Big data and transformative bioinformatics in genomic diagnostics and beyond.
Parkinsonism Relat. Disord. 134:107311 (2025)
The current era of high-throughput analysis-driven research offers invaluable insights into disease etiologies, accurate diagnostics, pathogenesis, and personalized therapy. In the field of movement disorders, investigators are facing an increasing growth in the volume of produced patient-derived datasets, providing substantial opportunities for precision medicine approaches based on extensive information accessibility and advanced annotation practices. Integrating data from multiple sources, including phenomics, genomics, and multi-omics, is crucial for comprehensively understanding different types of movement disorders. Here, we explore formats and analytics of big data generated for patients with movement disorders, including strategies to meaningfully share the data for optimized patient benefit. We review computational methods that are essential to accelerate the process of evaluating the increasing amounts of specialized data collected. Based on concrete examples, we highlight how bioinformatic approaches facilitate the translation of multidimensional biological information into clinically relevant knowledge. Moreover, we outline the feasibility of computer-aided therapeutic target evaluation, and we discuss the importance of expanding the focus of big data research to understudied phenotypes such as dystonia.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Bioinformatics ; Dystonia ; Genomics ; Multi-omics ; Phenomics ; Big Data; Integrative Omics; Mutation Database; Whole-genome; Rare; Framework; Archive; Health; Genes
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1353-8020
e-ISSN
1873-5126
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 134,
Heft: ,
Seiten: ,
Artikelnummer: 107311
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
125 London Wall, London, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-503200-001
Förderungen
Technical University of Munich-Institute for Advanced Study
German Research Foundation
Free State of Bavaria under the Excellence Strategy of the Federal Government and the Lander
Federal Ministry of Education and Research (BMBF)
Else Kroner-Fresenius-Stiftung
German Federal Ministry of Education and Research (BMBF, Bonn, Germany)
EJP RD (EJP RD Joint Transnational Call 2022)
Copyright
Erfassungsdatum
2025-04-09