möglich sobald bei der ZB eingereicht worden ist.
Deep generative models to simulate 2D patient-specific ultrasound images in real time.
In: (Annual Conference on Medical Image Understanding and Analysis). Springer, 2020. 423-435 (Comm. Comp. Info. Sci. ; 1248 CCIS)
We present a computational method for real-time, patient-specific simulation of 2D ultrasound (US) images. The method uses a large number of tracked ultrasound images to learn a function that maps position and orientation of the transducer to ultrasound images. This is a first step towards realistic patient-specific simulations that will enable improved training and retrospective examination of complex cases. Our models can simulate a 2D image in under 4 ms (well within real-time constraints), and produce simulated images that preserve the content (anatomical structures and artefacts) of real ultrasound images.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Deep Learning ; Simulation ; Ultrasound
ISSN (print) / ISBN
1865-0929
e-ISSN
1865-0937
Konferenztitel
Annual Conference on Medical Image Understanding and Analysis
Quellenangaben
Band: 1248 CCIS,
Seiten: 423-435
Verlag
Springer
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)