PuSH - Publikationsserver des Helmholtz Zentrums München

Patil, S.* ; Heuser, C.* ; de Almeida, G.P.* ; Theis, F.J. ; Zielinski, C.E.*

Meeting the challenges of high-dimensional single-cell data analysis in immunology.

Front. Immunol. 10:1515 (2019)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Recent advances in cytometry have radically altered the fate of single-cell proteomics by allowing a more accurate understanding of complex biological systems. Mass cytometry (CyTOF) provides simultaneous single-cell measurements that are crucial to understand cellular heterogeneity and identify novel cellular subsets. High-dimensional CyTOF data were traditionally analyzed by gating on bivariate dot plots, which are not only laborious given the quadratic increase of complexity with dimension but are also biased through manual gating. This review aims to discuss the impact of new analysis techniques for in-depths insights into the dynamics of immune regulation obtained from static snapshot data and to provide tools to immunologists to address the high dimensionality of their single-cell data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.716
1.092
21
46
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Cytof ; High-dimensional Data Analysis ; Single-cell Genomics ; Single-cell Profiling ; Systems Immunology ; Trajectory Inference ; Visualization; Flow-cytometry; Visualization; Hierarchy; Maps
Sprache
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1664-3224
e-ISSN 1664-3224
Quellenangaben Band: 10, Heft: , Seiten: , Artikelnummer: 1515 Supplement: ,
Verlag Frontiers
Verlagsort Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85069040665
PubMed ID 31354705
Erfassungsdatum 2019-07-25