PuSH - Publikationsserver des Helmholtz Zentrums München

Hielscher, R. ; Potts, D.* ; Prestin, J.* ; Schaeben, H.* ; Schmalz, M.*

The Radon transform on SO(3): A Fourier slice theorem and numerical inversion.

Inverse Probl. 24:25011 (2008)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The inversion of the one-dimensional Radon transform on the rotation group SO(3) is an ill-posed inverse problem which applies to x-ray tomography with polycrystalline materials. This paper presents a novel approach to the numerical inversion of the one-dimensional Radon transform on SO(3). Based on a Fourier slice theorem the discrete inverse Radon transform of a function sampled on the product space S-2 x S-2 of two two-dimensional spheres is determined as the solution of a minimization problem, which is iteratively solved using fast Fourier techniques for S-2 and SO(3). The favorable complexity and stability of the algorithm based on these techniques has been confirmed with numerical tests. (Preprint)
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter sphere
ISSN (print) / ISBN 0266-5611
e-ISSN 1361-6420
Zeitschrift Inverse Problems
Quellenangaben Band: 24, Heft: 2, Seiten: , Artikelnummer: 25011 Supplement: ,
Verlag Institute of Physics Publishing (IOP)
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed