Jungmann, F.* ; Kaissis, G.* ; Ziegelmayer, S.* ; Harder, F.N.* ; Schilling, C.* ; Yen, H.Y.* ; Steiger, K.* ; Weichert, W.* ; Schirren, R.* ; Demir, I.E.* ; Friess, H.* ; Makowski, M.R.* ; Braren, R.F.* ; Lohöfer, F.K.*
Prediction of tumor cellularity in resectable PDAC from preoperative computed tomography imaging.
Cancers 13:2069 (2021)
BACKGROUND: PDAC remains a tumor entity with poor prognosis and a 5-year survival rate below 10%. Recent research has revealed invasive biomarkers, such as distinct molecular subtypes, predictive for therapy response and patient survival. Non-invasive prediction of individual patient outcome however remains an unresolved task. METHODS: Discrete cellularity regions of PDAC resection specimen (n = 43) were analyzed by routine histopathological work up. Regional tumor cellularity and CT-derived Hounsfield Units (HU, n = 66) as well as iodine concentrations were regionally matched. One-way ANOVA and pairwise t-tests were performed to assess the relationship between different cellularity level in conventional, virtual monoenergetic 40 keV (monoE 40 keV) and iodine map reconstructions. RESULTS: A statistically significant negative correlation between regional tumor cellularity in histopathology and CT-derived HU from corresponding image regions was identified. Radiological differentiation was best possible in monoE 40 keV CT images. However, HU values differed significantly in conventional reconstructions as well, indicating the possibility of a broad clinical application of this finding. CONCLUSION: In this study we establish a novel method for CT-based prediction of tumor cellularity for in-vivo tumor characterization in PDAC patients.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Pdac ; Computed Tomography ; Pancreatic Ductal Adenocarcinoma ; Tumor Cellularity
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2072-6694
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 9,
Seiten: ,
Artikelnummer: 2069
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530014-001
Förderungen
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2022-09-13