Eyerich, K. ; Brown, S.J.* ; White, B.E.P.* ; Tanaka, R.J.* ; Bissonette, R.* ; Dhar, S.* ; Bieber, T.* ; Hijnen, D.J.* ; Guttman-Yassky, E.* ; Irvine, A.* ; Thyssen, J.P.* ; Vestergaard, C.* ; Werfel, T.* ; Wollenberg, A.* ; Paller, A.S.* ; Reynolds, N.J.*
Human and computational models of atopic dermatitis: A review and perspectives by an expert panel of the International Eczema Council.
J. Allergy Clin. Immunol. 143, 36-45 (2019)
Atopic dermatitis (AD) is a prevalent disease worldwide and is associated with systemic comorbidities representing a significant burden on patients, their families, and society. Therapeutic options for AD remain limited, in part because of a lack of well-characterized animal models. There has been increasing interest in developing experimental approaches to study the pathogenesis of human AD in vivo, in vitro, and in silico to better define pathophysiologic mechanisms and identify novel therapeutic targets and biomarkers that predict therapeutic response. This review critically appraises a range of models, including genetic mutations relevant to AD, experimental challenge of human skin in vivo, tissue culture models, integration of "omics" data sets, and development of predictive computational models. Although no one individual model recapitulates the complex AD pathophysiology, our review highlights insights gained into key elements of cutaneous biology, molecular pathways, and therapeutic target identification through each approach. Recent developments in computational analysis, including application of machine learning and a systems approach to data integration and predictive modeling, highlight the applicability of these methods to AD subclassification (endotyping), therapy development, and precision medicine. Such predictive modeling will highlight knowledge gaps, further inform refinement of biological models, and support new experimental and systems approaches to AD.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Atopic Dermatitis ; Atopic Eczema ; Endotype ; Human Models ; Machine Learning ; Mechanistic Models ; Precision Medicine ; Tissue Culture Models ; Skin Equivalents ; Systems Biology; In-vitro Model; Patch Test Reactions; Th2 Responses; Skin Barrier; T-cells; Sensitization; Cytokines; Proteins; Association; Activation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0091-6749
e-ISSN
1097-6825
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 143,
Heft: 1,
Seiten: 36-45
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Allergy
PSP-Element(e)
G-505400-001
Förderungen
Copyright
Erfassungsdatum
2019-01-21