Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems.
Appl. Environ. Microbiol. 79, 543-552 (2013)
The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Reducing Enrichment Culture ; Substituted Aromatic-hydrocarbons ; Alkylsuccinate Synthase Genes ; Polymerase-chain-reaction ; Sp Nov. ; Benzylsuccinate Synthase ; Benzene Degradation ; Toluene Degraders ; Seep Sediments ; Ribosomal-rna
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2013
Prepublished im Jahr
HGF-Berichtsjahr
2013
ISSN (print) / ISBN
0099-2240
e-ISSN
1098-5336
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 79,
Heft: 2,
Seiten: 543-552
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Society for Microbiology (ASM)
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
20403 - Sustainable Water Management
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504300-005
Förderungen
Copyright
Erfassungsdatum
2013-02-01