PuSH - Publikationsserver des Helmholtz Zentrums München

Wittmann, D.M. ; Krumsiek, J. ; Saez-Rodriguez, J.* ; Lauffenburg, D.A.* ; Klam, S.* ; Theis, F.J.

Transforming Boolean models to continuous models: Methodology and application to T-cell receptor signaling.

BMC Syst. Biol. 3, 98:98 (2009)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments. Results: In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one. Conclusion: The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.710
0.873
140
155
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter GENETIC REGULATORY NETWORKS; FUNCTIONAL-ANALYSIS; LOGICAL ANALYSIS; ACTIVATION; SELECTION; SYSTEMS
Sprache englisch
Veröffentlichungsjahr 2009
HGF-Berichtsjahr 0
e-ISSN 1752-0509
Zeitschrift BMC Systems Biology
Quellenangaben Band: 3, Heft: , Seiten: 98 Artikelnummer: 98 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
PubMed ID 19785753
Scopus ID 70449481350
Erfassungsdatum 2009-12-31