Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment.
Environ. Sci. Technol. 47, 6900-6907 (2013)
Separating microbial- and physical-induced effects on the isotope signals of contaminants has been identified as a challenge in interpreting compound-specific isotope data. In contrast to simple analytical tools, such as the Rayleigh equation, reactive-transport models can account for complex interactions of different fractionating processes. The question arises how complex such models must be to reproduce the data while the model parameters remain identifiable. In this study, we reanalyze the high-resolution data set of toluene concentration and toluene-specific δ(13)C from the toluene-pulse experiment performed by Qiu et al. (this issue). We apply five reactive-transport models, differing in their degree of complexity. We uniquely quantify degradation and sorption properties of the system for each model, estimate the contributions of biodegradation-induced, sorption-induced, and transverse-dispersion-induced isotope fractionation to the overall isotope signal, and investigate the error introduced in the interpretation of the data when individual processes are neglected. Our results show that highly resolved data of both concentration and isotope ratios are needed for unique process identification facilitating reliable model calibration. Combined analysis of these highly resolved data demands reactive transport models accounting for nonlinear degradation kinetics and isotope fractionation by both reactive and physical processes such as sorption and transverse dispersion.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
5.257
2.003
15
15
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Trapped Gas-phase ; Contaminated Aquifer ; Porous-media ; Fractionation Analysis ; Organic Contaminants ; Stable Carbon ; Transport ; Biodegradation ; Degradation ; Quantification
Sprache
englisch
Veröffentlichungsjahr
2013
HGF-Berichtsjahr
2013
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
Zeitschrift
Environmental Science & Technology
Quellenangaben
Band: 47,
Heft: 13,
Seiten: 6900-6907
Verlag
ACS
Verlagsort
Washington, DC
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Groundwater Ecology (IGOE)
POF Topic(s)
20403 - Sustainable Water Management
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504300-006
G-504390-001
G-504390-001
PubMed ID
23668814
WOS ID
WOS:000321521400024
Scopus ID
84880110006
Erfassungsdatum
2013-07-29