PuSH - Publikationsserver des Helmholtz Zentrums München

Netzer, M.* ; Kugler, K.G.* ; Müller, L.A.* ; Weinberger, K.M.* ; Graber, A.* ; Baumgartner, C.* ; Dehmer, M.*

A network-based feature selection approach to identify metabolic signatures in disease.

J. Theor. Biol. 310, 216-222 (2012)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The identification and interpretation of metabolic biomarkers is a challenging task. In this context, network-based approaches have become increasingly a key technology in systems biology allowing to capture complex interactions in biological systems. In this work, we introduce a novel network-based method to identify highly predictive biomarker candidates for disease. First, we infer two different types of networks: (i) correlation networks, and (ii) a new type of network called ratio networks. Based on these networks, we introduce scores to prioritize features using topological descriptors of the vertices. To evaluate our method we use an example dataset where quantitative targeted MS/MS analysis was applied to a total of 52 blood samples from 22 persons with obesity (BMI >30) and 30 healthy controls. Using our network-based feature selection approach we identified highly discriminating metabolites for obesity (F-score >0.85, accuracy >85%), some of which could be verified by the literature.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 0022-5193
e-ISSN 1095-8541
Quellenangaben Band: 310, Heft: , Seiten: 216-222 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed