Chen, J.* ; de Hoogh, K.* ; Gulliver, J.* ; Hoffmann, B.* ; Hertel, O.* ; Ketzel, M.* ; Weinmayr, G.* ; Bauwelinck, M.* ; van Donkelaar, A.* ; Hvidtfeldt, U.A.* ; Atkinson, R.* ; Janssen, N.A.H.* ; Martin, R.V.* ; Samoli, E.* ; Andersen, Z.J.* ; Oftedal, B.* ; Stafoggia, M.* ; Strak, M.* ; Wolf, K. ; Vienneau, D.* ; Brunekreef, B.* ; Hoek, G.*
Development of Europe-wide models for particle elemental composition using supervised linear regression and random forest.
Environ. Sci. Technol. 54, 15698-15709 (2020)
We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 mu m (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Land-use Regression; Long-term Exposure; Particulate Matter; Intraurban Variation; Source Apportionment; Spatial Variation; Pm2.5 Absorbency; Areas; Components; Mortality
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 54,
Heft: 24,
Seiten: 15698-15709
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
ACS
Verlagsort
Washington, DC
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-001
Förderungen
China Scholarship Council
United States Environmental Protection Agency (EPA)
Copyright
Erfassungsdatum
2021-02-03