Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Response functions for computing absorbed dose to skeletal tissues from photon irradiation.
Radiat. Prot. Dosim. 127, 187-191 (2007)
The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 microm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 microm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose-response functions. This paper outlines the development of such response functions for photons.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
0.446
0.777
12
23
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
active marrow; ICRP reference computational phantoms; Monte Carlo calculation; fluence-to-dose response functions; photons
Sprache
englisch
Veröffentlichungsjahr
2007
HGF-Berichtsjahr
0
ISSN (print) / ISBN
0144-8420
e-ISSN
1742-3406
Zeitschrift
Radiation Protection Dosimetry
Quellenangaben
Band: 127,
Heft: 1-4,
Seiten: 187-191
Verlag
Oxford University Press
Verlagsort
Oxford
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Radiation Protection (ISS)
POF Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501100-008
Scopus ID
49649101130
Erfassungsdatum
2008-07-04