PuSH - Publikationsserver des Helmholtz Zentrums München

Chen, J.* ; de Hoogh, K.* ; Gulliver, J.* ; Hoffmann, B.* ; Hertel, O.* ; Ketzel, M.* ; Weinmayr, G.* ; Bauwelinck, M.* ; van Donkelaar, A.* ; Hvidtfeldt, U.A.* ; Atkinson, R.* ; Janssen, N.A.H.* ; Martin, R.V.* ; Samoli, E.* ; Andersen, Z.J.* ; Oftedal, B.* ; Stafoggia, M.* ; Strak, M.* ; Wolf, K. ; Vienneau, D.* ; Brunekreef, B.* ; Hoek, G.*

Development of Europe-wide models for particle elemental composition using supervised linear regression and random forest.

Environ. Sci. Technol. 54, 15698-15709 (2020)
Postprint Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 mu m (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.864
0.000
6
14
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Land-use Regression; Long-term Exposure; Particulate Matter; Intraurban Variation; Source Apportionment; Spatial Variation; Pm2.5 Absorbency; Areas; Components; Mortality
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Band: 54, Heft: 24, Seiten: 15698-15709 Artikelnummer: , Supplement: ,
Verlag ACS
Verlagsort Washington, DC
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-001
Förderungen China Scholarship Council
United States Environmental Protection Agency (EPA)
PubMed ID 3237771
Erfassungsdatum 2021-02-03