Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Late origin of glia-restricted progenitors in the developing mouse cerebral cortex.
Cereb. Cortex 19, (Suppl.1), i35-i143 (2009)
In order to unravel the molecular determinants of cell fate, it is important to understand when fate restriction occurs during brain development. Lineage analysis suggested that bi- or multipotent progenitors persist into late developmental stages in some central nervous system regions, whereas most progenitor cells in the cerebral cortex appeared to be restrained to generate only a single cell type already at early stages. Here we discuss this previous work and present new data demonstrating that cortical progenitors generating exclusively glial cells appear late in development. In utero transduction of cortical progenitors at early and mid-neurogenesis using a combination of replication-defective retroviral vectors encoding different fluorescent proteins indicated that the early developing cortex is devoid of glia-restricted progenitors, although these are frequent during mid- and late neurogenesis. Clonal analyses in vitro using retroviral vectors and live cell tracking by video time-lapse microscopy confirmed these findings, revealing that the early developing cortex harbors 2 main progenitor types: neuron-restricted and bipotent (neuron-glial) progenitors. The latter are responsible for the generation of glial-restricted progenitors at mid- and late neurogenesis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
clonal analysis; cortical development; gliogenesis; neurogenesis; video microscopy; neural stem-cells; cortical neurogenesis; fate specification; nervous-system; precursor cell; in-vitro; neurons; lineages; generation; dispersion
ISSN (print) / ISBN
1047-3211
e-ISSN
1460-2199
Zeitschrift
Cerebral Cortex
Quellenangaben
Band: 19,
Heft: SUPPL. 1,
Seiten: i35-i143,
Supplement: (Suppl.1)
Verlag
Oxford University Press
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Stem Cell Research (ISF)