Epidermal tissue was isolated from Scots pine (Pinus sylvestris L.) needles by enzymatic digestion in order to study tissue distribution of u.v.-B-screening pigments. Up to 90% of the needle content of a group of diacylated flavonol glycosides that were structurally closely related was found in the epidermal layer. Among these metabolites, 3 '',6 ''-di-para-coumaroyl-isoquercitrin and 3 '',6 ''-di-para-coumaroyl-astragalin were the main u.v.-B-induced compounds in cotyledons and primary needles, respectively. However, catechin and astragalin (kaempferol 3-glucoside), two non-acylated flavonoid metabolites, were only observed in total needle extracts, and at levels independent of u.v.-B treatment. According to this metabolite distribution, the mRNA of chalcone synthase, the key enzyme to flavonoids, was found in epidermal and mesophyll as well as vascular tissues. The major alkali-extractable wall-bound phenolic metabolites, astragalin, 4-coumaric acid, and ferulic acid, a minor component of the cell wall, were also found exclusively in the epidermal layer. These compounds were not stimulated by u.v.-B irradiation within the experimental period. Staining of needle cross sections and epidermal layer preparations with Naturstoffreagenz A confirmed the specific localization of wall-bound astragalin in the outer wall of the epidermal layer. Model calculations of u.v.-B absorptions at 300 nm of soluble and cell-wall-bound metabolites of the epidermal layer revealed an almost complete shielding of the mesophyll tissue from u.v.-B radiation.