PuSH - Publication Server of Helmholtz Zentrum München

Raffin, A.* ; Hill, A.* ; Gleave, A.* ; Kanervisto, A.* ; Ernestus, M.* ; Dormann, N.*

Stable-baselines3: Reliable reinforcement learning implementations.

J. Mach. Learn. Res. 22, accepted (2021)
Publ. Version/Full Text
Open Access Hybrid
Creative Commons Lizenzvertrag
Stable-Baselines3 provides open-source implementations of deep reinforcement learning (RL) algorithms in Python. The implementations have been benchmarked against reference codebases, and automated unit tests cover 95% of the code. The algorithms follow a consistent interface and are accompanied by extensive documentation, making it simple to train and compare different RL algorithms. Our documentation, examples, and source-code are available at https://github.com/DLR-RM/stable-baselines3.
Impact Factor
Scopus SNIP
3.654
2.907
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Baselines ; Open-source ; Python ; Pytorch ; Reinforcement Learning ; Software
Language english
Publication Year 2021
HGF-reported in Year 2021
ISSN (print) / ISBN 1532-4435
e-ISSN 1533-7928
Quellenangaben Volume: 22 Issue: , Pages: , Article Number: , Supplement: ,
Publisher MIT Press
Reviewing status Peer reviewed
Institute(s) Helmholtz AI - DLR (HAI - DLR)
Scopus ID 85121124913
Erfassungsdatum 2022-02-02