue samples by coding-
gene microarray analysis. We compared the 53 most
significantly upregulated genes in tumors from their publi-
cation with the MACE sequencing results based on loga-
rithmic fold-change (Additional file 11: Figure S4) and
statistical significance (p-value). Only five of the genes
(DCBLD1, PGM2L1, PDGFC, COX7A1, LY6E), were not
significantly upregulated (p < 0.05) in the MACE data,
whereas 48 genes showed a significant upregulation as de-
tected by both methods. The PCC between log2fc of
MACE and microarray data (0.61) indicates a strong cor-
relation between the results and underlines the reliability
of the approach.

Discussion
Our study investigated the coding- and non-coding tran-
scriptomes of six PDAC patients and five healthy pancreatic
control tissues. We detected 1,961 mRNAs, 43 lncRNAs
and 123 sncRNAs as differentially expressed between the
groups. Among these are several coding and non-coding
RNAs without previous implication in pancreatic cancer
development, most prominently miR-802 which is strongly
downregulated in PDAC. Bioinformatic and functional ana-
lysis revealed post-transcriptional regulation of TCF4 pro-
tein levels by miR-802. Differential regulation of four
miRNAS (miR-802, miR-135b-5p, miR-145-5p, 103a-3p),
seven genes (CD1A, FOXL1, GPR87, KLK7, CTHRC1,
TCF4, ZEB1) and two lincRNAs was confirmed by qPCR.
MiR-802 is the third most significantly repressed

miRNA in PDAC, besides the tumor suppressor miRNAs
miR-216 and miR-217 that - among others - target KRAS,
PTEN, and SMAD7 [29]. MiR-802 is mainly expressed in
pancreatic acinar cells [31], which may be the cells of ori-
gin for pancreatic preneoplastic lesions and pancreatic
cancer [32]. A significant downregulation of miR-802 is
observed in mice with ethanol-induced chronic pancrea-
titis, which predisposes to pancreatic cancer [33]. In con-
trast, sRNA-seq of pancreatic cyst fluids from low-grade
benign and high-grade invasive lesions revealed thirteen
enriched miRNAs, among these miR-216, miR-217, and
miR-802, in the cyst fluids derived from invasive carcin-
omas [29]. The reason for the inverse correlation between
the expression levels of these tumor suppressor miRNAs
in body fluids and tumors currently remains unexplained.
Since no previous studies have reported downregulation

of miR-802 in pancreatic cancer, validated targets are rare.
Nevertheless, miR-802 targets were identified in two other
cancer-types: osteosarcoma and lung cancer [34,35]. In
contrast to PDAC, miR-802 is upregulated in both can-
cers. MiR-802 elevation promotes proliferation of lung
carcinoma cell lines by targeting the tumor suppressor
gene MEN1. Similarly, cell proliferation was promoted by



Table 4 Significantly up- and downregulated sncRNAs

a) Downregulated in PDAC

sRNA NEV normal NEV PDAC Log2 FoldChange FDR Previously shown

hsa-miR-216b 57,650.3 99.6 9.2 0.0000000 [7,8,11]

hsa-miR-216a-3p 3,218.9 4.1 9.6 0.0000000 [7,8,11]

hsa-miR-217 86,322.3 143.1 9.2 0.0000000 [7-9,11]

hsa-miR-216a-5p 35,959.9 144.7 8.0 0.0000000 [7-9,11]

hsa-miR-802 3,702.2 2.0 10.9 0.0000000 -

hsa-miR-148a-5p 4,252.9 178.9 4.6 0.0000000 [7-9,11]

hsa-miR-2114-5p 88.5 0.9 6.6 0.0000000 -

hsa-miR-375 121,790.3 11,992.2 3.3 0.0000001 [7-9,11]

hsa-miR-130b-5p 890.4 95.1 3.2 0.0000002 [7-9,11]

hsa-miR-148a-3p 224,094.2 25,764.7 3.1 0.0000005 [7-9,11]

