PuSH - Publikationsserver des Helmholtz Zentrums München

Freytag, S.* ; Manitz, J.* ; Schlather, M.* ; Kneib, T.* ; Amos, C.I.* ; Risch, A.* ; Chang-Claude, J.* ; Heinrich, J. ; Bickeböller, H.*

A network-based kernel kachine test for the identification of risk pathways in genome-wide association studies.

Hum. Hered. 76, 64-75 (2014)
Verlagsversion Volltext DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). In this study, the kernel converts the genomic information of 2 individuals into a quantitative value reflecting their genetic similarity. With the selection of the kernel, one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for the topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case-control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.642
0.597
9
11
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Kernel Machine Test ; Pathway ; Network ; Gene-gene Interaction ; Score Test ; Generalized Linear Model ; Lung Cancer ; Rheumatoid Arthritis ; Disease Association ; Genetic Association Studies; Rheumatoid-arthritis; Complex Diseases; Lung-cancer; Models; Information; Regression; Genes; Snps; Sets
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 0001-5652
e-ISSN 1423-0062
Zeitschrift Human Heredity
Quellenangaben Band: 76, Heft: 2, Seiten: 64-75 Artikelnummer: , Supplement: ,
Verlag Karger
Verlagsort Basel
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30503 - Chronic Diseases of the Lung and Allergies
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-503900-001
PubMed ID 24434848
Scopus ID 84892397709
Erfassungsdatum 2014-01-31