For multi-level time-dependent quantum systems one can construct superadiabatic representations in which the coupling between separated levels is exponentially small in the adiabatic limit. Based on results from [BeTe1] for special Hamiltonians we explicitly determine the asymptotic behavior of the exponentially small coupling term for generic two-state systems with real-symmetric Hamiltonian. The superadiabatic coupling term takes a universal form and depends only on the location and the strength of the complex singularities of the adiabatic coupling function. Our proof is based on a new norm which allows to rigorously implement Darboux' principle, a heuristic guideline widely used in asymptotic analysis. As shown in [BeTe1], first order perturbation theory in the superadiabatic representation then allows to describe the time-development of exponentially small adiabatic transitions and thus to rigorously confirm Michael Berry's [Be] predictions on the universal form of adiabatic transition histories.