hsa-miR-130b-3p 3,038.0 395.2 2.9 0.0000008 [7-9,11]

hsa-miR-190b 436.6 19.5 4.5 0.0000026 -

hsa-miR-2114-3p 44.7 0.3 7.0 0.0000270 -

hsa-sno-HBII-296B 1,159.5 208.8 2.5 0.0000525 -

hsa-miR-30c-2-3p 164.1 27.1 2.6 0.0000657 [7-12]

hsa-miR-219-5p 219.7 36.4 2.6 0.0000808 [7]

hsa-piR-017061 4,818,0 951,7 2,3 0.0001447 -

hsa-miR-30a-3p 1,350.4 275.0 2,3 0.0001447 [7-9,12]

hsa-miR-29c-3p 41,297.8 8.131.4 2,3 0.0003007 [7-9,12]

hsa-sno-U104 7,726.4 1.703.0 2,2 0.0007282 -

b) Upregulated in PDAC

hsa-miR-135b-3p 1.2 80.9 −6.1 0.0000000 [11,12]

hsa-miR-135b-5p 948.9 9,475.0 −3.3 0.0000002 [11,12]

hsa-miR-21-3p 174.6 2,117.3 −3.6 0.0000005 [7-12]

hsa-miR-708-5p 309.2 3,100.3 −3.3 0.0000022 [7,10]

hsa-miR-615-3p 1.2 97.2 −6.3 0.0000024 [7]

hsa-miR-34c-5p 47.5 475.2 −3.3 0.0000048 [11]

hsa-miR-431-5p 7.0 99.7 −3.8 0.0000062 -

hsa-miR-511 17.1 242.6 −3.8 0.0000079 -

hsa-miR-143-5p 238.7 2,089.8 −3.1 0.0000092 [7-10,12]

hsa-miR-222-3p 2,263.7 17,399.2 −2.9 0.0000131 [7-12]

hsa-miR-34c-3p 2.7 49.7 −4.2 0.0000210 -

hsa-miR-155-5p 392.4 3,458.7 −3.1 0.0000210 [7-10,12]

hsa-miR-24-2-5p 396.5 2,965.3 −2.9 0.0000407 [9,10,12]

hsa-miR-34b-3p 1.0 29.5 −4.9 0.0000681 [7,9]

hsa-miR-708-3p 24.4 188.7 −3.0 0.0001073 [7,10]

hsa-miR-223-5p 17.4 204.8 −3.6 0.0001117 [7-10,12]

hsa-miR-34b-5p 12.5 96.7 −3.0 0.0001145 [7,9,11]

hsa-miR-10a-3p 101.1 643.8 −2.7 0.0001447 [7-10]

hsa-miR-196b-5p 10.1 738.0 −6.2 0.0001832 [9,11]

hsa-miR-2355-3p 3.8 43.2 −3.5 0.0002933 -

For the 20 most significantly up- and downregulated sncRNAs the mean normalized expression values (NEV) for each group is provided together with the ratio between
normal and PDAC expression in log2 scale (log2FoldChange). In addition, the column “previously shown” indicates if other groups have provided evidence for
the deregulation of the RNA before.
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Figure 2 Circos plot incorporating differential gene and miRNA expression. Chromosome numbers and bands are identified in the outer-most
ring. Other tracks from outer to inner represent: Chromosomal positions of genes implicated in PDAC tumorigenesis; differential mRNA expression
(FDR < 0.05) between controls and PDAC (Up in PDAC: red, down in PDAC: green); differential miRNA expression (FDR < 0.05) between control
and PDAC tissues.
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miR-802 in osteosarcoma, where the gene encoding p27, a
negative cell-cycle regulator, is a direct target. In hepato-
cellular carcinoma miR-802 is more than 100-fold down-
regulated, but no targets have yet been identified [36].
Bioinformatic in silico prediction points to Wnt signal-

