PuSH - Publikationsserver des Helmholtz Zentrums München

Zeitschriften-Browsing

13 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Hartog, P. ; Krüger, F. ; Genheden, S.* & Tetko, I.V.: Using test-time augmentation to investigate explainable AI: Inconsistencies between method, model and human intuition. J. Cheminformatics 16:39 (2024)
2.
Saigiridharan, L.* et al.: AiZynthFinder 4.0: Developments based on learnings from 3 years of industrial application. J. Cheminformatics 16:57 (2024)
3.
Tetko, I.V. ; Van Deursen, R.* & Godin, G.*: Be aware of overfitting by hyperparameter optimization! J. Cheminformatics 16:139 (2024)
4.
Karpov, P. ; Godin, G.* & Tetko, I.V.: Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J. Cheminformatics 12:17 (2020)
5.
Škuta, C.* et al.: QSAR-derived affinity fingerprints (part 1): Fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. J. Cheminformatics 12:39 (2020)
6.
Tetko, I.V. & Engkvist, O.*: From Big Data to Artificial Intelligence: Chemoinformatics meets new challenges. J. Cheminformatics 12:74 (2020)
7.
Van Deursen, R.* ; Ertl, P.* ; Tetko, I.V. & Godin, G.*: GEN: Highly efficient SMILES explorer using autodidactic generative examination networks. J. Cheminformatics 12:22 (2020)
8.
Tetko, I.V. ; Lowe, D.* & Williams, A.J.*: The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J. Cheminformatics 8:2 (2016)
9.
Sushko, Y.* et al.: Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. J. Cheminformatics 6:48 (2014)
10.
Novotarskyi, S.* ; Sushko, I.* ; Körner, R.* & Tetko, I.V.: Chemogenomic approach to increase accuracy of QSAR modeling of inhibition activity against five major P450 isoforms. Poster: (2013)
11.
Oprisiu, I. ; Novotarskyi, S.* & Tetko, I.V.: Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM). J. Cheminformatics 5:4 (2013)
12.
Abdelaziz, A. et al.: QSAR modeling for in vitro assays: Linking ToxCast™ database to the integrated modeling framework “OCHEM”. Poster: (2012)
13.
Körner, R. ; Sushko, I.* ; Novotarskyi, S. & Tetko, I.V.: In silico pKa prediction. Poster: 7th German Conference on Cheminformatics, 6 - 8 November 2011, Goslar. (2012)