Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Locally learning biomedical data using diffusion frames.
J. Comput. Biol. 19, 1251-1264 (2012)
Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional datasets. Building upon ideas from diffusion geometry, we outline our mathematical foundations for learning a function on high-dimension biomedical data in a local fashion from training data. Our approach is based on a localized summation kernel, and we verify the computational performance by means of exact approximation rates. After these theoretical results, we apply our scheme to learn early disease stages in standard and new biomedical datasets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.546
0.965
15
20
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Graphs And Networks ; Machine Learning; Nonlinear Dimensionality Reduction ; Macular Degeneration ; Geometric Diffusions ; Structure Definition ; Harmonic-analysis ; Laplacian ; Sphere ; Representation ; Eigenfunctions ; Diagnosis
Sprache
englisch
Veröffentlichungsjahr
2012
HGF-Berichtsjahr
2012
ISSN (print) / ISBN
1066-5277
e-ISSN
1557-8666
Zeitschrift
Journal of Computational Biology
Quellenangaben
Band: 19,
Heft: 11,
Seiten: 1251-1264
Verlag
Mary Ann Liebert
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Biomathematics and Biometry (IBB)
POF Topic(s)
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
PSP-Element(e)
G-551500-001
G-503800-001
G-503800-001
PubMed ID
23101786
WOS ID
WOS:000310837400004
Scopus ID
84868653452
Erfassungsdatum
2012-12-06