ling related transcription factor TCF4 mRNA (~12-fold
upregulated in PDAC, FDR = 5E-7) as a direct target of
miR-802. To validate the generated in silico predictions, we
re-expressed miR-802 in the PDAC cell line MiaPaCa and
analysed TCF4 protein expression. After re-expression of
miR-802, we observed a 30% reduction of TCF4, indicating
a direct impact of miR-802 on TCF4 regulation.
TCF4 activates miR-21 transcription by direct binding

to its promoter in epithelial cancer [37]. Other oncomiRs
with TCF4 binding sites proximal to their promoter in-
clude miR-10a, miR-424, miR-935 and miR615 [38].
Furthermore, the regulation of miR-181a/b expression

has been associated with TCF4 expression in hepatocellular



Figure 3 Co-expression of miR-802, ZEB1, TCF4 and miR-21. A) Alignment of miR-802 to the predicted binding sites in the 3′ UTR of TCF4.
B) Co-expression analysis of significantly upregulated transcription factors that harbour predicted miRNA binding sites in their 3′ UTRs for
one of the ten most significantly upregulated miRNAs (miRNAs that have no seed sequence for a TF UTR not shown). Significant (p < 0.01)
correlations are indicated by a dot, positive correlations are marked in blue, negative correlations in red. The more significant the correlation, the larger
the dot size. Sequence complementarity between an UTR and a miRNA is indicated by an “S”. C) Expression of TCF4, ZEB1 and miR-21 across
all control (C) and PDAC (P) samples (significant positive correlation) as well as the expression of miR-802 (significantly inversely correlated).
The normalized expression for each gene/miRNA is given in log2-scale for each sample.
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carcinoma [38]. Consistent with these observations, our
study validates the upregulation (4.6-79-fold, FDR 0.002-
4.9E-7) of these six miRNAs with important functions in
PDAC development [39,40] that have TCF4 binding sites
in their promoter.
Additionally, Sanchez-Tillo and colleagues showed that

TCF4 induces ZEB1 (zinc finger E-box binding homeobox
1) transcription [41]. ZEB1 is an epithelial-to-mesenchymal
transition (EMT)-activator that promotes PDAC tumori-
genesis and metastasis [42]. ZEB1 is, concordant to TCF4,
3.5-fold upregulated in PDAC in this study (FDR = 0.03).
Consistent with these data, we detected ZEB1 protein ex-
pression in the mesenchymal compartment of all analysed
PDAC samples.
To test whether specific miRNAs contribute to the

metastatic potential of pancreatic cancers, we used
omiRas to predict interactions between downregulated
miRNAs and upregulated genes from the GO term
“Cell motion”. The miRNA with the highest number of
targets was miR-130b. Previous studies confirmed
downregulation of miR-130b in pancreatic cancer and
functional tests revealed that overexpression of miR-
130b remarkably inhibited the invasiveness of pancreatic
cancer cells [43]. MiR-130b loss (8-fold downregulated in
PDAC, FDR = 8.2E-7) might lead to the upregulation of
metastasis associated key oncogenes MET, NRP2, ITGA4,
THBS1 and SPOCK1 [44,45]. Recently published data de-
scribe the impact of miR-130b in metastasis formation
[46] and therefore validates the approach of in silico pre-
diction of miRNAs.
In contrast to miRNAs, lncRNAs have just recently

moved into the focus of cancer research [47,48]. Neverthe-
less, studies examining the role of lncRNAs in specific
oncogenic processes are limited to date.
Liu and colleagues reported an increased expression

