Freytag, S.* ; Manitz, J.* ; Schlather, M.* ; Kneib, T.* ; Amos, C.I.* ; Risch, A.* ; Chang-Claude, J.* ; Heinrich, J. ; Bickeböller, H.*
A network-based kernel kachine test for the identification of risk pathways in genome-wide association studies.
Hum. Hered. 76, 64-75 (2014)
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). In this study, the kernel converts the genomic information of 2 individuals into a quantitative value reflecting their genetic similarity. With the selection of the kernel, one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for the topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case-control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Kernel Machine Test ; Pathway ; Network ; Gene-gene Interaction ; Score Test ; Generalized Linear Model ; Lung Cancer ; Rheumatoid Arthritis ; Disease Association ; Genetic Association Studies; Rheumatoid-arthritis; Complex Diseases; Lung-cancer; Models; Information; Regression; Genes; Snps; Sets
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2014
Prepublished im Jahr
HGF-Berichtsjahr
2014
ISSN (print) / ISBN
0001-5652
e-ISSN
1423-0062
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 76,
Heft: 2,
Seiten: 64-75
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Karger
Verlagsort
Basel
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30503 - Chronic Diseases of the Lung and Allergies
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-503900-001
Förderungen
Copyright
Erfassungsdatum
2014-01-31