PuSH - Publikationsserver des Helmholtz Zentrums München

Jungmann, F.* ; Kaissis, G.* ; Ziegelmayer, S.* ; Harder, F.N.* ; Schilling, C.* ; Yen, H.Y.* ; Steiger, K.* ; Weichert, W.* ; Schirren, R.* ; Demir, I.E.* ; Friess, H.* ; Makowski, M.R.* ; Braren, R.F.* ; Lohöfer, F.K.*

Prediction of tumor cellularity in resectable PDAC from preoperative computed tomography imaging.

Cancers 13:2069 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: PDAC remains a tumor entity with poor prognosis and a 5-year survival rate below 10%. Recent research has revealed invasive biomarkers, such as distinct molecular subtypes, predictive for therapy response and patient survival. Non-invasive prediction of individual patient outcome however remains an unresolved task. METHODS: Discrete cellularity regions of PDAC resection specimen (n = 43) were analyzed by routine histopathological work up. Regional tumor cellularity and CT-derived Hounsfield Units (HU, n = 66) as well as iodine concentrations were regionally matched. One-way ANOVA and pairwise t-tests were performed to assess the relationship between different cellularity level in conventional, virtual monoenergetic 40 keV (monoE 40 keV) and iodine map reconstructions. RESULTS: A statistically significant negative correlation between regional tumor cellularity in histopathology and CT-derived HU from corresponding image regions was identified. Radiological differentiation was best possible in monoE 40 keV CT images. However, HU values differed significantly in conventional reconstructions as well, indicating the possibility of a broad clinical application of this finding. CONCLUSION: In this study we establish a novel method for CT-based prediction of tumor cellularity for in-vivo tumor characterization in PDAC patients.
Impact Factor
Scopus SNIP
Altmetric
6.639
1.292
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Pdac ; Computed Tomography ; Pancreatic Ductal Adenocarcinoma ; Tumor Cellularity
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2072-6694
Zeitschrift Cancers
Quellenangaben Band: 13, Heft: 9, Seiten: , Artikelnummer: 2069 Supplement: ,
Verlag MDPI
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530014-001
Förderungen Deutsche Forschungsgemeinschaft
PubMed ID 33922981
Erfassungsdatum 2022-09-13