of the lncRNA MALAT1 in PDAC compared to adja-
cent normal pancreatic tissues [49]. Furthermore, they
described a significant correlation between MALAT1
expression levels and tumor size, tumor stage, invasion,
and disease-free survival [49]. In our analysis, however,
MALAT1 upregulation in PDAC was not found. This is
further supported by the pancreatic expression data-
base (PED), where MALAT1 was also not reported as
differentially expressed [50].
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Figure 4 Re-expression of miRNA induces downregulation of TCF4. A) RT-qPCR of miRNA isolated from MiaPaCa cells 24 h after transfection with
PCMV-MIR-802 or PCMV-MIR-Control. miRNA-802 expression: fold-change with standard deviation (n = 3). B) TCF4 expression was analyzed 24 h
after expression of PCMV-MIR-802 and PCMV-MIR-Control in MiaPaCa cells. Β-Actin was used as a loading control and for normalization (n = 3).
C) LI-COR quantification of TCF4 protein levels in miRNA-treated cells. TCF4 levels were normalized to β-Actin (n = 3).
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Similar to MALAT1, an increased expression of HOX
antisense intergenic RNA HOTAIR has been found in
pancreatic tumors [51]. According to the PED, no signifi-
cant upregulation of HOTAIR is found in PDAC tissues,
which is consistent with our results. Overexpression of
PVT1 in the pancreatic cancer cell line ASPC-1 resulted
in decreased gemcitabine sensitivity [52]. In this regard,
we found an approximately 6-fold upregulation of lncRNA
PVT1 in pancreatic cancer.
Besides PVT1 we provide evidence for a deregulation of

other 42 lncRNAs in PDAC. Among these LINC00152 is,
like in PDAC, overexpressed in gastric cancer (GCC), and
its high expression correlates with increased invasion [53].
Xia and colleagues speculate about LINC00152 function-
ing as a competing endogenous RNA (ceRNA) that se-
questers miR-18a-5p, 195-5p, 139-5p and miR-31-5p in
GCC and thereby influences i.a. THBS1 expression [21].
We report LINC00152 overexpression in pancreatic
cancer (5-fold, FDR = 7.1E-7), whereas all miRNAs with
binding sites in the transcript are not significantly
deregulated compared to control tissues. This indicates
that increased LINC00152 expression might decrease
the availability of particular miRNAs by competing for
their binding and consequently lead to an upregulation
of the miRNA target genes, such as THBS1 (5-fold up-
regulated in PDAC, FDR = 7.7E-6).
Overexpression of snoRNAs is a common feature in

breast and prostate cancer [15], and contributes to
tumorigenicity in vitro and in vivo. SnoRNA U50 is down-
regulated in prostate cancer and potentially functions
as a tumor suppressor in other cancer types [54]. Several
reports describe that snoRNAs are further processed to
generate smaller fragments (sdRNAs) with miRNA-like
functionality [55]. Currently, there is no evidence for
snoRNAs/sdRNAs involved in pancreatic cancer develop-
ment. To our best knowledge, this is the first report of dif-
ferential regulation of snoRNAs/sdRNAs in PDAC. The
most significantly regulated sdRNA (34 bps long) is from
sno-HBII-296B (SNORD91B), which is approximately 5-
fold downregulated in PDAC (FDR = 5.2E-5). However, its
functional role and that of other differentially expressed
snoRNAs/sdRNAs remains unclear; similarly, the func-
tions of piRNAs has not been fully elucidated. PiRNAs are
usually involved in germline development, silencing of



