Frank-Podlech, S. ; Heinze, J.M. ; Machann, J. ; Scheffler, K.* ; Camps, G.* ; Fritsche, A. ; Rosenberger, M.* ; Hinrichs, J.* ; Veit, R. ; Preissl, H.
Functional connectivity within the gustatory network is altered by fat content and oral fat sensitivity - A pilot study.
Front. Neurosci. 13:725 (2019)
Background: The amount of fat in ingested food dictates specific activation patterns in the brain, particularly in homeostatic and reward-related areas. Taste-specific brain activation changes have also been shown and the sensitivity to the oral perception of fat is associated with differential eating behavior and physiological parameters. The association between oral fat sensitivity and neuronal network functions has, however, not yet been defined. Objective: We aimed to investigate the association between fat-dependent neuronal functional connectivity patterns and oral fat sensitivity. Design: To investigate the underlying changes in network dynamics caused by fat intake, we measured resting-state functional connectivity in 11 normal-weight male participants before and after a high- vs. a low-fat meal on two separate study days. Oral fat sensitivity was also measured on both days. We used a high-resolution functional magnetic resonance imaging (MRI) sequence to measure any connectivity changes in networks with the seed in the brainstem (nucleus tractus solitarii, NTS), in homeostatic (hypothalamus) and in reward regions (ventral and dorsal striatum). Seed-based functional connectivity (FC) maps were analyzed using factorial analyses and correlation analyses with oral fat sensitivity were also performed. Results: Regardless of fat content, FC between NTS and reward and gustatory areas was lower after ingestion. Oral fat sensitivity was positively correlated with FC between homeostatic regions and limbic areas in the high-fat condition, but negatively correlated with FC between the dorsal striatum and somatosensory regions in the low-fat condition. Conclusion: Our results show the interaction of oral fat sensitivity with the network based neuronal processing of high- vs. low-fat meals. Variations in neuronal connectivity network patterns might therefore be a possible moderator of the association of oral fat sensitivity and eating behavior.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Fat Detection Threshold ; Functional Connectivity ; Hypothalamus ; Nucleus Tractus Solitarii ; Nutritional Fat ; Oral Fat Sensitivity ; Striatum; Human Hypothalamic Responses; Detection Thresholds; Energy Density; Taste; Representation; Meal; Reliability; Consumption; Intensity; Viscosity
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
1662-453X
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: JUL,
Seiten: ,
Artikelnummer: 725
Supplement: ,
Reihe
Verlag
Frontiers
Verlagsort
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502400-001
Förderungen
Copyright
Erfassungsdatum
2019-07-26