Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    
        
        Radiat. Environ. Biophys. 52, 123-133 (2013)
    
    
    
				The application of a microchannel proton irradiation was compared to homogeneous irradiation in a three-dimensional human skin model. The goal is to minimize the risk of normal tissue damage by microchannel irradiation, while preserving local tumor control through a homogeneous irradiation of the tumor that is achieved because of beam widening with increasing track length. 20 MeV protons were administered to the skin models in 10- or 50-μm-wide irradiation channels on a quadratic raster with distances of 500 μm between each channel (center to center) applying an average dose of 2 Gy. For comparison, other samples were irradiated homogeneously at the same average dose. Normal tissue viability was significantly enhanced after microchannel proton irradiation compared to homogeneous irradiation. Levels of inflammatory parameters, such as Interleukin-6, TGF-Beta, and Pro-MMP1, were significantly lower in the supernatant of the human skin tissue after microchannel irradiation than after homogeneous irradiation. The genetic damage as determined by the measurement of micronuclei in keratinocytes also differed significantly. This difference was quantified via dose modification factors (DMF) describing the effect of each irradiation mode relative to homogeneous X-ray irradiation, so that the DMF of 1.21 ± 0.20 after homogeneous proton irradiation was reduced to 0.23 ± 0.11 and 0.40 ± 0.12 after microchannel irradiation using 10- and 50-μm-wide channels, respectively. Our data indicate that proton microchannel irradiation maintains cell viability while significantly reducing inflammatory responses and genetic damage compared to homogeneous irradiation, and thus might improve protection of normal tissue after irradiation.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				1.696
					1.004
					31
					44
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        Radiation therapy; Particle therapy; Microbeam; Micronuclei; Inflammatory markers; Spatial fractionation; Microbeam Radiation-therapy ; Reconstructed Human Skin ; Micronucleus Rsmn Assay ; Epiderm(tm) ; Irradiation ; Bystander ; Damage ; Cells ; Microirradiation ; Tolerance
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2013
    
 
    
        Prepublished im Jahr 
        2012
    
 
    
        HGF-Berichtsjahr
        2012
    
 
    
    
        ISSN (print) / ISBN
        0301-634X
    
 
    
        e-ISSN
        1432-2099
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Radiation and Environmental Biophysics
    
 
		
    
        Quellenangaben
        
	    Band: 52,  
	    Heft: 1,  
	    Seiten: 123-133 
	    
	    
	
    
 
  
         
        
            Verlag
            Springer
        
 
         
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-521400-001
    
 
     
     	
    
        PubMed ID
        23271171
    
    
    
        WOS ID
        WOS:000315385100012
    
    
        Scopus ID
        84874396023
    
    
        Erfassungsdatum
        2012-12-31