Figure 6 Influence of miRNAs on metastatic potential. Interaction network between gene products of upregulated genes from GO category: “Cell
motion” and downregulated miRNAs in PDAC. Receptors are indicated in green, transcription factors in orange, and other proteins in blue. Predicted
miRNA binding of the mRNAs encoding the protein is encoded by a grey line, protein-protein interactions by bold blue lines.
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Figure 5 Immunohistochemistry of ZEB1 protein expression. Immunohistochemical detection of ZEB1 in human pancreatic tissue samples.
Representative images of ZEB1 expression: Upper panels, ZEB1 is expressed in periacinar cells in normal pancreatic tissue samples. Lower panels,
detection of ZEB1 in stromal cells, but not in epithelial tumor cells in PDAC samples.
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Figure 7 QPCR validation of sequencing results. The relative expression (Y-axis) for all candidate miRNAs/genes/lincRNAs (X-axis) is shown using
boxplots for each condition. The bold black line represents the median expression across patients within a condition. *indictates a p-value < 0.05,
**a p-value <0.01.
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transposons, and maintenance of DNA integrity [56]. Up-
regulated expression of piR-651 has been described in sev-
eral cancer cell lines, where it promotes cell growth and
might serve as a marker for cancer diagnosis [56]. Here
we report the downregulation of piR-017061 in PDAC, a
piRNA that is located within the sno-HBII-296A snoRNA.
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Conclusion
This study underlines the role of miRNAs in PDAC and
provides evidence for differentially regulated miRNAs that
have not been previously implicated in PDAC. Additionally,
we provide evidence that novel sncRNA classes, snoRNAs
and piRNAs are differentially regulated between normal
pancreas and PDAC tissues. Using a bioinformatics ap-
proach, we connect mRNA sequencing data with miRNA
expression to assign potential functions to miR-802 and
other miRNAs. Furthermore, we provide evidence for the
differential expression of a variety of lncRNAs in pancreatic
cancer.

Methods
Tissue samples were obtained from six patients with
PDAC who underwent resection at the Department of
Surgery, Technical University of Munich, Germany.
Normal pancreatic tissue samples from five patients

without pancreatic ductal adenocarcinoma were used as
controls.
Tissue collection was approved by the Ethics Committee

of the Technical University of Munich and informed con-
sent was obtained from all patients. Tissue were collected
directly in the operating theatre and were immediately
stored at −80°C until analysis.

Isolation of RNA
20 mg of frozen tissue were disrupted and homogenized
(TissueLyser, Qiagen) and RNA was isolated (NucleoSpin
miRNA Kit, Macherey-Nagel) in two fractions (small
RNA < 200 nt and large RNA > 200 nt).

Preparation of small RNA libraries
For preparation of small RNA libraries, 5 μg RNA (small
RNA fraction) was size-selected (<40 nt) by polyacrylamide
gel electrophoresis (FlashPAGE, Life Technologies) and
precipitated. About 30 ng small RNA (<40 nt) was succes-
sive ligated (T4 RNA Ligase 1 and T4 RNA Ligase 2, NEB)
to modified 3′ and 5′ adapters (TrueQuant RNA adapters,
GenXPro). Adapter-ligated RNA was reverse transcribed
(SuperScript III, Life Technologies) and amplified by PCR
(KAPA HiFi Hot-Start Polymerase, KAPA Biosystems).
Amplified libraries were size-selected by polyacrylamide
gel electrophoresis (PAGE) and sequenced (HiSeq2000,
Illumina).

Preparation of massive analysis of cDNA ends (MACE)
libraries
MACE libraries were prepared as described by Müller
et al. [57]. Briefly, poly-adenylated RNA was extracted
(Dynabeads mRNA Purification Kit, Life Technologies)
from 5 μg RNA (large RNA fraction) and reverse tran-
scribed (SuperScript Double-Stranded cDNA Synthesis
Kit, Life Technologies) with biotinylated poly(dT) primers.
cDNA was fragmented (Bioruptor, Diagenode) to an aver-
age size of 250 bp. Biotinylated ends were captured by
streptavidin beads (Dynabeads M-270 Streptavidin Beads,
Life Technologies) and ligated (T4 DNA Ligase 1, NEB) to
modified adapters (TrueQuant DNA adapter, GenXPro).
The libraries were amplified by PCR (KAPA HiFi Hot-
Start Polymerase, KAPA Biosystems), purified by SPRI
beads (Agencourt AMPure XP, Beckman Coulter) and se-
quenced (HiSeq2000, Illumina).

