Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics.
Mol. Nutr. Food Res. 53, 1357-1365 (2009)
Identifying the biochemical basis of microbial phenotypes is a main objective of comparative genomics. Here we present a novel method using multivariate machine learning techniques for comparing automatically derived metabolic reconstructions of sequenced genomes on a large scale. Applying our method to 266 genomes directly led to testable hypotheses such as the link between the potential of microorganisms to cause periodontal disease and their ability to degrade histidine, a link also supported by clinical studies.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Acylcarnintine; Coffee; Metabolomics; MS/MS; Sphingomyelin
ISSN (print) / ISBN
1613-4125
e-ISSN
1613-4133
Zeitschrift
Molecular Nutrition and Food Research
Quellenangaben
Band: 53,
Heft: 11,
Seiten: 1357-1365
Verlag
Wiley
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Bioinformatics and Systems Biology (IBIS)
Molekulare Endokrinologie und Metabolismus (MEM)
Institute of Epidemiology (EPI)
Molekulare Endokrinologie und Metabolismus (MEM)
Institute of Epidemiology (EPI)