Cell culture and transfection
The pancreatic cancer cell line MiaPaCa was maintained
at 37°C in a humified atmosphere of 5% CO2 and 95% air
in Dulbecco’s modified Eagle Medium (Life Technologies,
Inc, Darmstadt, Germany). The cells were transfected with
Lipofectamine2000 (Life Technologies, Inc, Darmstadt,
Germany) according to the manufacturer’s protocol with
either PCMV-MIR-802 or PCMV-MIR-Control (OriGene,
Rockville, USA).

RT-qPCR
MiRNA was extracted from MiaPaCa cells with the miR-
Neasy Mini Kit (Qiagen, Hilden, Germany). Reverse tran-
scription was performed using the RevertAidH Minus
First Strand cDNA Synthesis Kit (Thermo Scientific,
Braunschweig, Germany) using specific hsa-miR-802 and
as control hsa-miR-16 primer. Amplification of cDNA was
performed using the TaqMan Small RNA Assays Applied
Biosystems (Life Technologies, Inc, Darmstadt, Germany).
The primers for the cDNA synthesis and for the TaqMan
analysis were included in the kit from TaqMan Small
RNA Assays Applied Biosystems (Life Technologies, Inc,
Darmstadt, Germany). For quantification of miRNA-802
expression the results were normalized against miR-16
expression.

Western blot
For quantification of protein levels after miRNA expres-
sion, transfected MiaPaCa cells were fractionated using
the NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo Scientific, Braunschweig, Germany). 20 μg of
protein from the nuclear fraction was loaded onto a 10%
polyacrylamide gel and was then electrophoretically trans-
ferred to a nitrocellulose membrane. The membrane was
blocked with Tween-20 (0.05%)-TBS (pH 7.4; 0.1 M Tris
Base, 1.4 M NaCl) containing 5% milk, followed by incu-
bation with respective primary antibody α-TCF4 (LS-Bio,
Eching, Germany) at a concentration of 1:1000 or as a
control α-β-Actin (Abcam, Cambridge, UK) with a con-
centration of 1:2000. Membranes were washed with
Tween-20 (0.05%)-TBS and were incubated with a horse-
radish peroxidase (HRP)-conjugated anti-rabbit antibody
(1:5000). Signals were detected using the enhanced chemi-
luminescence system (ECL, Amersham Life Science Ltd.,
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Bucks, UK). Films were scanned with a CanoScan 9900F
scanner (Canon, Japan). Protein levels were quantified
using the Odyssey software LI-COR and normalized to
the β-Actin control.

Confirmation of MACE results by qRT-PCR of selected
genes
LincRNA and mRNA expression analysis was carried
out with the QuantiTect Multiplex PCR Kit (Qiagen) in
combination with Superscript III reverse transcriptase
(Life Technologies) and PrimeTime qPCR Assays (IDT).
For miRNA detection, we used the miRCURY LNA Uni-
versal RT microRNA PCR system (Exiqon) according to
the recommendations of the manufacturer. Reverse tran-
scription and PCR-amplification for mRNA expression
studies were performed with 50 ng of the large total
RNA fraction. All quantitative real-time PCR reactions
were carried out on the Lightcycler 480 II (Roche). For
mRNAs/lincRNAs the expression of housekeeping gene
HPRT1 was measured for data normalization, while
miR-16 served as endogenous control for miRNA quan-
tification. Differential expression between control and
tumor tissues was assessed using the ΔΔCt method, p-
values were calculated with Wilcoxon’s rank sum test.

Immunohistochemistry analysis
Immunohistochemistry was performed using the Dako
Envision System (Dako Cytomation GmbH, Hamburg,
Germany). Consecutive paraffin-embedded tissue sections
(3 μm thick) were deparaffinized and rehydrated using
routine methods. Antigen retrieval was performed in cit-
rate buffer (pH 6.0; 10 mM citric acid) in a microwave
oven for 10 minutes. Endogenous peroxidase activity was
quenched by incubation in TBS (pH 7.6; 0.2 M Tris Base;
1.4 M NaCl) containing 3% hydrogen peroxide at room
temperature for 10 minutes. After permeabilization with
0.5% TritonX, nonspecific reactivity was blocked with TBS
containing 5% BSA. Sections were incubated with the
ZEB1 antibody (ZEB1: Atlas Antibodies #AMAb90510
(1:400)) at 4°C overnight followed by incubation with
horseradish peroxidase-linked goat anti-mouse antibody,
followed by a color-reaction with diaminebenzidine and
counterstaining with Mayer’s hematoxylin.

Bioinformatics analysis of MACE data
To remove any PCR-bias, all duplicate reads detected by
the TrueQuant technology were removed from the raw
datasets. The remaining reads were additionally quality
trimmed and the poly(A)-tail was clipped off. After raw
data processing, reads were aligned to the human gen-
ome with novoalign (http://www.novocraft.com). Anno-
tations for genomic mapping positions were derived by
the RefSeq annotation track that includes coding genes
as well as lncRNAs (http://genome.ucsc.edu/cgi-bin/
hgTables) and only uniquely mapped reads were taken
into account. Normalization and test for differential gene
expression between normal and tumor tissue were calcu-
lated using the DESeq R/Bioconductor package [58]. To
account for multiple testing, the false discovery rate (FDR)
was estimated. Genes with FDR < 0.05 and |log2fc| > 1.6
were considered as differentially expressed.

Bioinformatics analysis of small RNA-seq data
The sRNA-seq data was quantified and tested for differen-
tial expression with omiRas [27]. Briefly, for each small
RNA-seq library, data processing started with 3′ adapter
clipping by a local alignment of the adapter sequence to
each read. Subsequently, Illumina’s marked quality region
was removed and the reads were summarized to UniTags.
Singletons were removed from the data set and the
remaining tags were mapped to the human genome
(hg19) with bowtie. The mapped tags were annotated with
the help of various models of coding and non-coding
RNAs retrieved from the UCSC table browser. Tags map-
ping to exonic regions of coding genes were excluded
from further analysis. Non-coding RNAs were quantified
in each library. For tags mapping to multiple genomic loci
the number of reads corresponding to the tag was divided
by the number of mapping loci. Normalization and test
for differential expression was performed in the same way
as described for mRNAs.

Evaluation of normal pancreas function in control
libraries
To underline the usability of apparently normal pancreas
tissue samples to serve as healthy controls, all genes
were sorted in ascending order according to their nor-
malized mean expression in normal sequencing libraries.
To determine genes encoding pancreas specific proteins,
functional annotations of the fifty most highly expressed
genes were extracted from genecards [59].

Enrichment analysis
Differentially expressed genes were uploaded to the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) resource [60] using an enrichment
cutoff of FDR < 0.05.

Co-expression analysis
A list of all human transcription factors (TFs) was re-
ceived from AnimalTFDB [61]. Individual expression
values of significantly upregulated (in PDAC) transcrip-
tion factors were clustered using the k-means method
with PCC as a distance measure and six initial clusters.
The median expression of all transcription factors for
each sample was taken as the representative expression
for the cluster. To detect the influence of significant
miRNA loss on transcription factor upregulation, PCCs

http://www.novocraft.com/
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
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were calculated for each TF/TF, miRNA/miRNA and
miRNA/TF pair.

Network analysis
Interactions between miRNAs and transcripts with nega-
tively correlated differential expression were detected with
omiRas, using a minimum database overlap of three re-
quired interaction databases. Additionally, the STRING
database v 9.0.5 [62] was used with standard parameters
to detect interactions between gene products of differen-
tially expressed genes.

Availability of supporting data
The data sets supporting the results of this article are
available in the ArrayExpress expository, accession E-
MTAB-3494.
The data sets supporting the results of this article are

available in the GEO repository, [GEO: will be inserted
after publication].
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sRNA-seq.
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